Line 5... |
Line 5... |
// \/_// robfinch@finitron.ca
|
// \/_// robfinch@finitron.ca
|
// ||
|
// ||
|
//
|
//
|
// fpAddsub.sv
|
// fpAddsub.sv
|
// - floating point adder/subtracter
|
// - floating point adder/subtracter
|
// - two cycle latency
|
|
// - can issue every clock cycle
|
// - can issue every clock cycle
|
// - parameterized width
|
// - parameterized width
|
// - IEEE 754 representation
|
// - IEEE 754 representation
|
//
|
//
|
//
|
//
|
// This source file is free software: you can redistribute it and/or modify
|
// BSD 3-Clause License
|
// it under the terms of the GNU Lesser General Public License as published
|
// Redistribution and use in source and binary forms, with or without
|
// by the Free Software Foundation, either version 3 of the License, or
|
// modification, are permitted provided that the following conditions are met:
|
// (at your option) any later version.
|
|
//
|
|
// This source file is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
//
|
// You should have received a copy of the GNU General Public License
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
// along with this program. If not, see .
|
// list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
//
|
//
|
// ============================================================================
|
// ============================================================================
|
|
|
import fp::*;
|
import fp::*;
|
|
|
Line 39... |
Line 51... |
input [MSB:0] b; // operand b
|
input [MSB:0] b; // operand b
|
output [EX:0] o; // output
|
output [EX:0] o; // output
|
|
|
|
|
// variables
|
// variables
|
wire so; // sign output
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
|
reg [EMSB:0] xo1; // de normalized exponent output
|
|
wire [FX:0] mo; // mantissa output
|
|
reg [FX:0] mo1; // mantissa output
|
|
|
|
assign o = {so,xo,mo};
|
|
|
|
// operands sign,exponent,mantissa
|
// operands sign,exponent,mantissa
|
wire sa, sb;
|
wire sa, sb;
|
wire [EMSB:0] xa, xb;
|
wire [EMSB:0] xa, xb;
|
wire [FMSB:0] ma, mb;
|
wire [FMSB:0] ma, mb;
|
wire [FMSB+1:0] fracta, fractb;
|
wire [FMSB+1:0] fracta, fractb;
|
wire [FMSB+1:0] fracta1, fractb1;
|
|
|
|
// which has greater magnitude ? Used for sign calc
|
|
wire xa_gt_xb = xa > xb;
|
|
wire xa_gt_xb1;
|
|
wire a_gt_b = xa_gt_xb || (xa==xb && ma > mb);
|
|
wire a_gt_b1;
|
|
wire az, bz; // operand a,b is zero
|
wire az, bz; // operand a,b is zero
|
|
|
wire adn, bdn; // a,b denormalized ?
|
wire adn, bdn; // a,b denormalized ?
|
wire xaInf, xbInf;
|
wire xaInf, xbInf;
|
wire aInf, bInf, aInf1, bInf1;
|
wire aInf, bInf;
|
wire aNan, bNan, aNan1, bNan1;
|
wire aNan, bNan;
|
|
|
wire [EMSB:0] xad = xa|adn; // operand a exponent, compensated for denormalized numbers
|
wire [EMSB:0] xad = xa|adn; // operand a exponent, compensated for denormalized numbers
|
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
|
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
|
|
|
fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
|
// Clock #1
|
|
// - decode the input operands
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
reg op1;
|
|
|
|
fpDecompReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
|
|
fpDecompReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
|
|
always @(posedge clk)
|
|
if (ce) op1 <= op;
|
|
|
// Figure out which operation is really needed an add or
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
// subtract ?
|
// Clock #2
|
|
//
|
|
// Figure out which operation is really needed an add or subtract ?
