OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpAddsub.sv] - Diff between revs 48 and 49

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 48 Rev 49
Line 5... Line 5...
//     \/_//     robfinch@finitron.ca
//     \/_//     robfinch@finitron.ca
//       ||
//       ||
//
//
//      fpAddsub.sv
//      fpAddsub.sv
//    - floating point adder/subtracter
//    - floating point adder/subtracter
//    - two cycle latency
 
//    - can issue every clock cycle
//    - can issue every clock cycle
//    - parameterized width
//    - parameterized width
//    - IEEE 754 representation
//    - IEEE 754 representation
//
//
//
//
// This source file is free software: you can redistribute it and/or modify
// BSD 3-Clause License
// it under the terms of the GNU Lesser General Public License as published
// Redistribution and use in source and binary forms, with or without
// by the Free Software Foundation, either version 3 of the License, or
// modification, are permitted provided that the following conditions are met:
// (at your option) any later version.
 
//
 
// This source file is distributed in the hope that it will be useful,
 
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
// GNU General Public License for more details.
 
//
//
// You should have received a copy of the GNU General Public License
// 1. Redistributions of source code must retain the above copyright notice, this
// along with this program.  If not, see .
//    list of conditions and the following disclaimer.
 
//
 
// 2. Redistributions in binary form must reproduce the above copyright notice,
 
//    this list of conditions and the following disclaimer in the documentation
 
//    and/or other materials provided with the distribution.
 
//
 
// 3. Neither the name of the copyright holder nor the names of its
 
//    contributors may be used to endorse or promote products derived from
 
//    this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// ============================================================================
// ============================================================================
 
 
import fp::*;
import fp::*;
 
 
Line 39... Line 51...
input [MSB:0] b;        // operand b
input [MSB:0] b;        // operand b
output [EX:0] o;        // output
output [EX:0] o;        // output
 
 
 
 
// variables
// variables
wire so;                        // sign output
 
wire [EMSB:0] xo;       // de normalized exponent output
 
reg [EMSB:0] xo1;       // de normalized exponent output
 
wire [FX:0] mo; // mantissa output
 
reg [FX:0] mo1; // mantissa output
 
 
 
assign o = {so,xo,mo};
 
 
 
// operands sign,exponent,mantissa
// operands sign,exponent,mantissa
wire sa, sb;
wire sa, sb;
wire [EMSB:0] xa, xb;
wire [EMSB:0] xa, xb;
wire [FMSB:0] ma, mb;
wire [FMSB:0] ma, mb;
wire [FMSB+1:0] fracta, fractb;
wire [FMSB+1:0] fracta, fractb;
wire [FMSB+1:0] fracta1, fractb1;
 
 
 
// which has greater magnitude ? Used for sign calc
 
wire xa_gt_xb = xa > xb;
 
wire xa_gt_xb1;
 
wire a_gt_b = xa_gt_xb || (xa==xb && ma > mb);
 
wire a_gt_b1;
 
wire az, bz;    // operand a,b is zero
wire az, bz;    // operand a,b is zero
 
 
wire adn, bdn;          // a,b denormalized ?
wire adn, bdn;          // a,b denormalized ?
wire xaInf, xbInf;
wire xaInf, xbInf;
wire aInf, bInf, aInf1, bInf1;
wire aInf, bInf;
wire aNan, bNan, aNan1, bNan1;
wire aNan, bNan;
 
 
wire [EMSB:0] xad = xa|adn;     // operand a exponent, compensated for denormalized numbers
wire [EMSB:0] xad = xa|adn;     // operand a exponent, compensated for denormalized numbers
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
 
 
fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
// Clock #1
 
// - decode the input operands
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
reg op1;
 
 
 
fpDecompReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
 
fpDecompReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
 
always @(posedge clk)
 
  if (ce) op1 <= op;
 
 
// Figure out which operation is really needed an add or
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// subtract ?
// Clock #2
 
