Line 6... |
Line 6... |
// \/_// robfinch<remove>@finitron.ca
|
// \/_// robfinch<remove>@finitron.ca
|
// ||
|
// ||
|
//
|
//
|
// fpNormalize.v
|
// fpNormalize.v
|
// - floating point normalization unit
|
// - floating point normalization unit
|
// - one cycle latency
|
// - eight cycle latency
|
// - parameterized width
|
// - parameterized width
|
// - IEEE 754 representation
|
// - IEEE 754 representation
|
//
|
//
|
//
|
//
|
// This source file is free software: you can redistribute it and/or modify
|
// This source file is free software: you can redistribute it and/or modify
|
Line 38... |
Line 38... |
//
|
//
|
// On an underflowed input, the incoming exponent is assumed
|
// On an underflowed input, the incoming exponent is assumed
|
// to be negative. A right shift is needed.
|
// to be negative. A right shift is needed.
|
// ============================================================================
|
// ============================================================================
|
|
|
module fpNormalize(clk, ce, under, i, o);
|
module fpNormalize(clk, ce, i, o, under_i, under_o, inexact_o);
|
parameter WID = 128;
|
parameter WID = 84;
|
`include "fpSize.sv"
|
`include "fpSize.sv"
|
|
|
input clk;
|
input clk;
|
input ce;
|
input ce;
|
input under;
|
|
input [EX:0] i; // expanded format input
|
input [EX:0] i; // expanded format input
|
output [WID+2:0] o; // normalized output + guard, sticky and round bits, + 1 whole digit
|
output [WID+2:0] o; // normalized output + guard, sticky and round bits, + 1 whole digit
|
|
input under_i;
|
// variables
|
output under_o;
|
wire so;
|
output inexact_o;
|
|
|
wire so1 = i[EX]; // sign doesn't change
|
|
|
// ----------------------------------------------------------------------------
|
|
// No Clock required
|
|
// ----------------------------------------------------------------------------
|
|
reg [EMSB:0] xo0;
|
|
reg so0;
|
|
|
|
always @*
|
|
xo0 <= i[EX-1:FX+1];
|
|
always @*
|
|
so0 <= i[EX]; // sign doesn't change
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock #1
|
|
// - Capture exponent information
|
|
// ----------------------------------------------------------------------------
|
|
reg xInf1a, xInf1b, xInf1c;
|
|
wire [FX:0] i1;
|
|
delay1 #(FX+1) u11 (.clk(clk), .ce(ce), .i(i), .o(i1));
|
|
|
|
always @(posedge clk)
|
|
if (ce) xInf1a <= &xo0 & !under_i;
|
|
always @(posedge clk)
|
|
if (ce) xInf1b <= &xo0[EMSB:1] & !under_i;
|
|
always @(posedge clk)
|
|
if (ce) xInf1c = &xo0;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock #2
|
|
// - determine exponent increment
|
// Since the there are *three* whole digits in the incoming format
|
// Since the there are *three* whole digits in the incoming format
|
// the number of whole digits needs to be reduced. If the MSB is
|
// the number of whole digits needs to be reduced. If the MSB is
|
// set, then increment the exponent and no shift is needed.
|
// set, then increment the exponent and no shift is needed.