|
// If the signs are the same, use the orignal op,
|
// If the signs are the same, use the orignal op,
|
// otherwise flip the operation
|
// otherwise flip the operation
|
// a + b = add,+
|
// a + b = add,+
|
// a + -b = sub, so of larger
|
// a + -b = sub, so of larger
|
// -a + b = sub, so of larger
|
// -a + b = sub, so of larger
|
// -a + -b = add,-
|
// -a + -b = add,-
|
// a - b = sub, so of larger
|
// a - b = sub, so of larger
|
// a - -b = add,+
|
// a - -b = add,+
|
// -a - b = add,-
|
// -a - b = add,-
|
// -a - -b = sub, so of larger
|
// -a - -b = sub, so of larger
|
wire realOp = op ^ sa ^ sb;
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
wire realOp1;
|
reg realOp2;
|
wire op1;
|
reg op2;
|
|
reg [EMSB:0] xa2, xb2;
|
|
reg [FMSB:0] ma2, mb2;
|
|
reg az2, bz2;
|
|
reg xa_gt_xb2;
|
|
reg [FMSB+1:0] fracta2, fractb2;
|
|
reg maneq, ma_gt_mb;
|
|
reg expeq;
|
|
|
|
always @(posedge clk)
|
|
if (ce) realOp2 = op1 ^ sa ^ sb;
|
|
always @(posedge clk)
|
|
if (ce) op2 <= op1;
|
|
always @(posedge clk)
|
|
if (ce) xa2 <= xad;
|
|
always @(posedge clk)
|
|
if (ce) xb2 <= xbd;
|
|
always @(posedge clk)
|
|
if (ce) ma2 <= ma;
|
|
always @(posedge clk)
|
|
if (ce) mb2 <= mb;
|
|
always @(posedge clk)
|
|
if (ce) fracta2 <= fracta;
|
|
always @(posedge clk)
|
|
if (ce) fractb2 <= fractb;
|
|
always @(posedge clk)
|
|
if (ce) az2 <= az;
|
|
always @(posedge clk)
|
|
if (ce) bz2 <= bz;
|
|
always @(posedge clk)
|
|
if (ce) xa_gt_xb2 <= xad > xbd;
|
|
always @(posedge clk)
|
|
if (ce) maneq <= ma==mb;
|
|
always @(posedge clk)
|
|
if (ce) ma_gt_mb <= ma > mb;
|
|
always @(posedge clk)
|
|
if (ce) expeq <= xad==xbd;
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #3
|
|
//
|
// Find out if the result will be zero.
|
// Find out if the result will be zero.
|
wire resZero = (realOp && xa==xb && ma==mb) || // subtract, same magnitude
|
// Determine which fraction to denormalize
|
(az & bz); // both a,b zero
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
//
|
|
reg [EMSB:0] xa3, xb3;
|
|
reg resZero3;
|
|
wire xaInf3, xbInf3;
|
|
reg xa_gt_xb3;
|
|
reg a_gt_b3;
|
|
reg op3;
|
|
wire sa3, sb3;
|
|
wire [2:0] rm3;
|
|
reg [FMSB+1:0] mfs3;
|
|
|
|
always @(posedge clk)
|
|
if (ce) resZero3 <= (realOp2 & expeq & maneq) || // subtract, same magnitude
|
|
(az2 & bz2); // both a,b zero
|
|
always @(posedge clk)
|
|
if (ce) xa3 <= xa2;
|
|
always @(posedge clk)
|
|
if (ce) xb3 <= xb2;
|
|
always @(posedge clk)
|
|
if (ce) xa_gt_xb3 <= xa_gt_xb2;
|
|
always @(posedge clk)
|
|
if (ce) a_gt_b3 <= xa_gt_xb2 | (expeq & ma_gt_mb);
|
|
always @(posedge clk)
|
|
if (ce) op3 <= op2;
|
|
always @(posedge clk)
|
|
if (ce) mfs3 = xa_gt_xb2 ? fractb2 : fracta2;
|
|
|
|
delay #(.WID(1), .DEP(2)) udly3a (.clk(clk), .ce(ce), .i(xaInf), .o(xaInf3));
|
|
delay #(.WID(1), .DEP(2)) udly3b (.clk(clk), .ce(ce), .i(xbInf), .o(xbInf3));
|
|
delay #(.WID(1), .DEP(2)) udly3c (.clk(clk), .ce(ce), .i(sa), .o(sa3));
|
|
delay #(.WID(1), .DEP(2)) udly3d (.clk(clk), .ce(ce), .i(sb), .o(sb3));
|
|
delay #(.WID(3), .DEP(3)) udly3e (.clk(clk), .ce(ce), .i(rm), .o(rm3));
|
|
delay #(.WID(1), .DEP(2)) udly3f (.clk(clk), .ce(ce), .i(aInf), .o(aInf3));
|
|
delay #(.WID(1), .DEP(2)) udly3g (.clk(clk), .ce(ce), .i(bInf), .o(bInf3));
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #4
|
|
//
|
// Compute output exponent
|
// Compute output exponent
|
//
|
//
|
// The output exponent is the larger of the two exponents,
|
// The output exponent is the larger of the two exponents,
|
// unless a subtract operation is in progress and the two
|
// unless a subtract operation is in progress and the two
|
// numbers are equal, in which case the exponent should be
|
// numbers are equal, in which case the exponent should be
|
// zero.