//
 
// Figure out which operation is really needed an add or subtract ?
// If the signs are the same, use the orignal op,
// If the signs are the same, use the orignal op,
// otherwise flip the operation
// otherwise flip the operation
//  a +  b = add,+
//  a +  b = add,+
//  a + -b = sub, so of larger
//  a + -b = sub, so of larger
// -a +  b = sub, so of larger
// -a +  b = sub, so of larger
// -a + -b = add,-
// -a + -b = add,-
//  a -  b = sub, so of larger
//  a -  b = sub, so of larger
//  a - -b = add,+
//  a - -b = add,+
// -a -  b = add,-
// -a -  b = add,-
// -a - -b = sub, so of larger
// -a - -b = sub, so of larger
wire realOp = op ^ sa ^ sb;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
wire realOp1;
reg realOp2;
wire op1;
reg op2;
 
reg [EMSB:0] xa2, xb2;
 
reg [FMSB:0] ma2, mb2;
 
reg az2, bz2;
 
reg xa_gt_xb2;
 
reg [FMSB+1:0] fracta2, fractb2;
 
reg maneq, ma_gt_mb;
 
reg expeq;
 
 
 
always @(posedge clk)
 
  if (ce) realOp2 = op1 ^ sa ^ sb;
 
always @(posedge clk)
 
  if (ce) op2 <= op1;
 
always @(posedge clk)
 
  if (ce) xa2 <= xad;
 
always @(posedge clk)
 
  if (ce) xb2 <= xbd;
 
always @(posedge clk)
 
  if (ce) ma2 <= ma;
 
always @(posedge clk)
 
  if (ce) mb2 <= mb;
 
always @(posedge clk)
 
  if (ce) fracta2 <= fracta;
 
always @(posedge clk)
 
  if (ce) fractb2 <= fractb;
 
always @(posedge clk)
 
  if (ce) az2 <= az;
 
always @(posedge clk)
 
  if (ce) bz2 <= bz;
 
always @(posedge clk)
 
  if (ce) xa_gt_xb2 <= xad > xbd;
 
always @(posedge clk)
 
  if (ce) maneq <= ma==mb;
 
always @(posedge clk)
 
  if (ce) ma_gt_mb <= ma > mb;
 
always @(posedge clk)
 
  if (ce) expeq <= xad==xbd;
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #3
 
//
// Find out if the result will be zero.
// Find out if the result will be zero.
wire resZero = (realOp && xa==xb && ma==mb) ||  // subtract, same magnitude
// Determine which fraction to denormalize
                           (az & bz);                // both a,b zero
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
//
 
reg [EMSB:0] xa3, xb3;
 
reg resZero3;
 
wire xaInf3, xbInf3;
 
reg xa_gt_xb3;
 
reg a_gt_b3;
 
reg op3;
 
wire sa3, sb3;
 
wire [2:0] rm3;
 
reg [FMSB+1:0] mfs3;
 
 
 
always @(posedge clk)
 
  if (ce) resZero3 <= (realOp2 & expeq & maneq) ||      // subtract, same magnitude
 
                           (az2 & bz2);               // both a,b zero
 
always @(posedge clk)
 
  if (ce) xa3 <= xa2;
 
always @(posedge clk)
 
  if (ce) xb3 <= xb2;
 
always @(posedge clk)
 
  if (ce) xa_gt_xb3 <= xa_gt_xb2;
 
always @(posedge clk)
 
  if (ce) a_gt_b3 <= xa_gt_xb2 | (expeq & ma_gt_mb);
 
always @(posedge clk)
 
  if (ce) op3 <= op2;
 
always @(posedge clk)
 
  if (ce) mfs3 = xa_gt_xb2 ? fractb2 : fracta2;
 