|
wire [EMSB:0] xo;
|
// ----------------------------------------------------------------------------
|
wire [EMSB:0] xo1a = i[EX-1:FX+1];
|
wire xInf2c, xInf2b;
|
wire xInf = &xo1a & !under;
|
|
wire xInf3 = &xo1a[EMSB:1] & !under;
|
|
wire incExp2 = !xInf3 & i[FX];
|
|
wire incExp1 = !xInf & i[FX-1];
|
|
wire [EMSB:0] xo1 = xo1a + (incExp2 ? 2'd2 : incExp1 ? 2'd1 : 2'd0);
|
|
wire [EMSB:0] xo2;
|
wire [EMSB:0] xo2;
|
wire xInf1 = &xo1;
|
reg incExpByOne2, incExpByTwo2;
|
|
delay1 u21 (.clk(clk), .ce(ce), .i(xInf1c), .o(xInf2c));
|
// If infinity is reached then set the mantissa to zero
|
delay1 u22 (.clk(clk), .ce(ce), .i(xInf1b), .o(xInf2b));
|
// shift mantissa left by one to reduce to a single whole digit
|
delay2 #(EMSB+1) u23 (.clk(clk), .ce(ce), .i(xo0), .o(xo2));
|
// if there is no exponent increment
|
delay2 u24 (.clk(clk), .ce(ce), .i(under_i), .o(under2));
|
wire [FMSB+4:0] mo;
|
|
wire [FMSB+4:0] mo1 = ((xInf1 & (incExp1|incExp2))|(xInf3 & incExp2)) ? 0 :
|
always @(posedge clk)
|
incExp2 ? {i[FX:FMSB+1],|i[FMSB:0]} :
|
if (ce) incExpByTwo2 <= !xInf1b & i1[FX];
|
incExp1 ? {i[FX-1:FMSB],|i[FMSB-1:0]} : // reduce mantissa size
|
always @(posedge clk)
|
{i[FX-2:FMSB-1],|i[FMSB-2:0]}; // reduce mantissa size
|
if (ce) incExpByOne2 <= !xInf1a & i1[FX-1];
|
wire [FMSB+4:0] mo2;
|
|
wire [7:0] leadingZeros2;
|
// ----------------------------------------------------------------------------
|
|
// Clock #3
|
|
// - increment exponent
|
|
// - detect a zero mantissa
|
|
// ----------------------------------------------------------------------------
|
|
|
|
wire incExpByTwo3;
|
|
wire incExpByOne3;
|
|
wire [FX:0] i3;
|
|
reg [EMSB:0] xo3;
|
|
reg zeroMan3;
|
|
delay1 u31 (.clk(clk), .ce(ce), .i(incExpByTwo2), .o(incExpByTwo3));
|
|
delay1 u32 (.clk(clk), .ce(ce), .i(incExpByOne2), .o(incExpByOne3));
|
|
delay3 #(FX+1) u33 (.clk(clk), .ce(ce), .i(i[FX:0]), .o(i3));
|
|
wire [EMSB+1:0] xv3a = xo2 + {incExpByTwo2,1'b0};
|
|
wire [EMSB+1:0] xv3b = xo2 + incExpByOne2;
|
|
|
|
always @(posedge clk)
|
|
if (ce) xo3 <= xo2 + (incExpByTwo2 ? 2'd2 : incExpByOne2 ? 2'd1 : 2'd0);
|
|
|
|
always @(posedge clk)
|
|
if(ce) zeroMan3 <= ((xv3b[EMSB+1]|| &xv3b[EMSB:0])||(xv3a[EMSB+1]| &xv3a[EMSB:0]))
|
|
&& !under2 && !xInf2c;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock #4
|
|
// - Shift mantissa left
|
|
// - If infinity is reached then set the mantissa to zero
|
|
// shift mantissa left to reduce to a single whole digit
|
|
// - create sticky bit
|
|
// ----------------------------------------------------------------------------
|
|
|
|
reg [FMSB+4:0] mo4;
|
|
reg inexact4;
|
|
|
|
always @(posedge clk)
|
|
if(ce)
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
|
3'b1??: mo4 <= 1'd0;
|
|
3'b01?: mo4 <= {i3[FX:FMSB+1],|i3[FMSB:0]};
|
|
3'b001: mo4 <= {i3[FX-1:FMSB],|i3[FMSB-1:0]};
|
|
default: mo4 <= {i3[FX-2:FMSB-1],|i3[FMSB-2:0]};
|
|
endcase
|
|
|
|
always @(posedge clk)
|
|
if(ce)
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
|
3'b1??: inexact4 <= 1'd0;
|
|
3'b01?: inexact4 <= |i3[FMSB:0];
|
|
3'b001: inexact4 <= |i3[FMSB-1:0];
|
|
default: inexact4 <= |i3[FMSB-2:0];
|
|
endcase
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock edge #5
|
|
// - count leading zeros
|
|
// ----------------------------------------------------------------------------
|
|
wire [7:0] leadingZeros5;
|
|
wire [EMSB:0] xo5;
|
|
wire xInf5;
|
|