|
// zero.
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
always @(xaInf,xbInf,resZero,xa,xb,xa_gt_xb)
|
reg [EMSB:0] xa4, xb4;
|
xo1 = (xaInf&xbInf) ? xa : resZero ? 0 : xa_gt_xb ? xa : xb;
|
reg [EMSB:0] xo4;
|
|
reg xa_gt_xb4;
|
|
reg xa4,xb4;
|
|
|
|
always @(posedge clk)
|
|
if (ce) xa4 <= xa3;
|
|
always @(posedge clk)
|
|
if (ce) xb4 <= xb3;
|
|
always @(posedge clk)
|
|
if (ce) xo4 <= (xaInf3&xbInf3) ? {EMSB+1{1'b1}} : resZero3 ? 0 : xa_gt_xb3 ? xa3 : xb3;
|
|
always @(posedge clk)
|
|
if (ce) xa_gt_xb4 <= xa_gt_xb3;
|
|
|
// Compute output sign
|
// Compute output sign
|
reg so1;
|
reg so4;
|
always @*
|
always @*
|
case ({resZero,sa,op,sb}) // synopsys full_case parallel_case
|
case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case
|
4'b0000: so1 <= 0; // + + + = +
|
4'b0000: so4 <= 0; // + + + = +
|
4'b0001: so1 <= !a_gt_b; // + + - = sign of larger
|
4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger
|
4'b0010: so1 <= !a_gt_b; // + - + = sign of larger
|
4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger
|
4'b0011: so1 <= 0; // + - - = +
|
4'b0011: so4 <= 0; // + - - = +
|
4'b0100: so1 <= a_gt_b; // - + + = sign of larger
|
4'b0100: so4 <= a_gt_b3; // - + + = sign of larger
|
4'b0101: so1 <= 1; // - + - = -
|
4'b0101: so4 <= 1; // - + - = -
|
4'b0110: so1 <= 1; // - - + = -
|
4'b0110: so4 <= 1; // - - + = -
|
4'b0111: so1 <= a_gt_b; // - - - = sign of larger
|
4'b0111: so4 <= a_gt_b3; // - - - = sign of larger
|
4'b1000: so1 <= 0; // A + B, sign = +
|
4'b1000: so4 <= 0; // A + B, sign = +
|
4'b1001: so1 <= rm==3; // A + -B, sign = + unless rounding down
|
4'b1001: so4 <= rm3==3'd3; // A + -B, sign = + unless rounding down
|
4'b1010: so1 <= rm==3; // A - B, sign = + unless rounding down
|
4'b1010: so4 <= rm3==3'd3; // A - B, sign = + unless rounding down
|
4'b1011: so1 <= 0; // +A - -B, sign = +
|
4'b1011: so4 <= 0; // +A - -B, sign = +
|
4'b1100: so1 <= rm==3; // -A + B, sign = + unless rounding down
|
4'b1100: so4 <= rm3==3'd3; // -A + B, sign = + unless rounding down
|
4'b1101: so1 <= 1; // -A + -B, sign = -
|
4'b1101: so4 <= 1; // -A + -B, sign = -
|
4'b1110: so1 <= 1; // -A - +B, sign = -
|
4'b1110: so4 <= 1; // -A - +B, sign = -
|
4'b1111: so1 <= rm==3; // -A - -B, sign = + unless rounding down
|
4'b1111: so4 <= rm3==3'd3; // -A - -B, sign = + unless rounding down
|
endcase
|
endcase
|
|
|
delay2 #(EMSB+1) d1(.clk(clk), .ce(ce), .i(xo1), .o(xo) );
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
delay2 #(1) d2(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
// Clock #5
|
|
//
|
|
// Compute the difference in exponents, provides shift amount
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
reg [EMSB+1:0] xdiff5;
|
|
always @(posedge clk)
|
|
if (ce) xdiff5 <= xa_gt_xb4 ? xa4 - xb4 : xb4 - xa4;
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #6
|
|
//
|
// Compute the difference in exponents, provides shift amount
|