 
 
delay #(.WID(1), .DEP(2)) udly3a (.clk(clk), .ce(ce), .i(xaInf), .o(xaInf3));
 
delay #(.WID(1), .DEP(2)) udly3b (.clk(clk), .ce(ce), .i(xbInf), .o(xbInf3));
 
delay #(.WID(1), .DEP(2)) udly3c (.clk(clk), .ce(ce), .i(sa), .o(sa3));
 
delay #(.WID(1), .DEP(2)) udly3d (.clk(clk), .ce(ce), .i(sb), .o(sb3));
 
delay #(.WID(3), .DEP(3)) udly3e (.clk(clk), .ce(ce), .i(rm), .o(rm3));
 
delay #(.WID(1), .DEP(2)) udly3f (.clk(clk), .ce(ce), .i(aInf), .o(aInf3));
 
delay #(.WID(1), .DEP(2)) udly3g (.clk(clk), .ce(ce), .i(bInf), .o(bInf3));
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #4
 
//
// Compute output exponent
// Compute output exponent
//
//
// The output exponent is the larger of the two exponents,
// The output exponent is the larger of the two exponents,
// unless a subtract operation is in progress and the two
// unless a subtract operation is in progress and the two
// numbers are equal, in which case the exponent should be
// numbers are equal, in which case the exponent should be
// zero.
// zero.
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
 
always @(xaInf,xbInf,resZero,xa,xb,xa_gt_xb)
reg [EMSB:0] xa4, xb4;
        xo1 = (xaInf&xbInf) ? xa : resZero ? 0 : xa_gt_xb ? xa : xb;
reg [EMSB:0] xo4;
 
reg xa_gt_xb4;
 
reg xa4,xb4;
 
 
 
always @(posedge clk)
 
  if (ce) xa4 <= xa3;
 
always @(posedge clk)
 
  if (ce) xb4 <= xb3;
 
always @(posedge clk)
 
        if (ce) xo4 <= (xaInf3&xbInf3) ? {EMSB+1{1'b1}} : resZero3 ? 0 : xa_gt_xb3 ? xa3 : xb3;
 
always @(posedge clk)
 
  if (ce) xa_gt_xb4 <= xa_gt_xb3;
 
 
// Compute output sign
// Compute output sign
reg so1;
reg so4;
always @*
always @*
        case ({resZero,sa,op,sb})       // synopsys full_case parallel_case
        case ({resZero3,sa3,op3,sb3})   // synopsys full_case parallel_case
        4'b0000: so1 <= 0;                      // + + + = +
        4'b0000: so4 <= 0;                      // + + + = +
        4'b0001: so1 <= !a_gt_b;        // + + - = sign of larger
        4'b0001: so4 <= !a_gt_b3;       // + + - = sign of larger
        4'b0010: so1 <= !a_gt_b;        // + - + = sign of larger
        4'b0010: so4 <= !a_gt_b3;       // + - + = sign of larger
        4'b0011: so1 <= 0;                      // + - - = +
        4'b0011: so4 <= 0;                      // + - - = +
        4'b0100: so1 <= a_gt_b;         // - + + = sign of larger
        4'b0100: so4 <= a_gt_b3;                // - + + = sign of larger
        4'b0101: so1 <= 1;                      // - + - = -
        4'b0101: so4 <= 1;                      // - + - = -
        4'b0110: so1 <= 1;                      // - - + = -
        4'b0110: so4 <= 1;                      // - - + = -
        4'b0111: so1 <= a_gt_b;         // - - - = sign of larger
        4'b0111: so4 <= a_gt_b3;                // - - - = sign of larger
        4'b1000: so1 <= 0;                      //  A +  B, sign = +
        4'b1000: so4 <= 0;                      //  A +  B, sign = +
        4'b1001: so1 <= rm==3;          //  A + -B, sign = + unless rounding down
        4'b1001: so4 <= rm3==3'd3;              //  A + -B, sign = + unless rounding down
        4'b1010: so1 <= rm==3;          //  A -  B, sign = + unless rounding down
        4'b1010: so4 <= rm3==3'd3;              //  A -  B, sign = + unless rounding down
        4'b1011: so1 <= 0;                      // +A - -B, sign = +
        4'b1011: so4 <= 0;                      // +A - -B, sign = +
        4'b1100: so1 <= rm==3;          // -A +  B, sign = + unless rounding down
        4'b1100: so4 <= rm3==3'd3;              // -A +  B, sign = + unless rounding down
        4'b1101: so1 <= 1;                      // -A + -B, sign = -
        4'b1101: so4 <= 1;                      // -A + -B, sign = -
        4'b1110: so1 <= 1;                      // -A - +B, sign = -
        4'b1110: so4 <= 1;                      // -A - +B, sign = -
        4'b1111: so1 <= rm==3;          // -A - -B, sign = + unless rounding down
        4'b1111: so4 <= rm3==3'd3;              // -A - -B, sign = + unless rounding down
        endcase
        endcase
 
