Line 45... |
Line 45... |
// ============================================================================
|
// ============================================================================
|
|
|
import fp::*;
|
import fp::*;
|
|
|
module DFPDivide(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
module DFPDivide(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
|
parameter N=33;
|
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
input rst;
|
input rst;
|
input clk;
|
input clk;
|
input ce;
|
input ce;
|
input ld;
|
input ld;
|
input op;
|
input op;
|
input [127:0] a, b;
|
input [N*4+16+4-1:0] a, b;
|
output [243:0] o;
|
output [(N+1)*4*2+16+4-1:0] o;
|
output reg done;
|
output reg done;
|
output sign_exe;
|
output sign_exe;
|
output overflow;
|
output overflow;
|
output underflow;
|
output underflow;
|
|
|
Line 67... |
Line 68... |
reg underflow=0;
|
reg underflow=0;
|
|
|
reg so, sxo;
|
reg so, sxo;
|
reg [3:0] st;
|
reg [3:0] st;
|
reg [15:0] xo;
|
reg [15:0] xo;
|
reg [223:0] mo;
|
reg [(N+1)*4*2-1:0] mo;
|
assign o = {st,xo,mo};
|
assign o = {st,xo,mo};
|
|
|
// constants
|
// constants
|
wire [15:0] infXp = 16'h9999; // infinite / NaN - all ones
|
wire [15:0] infXp = 16'h9999; // infinite / NaN - all ones
|
// The following is the value for an exponent of zero, with the offset
|
// The following is the value for an exponent of zero, with the offset
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
// The following is a template for a quiet nan. (MSB=1)
|
// The following is a template for a quiet nan. (MSB=1)
|
wire [107:0] qNaN = {4'h1,{104{1'b0}}};
|
wire [N*4-1:0] qNaN = {4'h1,{(N-1)*4{1'b0}}};
|
|
|
// variables
|
// variables
|
wire [231:0] divo;
|
wire [(N+2)*4*2-1:0] divo;
|
|
|
// Operands
|
// Operands
|
wire sa, sb; // sign bit
|
wire sa, sb; // sign bit
|
wire sxa, sxb;
|
wire sxa, sxb;
|
wire [15:0] xa, xb; // exponent bits
|
wire [15:0] xa, xb; // exponent bits
|
wire [107:0] siga, sigb;
|
wire [N*4-1:0] siga, sigb;
|
wire a_dn, b_dn; // a/b is denormalized
|
wire a_dn, b_dn; // a/b is denormalized
|
wire az, bz;
|
wire az, bz;
|
wire aInf, bInf;
|
wire aInf, bInf;
|
wire aNan,bNan;
|
wire aNan,bNan;
|
wire done1;
|
wire done1;
|
Line 109... |
Line 110... |
// Clock #2 to N
|
// Clock #2 to N
|
// - calculate fraction
|
// - calculate fraction
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
wire done3a,done3;
|
wire done3a,done3;
|
// Perform divide
|
// Perform divide
|
dfdiv #(108+8) u2 (.clk(clk), .ld(ld1), .a({siga,8'b0}), .b({sigb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
dfdiv #(N+2) u2 (.clk(clk), .ld(ld1), .a({siga,8'b0}), .b({sigb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
wire [7:0] lzcnt_bin = lzcnt[3:0] + (lzcnt[7:4] * 10);
|
wire [7:0] lzcnt_bin = lzcnt[3:0] + (lzcnt[7:4] * 10);
|
wire [231:0] divo1 = divo[231:0] << ({lzcnt_bin,2'b0}+(FPWID+44));
|
wire [(N+2)*4*2-1:0] divo1 = divo[(N+2)*4*2-1:0] << ({lzcnt_bin,2'b0}+(N*4));//WAS FPWID=128?+44
|
delay #(.WID(1), .DEP(3)) u3 (.clk(clk), .ce(ce), .i(done1), .o(done3a));
|
delay #(.WID(1), .DEP(3)) u3 (.clk(clk), .ce(ce), .i(done1), .o(done3a));
|
assign done3 = done1&done3a;
|
assign done3 = done1&done3a;
|
|
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
// Clock #N+1
|
// Clock #N+1
|
Line 206... |
Line 207... |