delay2 #(EMSB+1) u51 (.clk(clk), .ce(ce), .i(xo3), .o(xo5));
|
|
delay3 #(1) u52 (.clk(clk), .ce(ce), .i(xInf2c), .o(xInf5) );
|
|
|
generate
|
generate
|
begin
|
begin
|
if (WID <= 32) begin
|
if (WID <= 32) begin
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo1,5'b0}), .o(leadingZeros2) );
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,5'b0}), .o(leadingZeros5) );
|
assign leadingZeros2[7:6] = 2'b00;
|
assign leadingZeros5[7:6] = 2'b00;
|
end
|
end
|
else if (WID<=64) begin
|
else if (WID<=64) begin
|
assign leadingZeros2[7] = 1'b0;
|
assign leadingZeros5[7] = 1'b0;
|
cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo1,8'h0}), .o(leadingZeros2) );
|
cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo4,8'h0}), .o(leadingZeros5) );
|
end
|
end
|
else if (WID<=80) begin
|
else if (WID<=80) begin
|
assign leadingZeros2[7] = 1'b0;
|
assign leadingZeros5[7] = 1'b0;
|
cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
end
|
end
|
else if (WID<=84) begin
|
else if (WID<=84) begin
|
assign leadingZeros2[7] = 1'b0;
|
assign leadingZeros5[7] = 1'b0;
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo1,24'b0}), .o(leadingZeros2) );
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,24'b0}), .o(leadingZeros5) );
|
end
|
end
|
else if (WID<=96) begin
|
else if (WID<=96) begin
|
assign leadingZeros2[7] = 1'b0;
|
assign leadingZeros5[7] = 1'b0;
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
end
|
end
|
else if (WID<=128)
|
else if (WID<=128)
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
// compensate for leadingZeros delay
|
|
wire xInf2;
|
|
delay1 #(EMSB+1) d2(.clk(clk), .ce(ce), .i(xo1), .o(xo2) );
|
|
delay1 #(1) d3(.clk(clk), .ce(ce), .i(xInf1), .o(xInf2) );
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock edge #6
|
|
// - Compute how much we want to decrement exponent by
|
|
// - compute amount to shift left and right
|
|
// - at infinity the exponent can't be incremented, so we can't shift right
|
|
// otherwise it was an underflow situation so the exponent was negative
|
|
// shift amount needs to be negated for shift register
|
// If the exponent underflowed, then the shift direction must be to the
|
// If the exponent underflowed, then the shift direction must be to the
|
// right regardless of mantissa bits; the number is denormalized.
|
// right regardless of mantissa bits; the number is denormalized.
|
// Otherwise the shift direction must be to the left.
|
// Otherwise the shift direction must be to the left.
|
wire rightOrLeft2; // 0=left,1=right
|
// ----------------------------------------------------------------------------
|
delay1 #(1) d8(.clk(clk), .ce(ce), .i(under), .o(rightOrLeft2) );
|
reg [7:0] lshiftAmt6;
|
|
reg [7:0] rshiftAmt6;
|
|
wire rightOrLeft6; // 0=left,1=right
|
|
wire xInf6;
|
|
wire [EMSB:0] xo6;
|
|
wire [FMSB+4:0] mo6;
|
|
wire zeroMan6;
|
|
vtdl #(1) u61 (.clk(clk), .ce(ce), .a(4'd5), .d(under_i), .q(rightOrLeft6) );
|
|
delay1 #(EMSB+1) u62 (.clk(clk), .ce(ce), .i(xo5), .o(xo6));
|
|
delay2 #(FMSB+5) u63 (.clk(clk), .ce(ce), .i(mo4), .o(mo6) );
|
|
delay1 #(1) u64 (.clk(clk), .ce(ce), .i(xInf5), .o(xInf6) );
|
|
delay3 u65 (.clk(clk), .ce(ce), .i(zeroMan3), .o(zeroMan6));
|
|
|
|
always @(posedge clk)
|
|
if (ce) lshiftAmt6 <= leadingZeros5 > xo5 ? xo5 : leadingZeros5;
|
|
|
|
always @(posedge clk)
|
|
if (ce) rshiftAmt6 <= xInf5 ? 1'd0 : $signed(xo5) > 1'd0 ? 1'd0 : ~xo5+2'd1; // xo2 is negative !