 
delay2 #(EMSB+1) d1(.clk(clk), .ce(ce), .i(xo1), .o(xo) );
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
delay2 #(1)      d2(.clk(clk), .ce(ce), .i(so1), .o(so) );
// Clock #5
 
//
 
// Compute the difference in exponents, provides shift amount
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
reg [EMSB+1:0] xdiff5;
 
always @(posedge clk)
 
  if (ce) xdiff5 <= xa_gt_xb4 ? xa4 - xb4 : xb4 - xa4;
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #6
 
//
// Compute the difference in exponents, provides shift amount
// Compute the difference in exponents, provides shift amount
wire [EMSB:0] xdiff = xa_gt_xb ? xad - xbd : xbd - xad;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
wire [6:0] xdif = xdiff > FMSB+3 ? FMSB+3 : xdiff;
// If the difference in the exponent is 128 or greater (assuming 128 bit fp or
wire [6:0] xdif1;
// less) then all of the bits will be shifted out to zero. There is no need to
 
// keep track of a difference more than 128.
// determine which fraction to denormalize
reg [7:0] xdif6;
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
wire [FMSB+1:0] mfs6;
wire [FMSB+1:0] mfs1;
always @(posedge clk)
 
  if (ce) xdif6 <= xdiff5 > FMSB+4 ? FMSB+4 : xdiff5;
// Determine the sticky bit
delay #(.WID(FMSB+2), .DEP(3)) udly6a (.clk(clk), .ce(ce), .i(mfs3), .o(mfs6));
wire sticky, sticky1;
 
generate
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
begin
// Clock #7
if (FPWID==128)
//
    redor128 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
// Determine the sticky bit. The sticky bit is the bitwise or of all the bits
else if (FPWID==96)
// being shifted out the right side. The sticky bit is computed here to
    redor96 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
// reduce the number of regs required.
else if (FPWID==84)
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    redor84 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
reg sticky6;
else if (FPWID==80)
wire sticky7;
    redor80 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
wire [7:0] xdif7;
else if (FPWID==64)
wire [FMSB+1:0] mfs7;
    redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
integer n;
else if (FPWID==32)
always @* begin
    redor32 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
        sticky6 = 1'b0;
 
        for (n = 0; n < FMSB+2; n = n + 1)
 
                if (n <= xdif6)
 
                        sticky6 = sticky6|mfs6[n];
end
end
endgenerate
 
 
 
// register inputs to shifter and shift
// register inputs to shifter and shift
delay1 #(1)      d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
delay1 #(1)      d16(.clk(clk), .ce(ce), .i(sticky6), .o(sticky7) );
delay1 #(7)      d15(.clk(clk), .ce(ce), .i(xdif),   .o(xdif1) );
delay1 #(8)      d15(.clk(clk), .ce(ce), .i(xdif6),   .o(xdif7) );
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs),    .o(mfs1) );
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs6),    .o(mfs7) );
 
 
wire [FMSB+3:0] md1 = ({mfs1,2'b0} >> xdif1)|sticky1;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #8
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
reg [FMSB+4:0] md8;
 
wire [FMSB+1:0] fracta8, fractb8;
 
wire xa_gt_xb8;
 
wire a_gt_b8;
 
always @(posedge clk)
 
  if (ce) md8 <= ({mfs7,3'b0} >> xdif7)|sticky7;
 