// Compute the difference in exponents, provides shift amount
|
wire [EMSB:0] xdiff = xa_gt_xb ? xad - xbd : xbd - xad;
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
wire [6:0] xdif = xdiff > FMSB+3 ? FMSB+3 : xdiff;
|
// If the difference in the exponent is 128 or greater (assuming 128 bit fp or
|
wire [6:0] xdif1;
|
// less) then all of the bits will be shifted out to zero. There is no need to
|
|
// keep track of a difference more than 128.
|
// determine which fraction to denormalize
|
reg [7:0] xdif6;
|
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
|
wire [FMSB+1:0] mfs6;
|
wire [FMSB+1:0] mfs1;
|
always @(posedge clk)
|
|
if (ce) xdif6 <= xdiff5 > FMSB+4 ? FMSB+4 : xdiff5;
|
// Determine the sticky bit
|
delay #(.WID(FMSB+2), .DEP(3)) udly6a (.clk(clk), .ce(ce), .i(mfs3), .o(mfs6));
|
wire sticky, sticky1;
|
|
generate
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
begin
|
// Clock #7
|
if (FPWID==128)
|
//
|
redor128 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
// Determine the sticky bit. The sticky bit is the bitwise or of all the bits
|
else if (FPWID==96)
|
// being shifted out the right side. The sticky bit is computed here to
|
redor96 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
// reduce the number of regs required.
|
else if (FPWID==84)
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
redor84 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
reg sticky6;
|
else if (FPWID==80)
|
wire sticky7;
|
redor80 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
wire [7:0] xdif7;
|
else if (FPWID==64)
|
wire [FMSB+1:0] mfs7;
|
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
integer n;
|
else if (FPWID==32)
|
always @* begin
|
redor32 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
sticky6 = 1'b0;
|
|
for (n = 0; n < FMSB+2; n = n + 1)
|
|
if (n <= xdif6)
|
|
sticky6 = sticky6|mfs6[n];
|
end
|
end
|
endgenerate
|
|
|
|
// register inputs to shifter and shift
|
// register inputs to shifter and shift
|
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
|
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky6), .o(sticky7) );
|
delay1 #(7) d15(.clk(clk), .ce(ce), .i(xdif), .o(xdif1) );
|
delay1 #(8) d15(.clk(clk), .ce(ce), .i(xdif6), .o(xdif7) );
|
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs), .o(mfs1) );
|
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs6), .o(mfs7) );
|
|
|
wire [FMSB+3:0] md1 = ({mfs1,2'b0} >> xdif1)|sticky1;
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #8
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
reg [FMSB+4:0] md8;
|
|
wire [FMSB+1:0] fracta8, fractb8;
|
|
wire xa_gt_xb8;
|
|
wire a_gt_b8;
|
|
always @(posedge clk)
|
|
if (ce) md8 <= ({mfs7,3'b0} >> xdif7)|sticky7;
|
|
|
// sync control signals
|
// sync control signals
|
delay1 #(1) d4 (.clk(clk), .ce(ce), .i(xa_gt_xb), .o(xa_gt_xb1) );
|
delay #(.WID(1), .DEP(4)) udly8a (.clk(clk), .ce(ce), .i(xa_gt_xb4), .o(xa_gt_xb8));
|