5'b00001: xo <= 1'd0; // underflow
|
5'b00001: xo <= 1'd0; // underflow
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
endcase
|
endcase
|
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
8'b1???????: begin mo <= {4'h1,a[107:0],{111{1'b0}}}; st[3] <= 1'b1; end
|
8'b1???????: begin mo <= {4'h1,a[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
8'b01??????: begin mo <= {4'h1,b[107:0],{111{1'b0}}}; st[3] <= 1'b1; end
|
8'b01??????: begin mo <= {4'h1,b[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
8'b001?????: begin mo <= {4'h1,qNaN[107:0]|{aInf,1'b0}|{az,bz},{1111{1'b0}}}; st[3] <= 1'b1; end
|
8'b001?????: begin mo <= {4'h1,qNaN[N*4-1:0]|{aInf,1'b0}|{az,bz},{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
8'b0001????: begin mo <= 224'd0; st[3] <= 1'b0; end // div by inf
|
8'b0001????: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by inf
|
8'b00001???: begin mo <= 224'd0; st[3] <= 1'b0; end // div by zero
|
8'b00001???: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by zero
|
8'b000001??: begin mo <= 224'd0; st[3] <= 1'b0; end // Inf exponent
|
8'b000001??: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // Inf exponent
|
8'b0000001?: begin mo <= {4'h1,qNaN|`QINFDIV,{111{1'b0}}}; st[3] <= 1'b1; end // infinity / infinity
|
8'b0000001?: begin mo <= {4'h1,qNaN|`QINFDIV,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // infinity / infinity
|
8'b00000001: begin mo <= {4'h1,qNaN|`QZEROZERO,{111{1'b0}}}; st[3] <= 1'b1; end // zero / zero
|
8'b00000001: begin mo <= {4'h1,qNaN|`QZEROZERO,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // zero / zero
|
default: begin mo <= divo1[231:8]; st[3] <= 1'b0; end // plain div
|
default: begin mo <= divo1[(N+2)*4*2-1:8]; st[3] <= 1'b0; end // plain div
|
endcase
|
endcase
|
|
|
st[0] <= sxo;
|
st[0] <= sxo;
|
st[1] <= aInf;
|
st[1] <= aInf;
|
st[2] <= ~(sa ^ sb);
|
st[2] <= ~(sa ^ sb);
|
Line 230... |
Line 231... |
end
|
end
|
|
|
endmodule
|
endmodule
|
|
|
module DFPDividenr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
module DFPDividenr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
|
parameter N=33;
|
input rst;
|
input rst;
|
input clk;
|
input clk;
|
input ce;
|
input ce;
|
input ld;
|
input ld;
|
input op;
|
input op;
|
input [127:0] a, b;
|
input [N*4+16+4-1:0] a, b;
|
output [127:0] o;
|
output [N*4+16+4-1:0] o;
|
input [2:0] rm;
|
input [2:0] rm;
|
output sign_exe;
|
output sign_exe;
|
output done;
|
output done;
|
output inf;
|
output inf;
|
output overflow;
|
output overflow;
|
output underflow;
|
output underflow;
|
|
|
wire [243:0] o1;
|
wire [(N+1)*4*2+16+4-1:0] o1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire [131:0] fpn0;
|
wire [N*4+16+4-1+4:0] fpn0;
|
wire done1, done1a;
|
wire done1, done1a;
|
|
|
DFPDivide #(FPWID) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
DFPDivide #(.N(N)) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
DFPNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
DFPNormalize #(.N(N)) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
DFPRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
DFPRound #(.N(N)) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
delay #(.WID(1),.DEP(11)) u8(.clk(clk), .ce(ce), .i(done1), .o(done1a));
|
delay #(.WID(1),.DEP(11)) u8(.clk(clk), .ce(ce), .i(done1), .o(done1a));
|