 
// sync control signals
// sync control signals
delay1 #(1) d4 (.clk(clk), .ce(ce), .i(xa_gt_xb), .o(xa_gt_xb1) );
delay #(.WID(1), .DEP(4)) udly8a (.clk(clk), .ce(ce), .i(xa_gt_xb4), .o(xa_gt_xb8));
delay1 #(1) d17(.clk(clk), .ce(ce), .i(a_gt_b), .o(a_gt_b1) );
delay #(.WID(1), .DEP(5)) udly8b (.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b8));
delay1 #(1) d5 (.clk(clk), .ce(ce), .i(realOp), .o(realOp1) );
delay #(.WID(FMSB+2), .DEP(6)) udly8d (.clk(clk), .ce(ce), .i(fracta2), .o(fracta8));
delay1 #(FMSB+2) d5a(.clk(clk), .ce(ce), .i(fracta), .o(fracta1) );
delay #(.WID(FMSB+2), .DEP(6)) udly8e (.clk(clk), .ce(ce), .i(fractb2), .o(fractb8));
delay1 #(FMSB+2) d6a(.clk(clk), .ce(ce), .i(fractb), .o(fractb1) );
delay #(.WID(1), .DEP(5)) udly8j (.clk(clk), .ce(ce), .i(op3), .o(op8));
delay1 #(1) d7 (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
 
delay1 #(1) d8 (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
 
delay1 #(1) d9 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
 
delay1 #(1) d10(.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
 
delay1 #(1) d11(.clk(clk), .ce(ce), .i(op), .o(op1) );
 
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #9
// Sort operands and perform add/subtract
// Sort operands and perform add/subtract
// addition can generate an extra bit, subtract can't go negative
// addition can generate an extra bit, subtract can't go negative
wire [FMSB+3:0] oa = xa_gt_xb1 ? {fracta1,2'b0} : md1;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
wire [FMSB+3:0] ob = xa_gt_xb1 ? md1 : {fractb1,2'b0};
reg [FMSB+4:0] oa9, ob9;
wire [FMSB+3:0] oaa = a_gt_b1 ? oa : ob;
reg a_gt_b9;
wire [FMSB+3:0] obb = a_gt_b1 ? ob : oa;
always @(posedge clk)
wire [FMSB+4:0] mab = realOp1 ? oaa - obb : oaa + obb;
  if (ce) oa9 <= xa_gt_xb8 ? {fracta8,3'b0} : md8;
wire xoinf = &xo;
always @(posedge clk)
 
  if (ce) ob9 <= xa_gt_xb8 ? md8 : {fractb8,3'b0};
always @*
always @(posedge clk)
        casez({aInf1&bInf1,aNan1,bNan1,xoinf})
  if (ce) a_gt_b9 <= a_gt_b8;
        4'b1???:        mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}};       // inf +/- inf - generate QNaN on subtract, inf on add
 
        4'b01??:        mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        4'b001?:        mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
// Clock #10
        4'b0001:        mo1 = 1'd0;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        default:        mo1 = {mab,{FMSB-1{1'b0}}};     // mab has an extra lead bit and two trailing bits
reg [FMSB+4:0] oaa10;
 
reg [FMSB+4:0] obb10;
 
wire realOp10;
 
reg [EMSB:0] xo10;
 