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock edge #7
|
|
// - fogure exponent
|
|
// - shift mantissa
|
|
// ----------------------------------------------------------------------------
|
|
|
|
reg [EMSB:0] xo7;
|
|
wire rightOrLeft7;
|
|
reg [FMSB+4:0] mo7l, mo7r;
|
|
delay1 u71 (.clk(clk), .ce(ce), .i(rightOrLeft6), .i(rightOrLeft7));
|
|
|
|
always @(posedge clk)
|
|
if (ce)
|
|
xo7 <= zeroMan6 ? xo6 :
|
|
xInf6 ? xo6 : // an infinite exponent is either a NaN or infinity; no need to change
|
|
rightOrLeft6 ? 1'd0 : // on a right shift, the exponent was negative, it's being made to zero
|
|
xo6 - lshiftAmt6; // on a left shift, the exponent can't be decremented below zero
|
|
|
|
always @(posedge clk)
|
|
if (ce) mo7r <= mo6 >> rshiftAmt6;
|
|
always @(posedge clk)
|
|
if (ce) mo7l <= mo6 << lshiftAmt6;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Clock edge #8
|
|
// - select mantissa
|
|
// ----------------------------------------------------------------------------
|
|
|
// Compute how much we want to decrement by
|
wire so;
|
wire [7:0] lshiftAmt2 = leadingZeros2 > xo2 ? xo2 : leadingZeros2;
|
wire [EMSB:0] xo;
|
|
reg [FMSB+4:0] mo;
|
// compute amount to shift right
|
vtdl #(1) u81 (.clk(clk), .ce(ce), .a(4'd7), .d(so0), .q(so) );
|
// at infinity the exponent can't be incremented, so we can't shift right
|
delay1 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xo7), .i(xo));
|
// otherwise it was an underflow situation so the exponent was negative
|
vtdl u83 (.clk(clk), .ce(ce), .a(4'd3), .d(inexact4), .q(inexact_o));
|
// shift amount needs to be negated for shift register
|
delay1 u84 (.clk(clk), .ce(ce), .i(rightOrLeft7), .o(under_o));
|
wire [7:0] rshiftAmt2 = xInf2 ? 0 : $signed(xo2) > 0 ? 0 : ~xo2+1;//FMSB+4+xo2; // xo2 is negative !
|
|
|
|
|
always @(posedge clk)
|
|
if (ce) mo <= rightOrLeft7 ? mo7r : mo7l;
|
|
|
// sign
|
|
// the output sign is the same as the input sign
|
|
delay1 #(1) d7(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
|
|
|
// exponent
|
|
// always @(posedge clk)
|
|
// if (ce)
|
|
assign xo =
|
|
xInf2 ? xo2 : // an infinite exponent is either a NaN or infinity; no need to change
|
|
rightOrLeft2 ? 0 : // on a right shift, the exponent was negative, it's being made to zero
|
|
xo2 - lshiftAmt2; // on a left shift, the exponent can't be decremented below zero
|
|
|
|
// mantissa
|
|
delay1 #(FMSB+5) d4(.clk(clk), .ce(ce), .i(mo1), .o(mo2) );
|
|
|
|
wire [FMSB+3:0] mo2a;
|
|
//shiftAndMask #(FMSB+4) u1 (.op({rightOrLeft2,1'b0}), .a(mo2), .b(rightOrLeft2 ? lshiftAmt2 : rshiftAmt2), .mb(6'd0), .me(FMSB+3), .o(mo2a) );
|
|
|
|
// always @(posedge clk)
|
|
// if (ce)
|
|
assign mo = rightOrLeft2 ? (mo2 >> rshiftAmt2) : (mo2 << lshiftAmt2);
|
|
//always @(posedge clk)
|
|
// $display("%c xo2=%d -xo2=%d rshift=%d >%d %d", rightOrLeft2 ? "r" : "l",xo2, -xo2, rshiftAmt2,($unsigned(-xo2) > $unsigned(FMSB+3)),FMSB+3);
|
|
assign o = {so,xo,mo[FMSB+4:1]};
|
assign o = {so,xo,mo[FMSB+4:1]};
|
|
|
endmodule
|
endmodule
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|