 
 
always @(posedge clk)
 
  if (ce) oaa10 <= a_gt_b9 ? oa9 : ob9;
 
always @(posedge clk)
 
  if (ce) obb10 <= a_gt_b9 ? ob9 : oa9;
 
delay #(.WID(1), .DEP(8)) udly10a (.clk(clk), .ce(ce), .i(realOp2), .o(realOp10));
 
delay #(.WID(EMSB+1), .DEP(6)) udly10b (.clk(clk), .ce(ce), .i(xo4), .o(xo10));
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #11
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
reg [FMSB+5:0] mab11;
 
wire [FMSB+1:0] fracta11, fractb11;
 
wire abInf11;
 
wire aNan11, bNan11;
 
reg xoinf11;
 
wire op11;
 
 
 
always @(posedge clk)
 
  if (ce) mab11 <= realOp10 ? oaa10 - obb10 : oaa10 + obb10;
 
delay #(.WID(1), .DEP(8)) udly11a (.clk(clk), .ce(ce), .i(aInf3&bInf3), .o(abInf11));
 
delay #(.WID(1), .DEP(10)) udly11c (.clk(clk), .ce(ce), .i(aNan), .o(aNan11));
 
delay #(.WID(1), .DEP(10)) udly11d (.clk(clk), .ce(ce), .i(bNan), .o(bNan11));
 
delay #(.WID(1), .DEP(3)) udly11e (.clk(clk), .ce(ce), .i(op8), .o(op11));
 
delay #(.WID(FMSB+2), .DEP(3)) udly11f (.clk(clk), .ce(ce), .i(fracta8), .o(fracta11));
 
delay #(.WID(FMSB+2), .DEP(3)) udly11g (.clk(clk), .ce(ce), .i(fractb8), .o(fractb11));
 
 
 
always @(posedge clk)
 
  if (ce) xoinf11 <= &xo10;
 
 
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #12
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
reg [FX:0] mo12;        // mantissa output
 
 
 
always @(posedge clk)
 
if (ce)
 
        casez({abInf11,aNan11,bNan11,xoinf11})
 
        4'b1???:        mo12 <= {1'b0,op11,{FMSB-1{1'b0}},op11,{FMSB{1'b0}}};   // inf +/- inf - generate QNaN on subtract, inf on add
 
        4'b01??:        mo12 <= {1'b0,fracta11[FMSB+1:0],{FMSB{1'b0}}};
 
        4'b001?:        mo12 <= {1'b0,fractb11[FMSB+1:0],{FMSB{1'b0}}};
 
        4'b0001:        mo12 <= 1'd0;
 
        default:        mo12 <= {mab11,{FMSB-2{1'b0}}}; // mab has an extra lead bit and three trailing bits
        endcase
        endcase
 
 
delay1 #(FX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
// Clock #13
 
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
wire so;                        // sign output
 
wire [EMSB:0] xo;       // de normalized exponent output
 
wire [FX:0] mo; // mantissa output
 
 
 
delay #(.WID(1), .DEP(9)) udly13a (.clk(clk), .ce(ce), .i(so4), .o(so));
 
delay #(.WID(EMSB+1), .DEP(3)) udly13b (.clk(clk), .ce(ce), .i(xo10), .o(xo));
 
delay #(.WID(FX+1), .DEP(1)) u13c (.clk(clk), .ce(ce), .i(mo12), .o(mo) );
 
 
 
assign o = {so,xo,mo};
 
 
endmodule
endmodule
 
 
module fpAddsubnr(clk, ce, rm, op, a, b, o);
module fpAddsubnr(clk, ce, rm, op, a, b, o);
input clk;              // system clock
input clk;              // system clock
Line 208... Line 376...
output [MSB:0] o;       // output
output [MSB:0] o;       // output
 
 
wire [EX:0] o1;
wire [EX:0] o1;
wire [MSB+3:0] fpn0;
wire [MSB+3:0] fpn0;
 
 
fpAddsub    #(FPWID) u1 (clk, ce, rm, op, a, b, o1);
fpAddsub    u1 (clk, ce, rm, op, a, b, o1);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
fpNormalize u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
fpRound                 #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
fpRound                 u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
 
 
endmodule
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.