delay1 #(1) d17(.clk(clk), .ce(ce), .i(a_gt_b), .o(a_gt_b1) );
|
delay #(.WID(1), .DEP(5)) udly8b (.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b8));
|
delay1 #(1) d5 (.clk(clk), .ce(ce), .i(realOp), .o(realOp1) );
|
delay #(.WID(FMSB+2), .DEP(6)) udly8d (.clk(clk), .ce(ce), .i(fracta2), .o(fracta8));
|
delay1 #(FMSB+2) d5a(.clk(clk), .ce(ce), .i(fracta), .o(fracta1) );
|
delay #(.WID(FMSB+2), .DEP(6)) udly8e (.clk(clk), .ce(ce), .i(fractb2), .o(fractb8));
|
delay1 #(FMSB+2) d6a(.clk(clk), .ce(ce), .i(fractb), .o(fractb1) );
|
delay #(.WID(1), .DEP(5)) udly8j (.clk(clk), .ce(ce), .i(op3), .o(op8));
|
delay1 #(1) d7 (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
|
|
delay1 #(1) d8 (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
|
|
delay1 #(1) d9 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
|
|
delay1 #(1) d10(.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
|
|
delay1 #(1) d11(.clk(clk), .ce(ce), .i(op), .o(op1) );
|
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #9
|
// Sort operands and perform add/subtract
|
// Sort operands and perform add/subtract
|
// addition can generate an extra bit, subtract can't go negative
|
// addition can generate an extra bit, subtract can't go negative
|
wire [FMSB+3:0] oa = xa_gt_xb1 ? {fracta1,2'b0} : md1;
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
wire [FMSB+3:0] ob = xa_gt_xb1 ? md1 : {fractb1,2'b0};
|
reg [FMSB+4:0] oa9, ob9;
|
wire [FMSB+3:0] oaa = a_gt_b1 ? oa : ob;
|
reg a_gt_b9;
|
wire [FMSB+3:0] obb = a_gt_b1 ? ob : oa;
|
always @(posedge clk)
|
wire [FMSB+4:0] mab = realOp1 ? oaa - obb : oaa + obb;
|
if (ce) oa9 <= xa_gt_xb8 ? {fracta8,3'b0} : md8;
|
wire xoinf = &xo;
|
always @(posedge clk)
|
|
if (ce) ob9 <= xa_gt_xb8 ? md8 : {fractb8,3'b0};
|
always @*
|
always @(posedge clk)
|
casez({aInf1&bInf1,aNan1,bNan1,xoinf})
|
if (ce) a_gt_b9 <= a_gt_b8;
|
4'b1???: mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
|
4'b01??: mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
4'b001?: mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
|
// Clock #10
|
4'b0001: mo1 = 1'd0;
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
default: mo1 = {mab,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits
|
reg [FMSB+4:0] oaa10;
|
|
reg [FMSB+4:0] obb10;
|
|
wire realOp10;
|
|
reg [EMSB:0] xo10;
|
|
|
|
always @(posedge clk)
|
|
if (ce) oaa10 <= a_gt_b9 ? oa9 : ob9;
|
|
always @(posedge clk)
|
|
if (ce) obb10 <= a_gt_b9 ? ob9 : oa9;
|
|
delay #(.WID(1), .DEP(8)) udly10a (.clk(clk), .ce(ce), .i(realOp2), .o(realOp10));
|
|
delay #(.WID(EMSB+1), .DEP(6)) udly10b (.clk(clk), .ce(ce), .i(xo4), .o(xo10));
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #11
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
reg [FMSB+5:0] mab11;
|
|
wire [FMSB+1:0] fracta11, fractb11;
|
|
wire abInf11;
|
|
wire aNan11, bNan11;
|
|
reg xoinf11;
|
|
wire op11;
|
|
|
|
always @(posedge clk)
|
|
if (ce) mab11 <= realOp10 ? oaa10 - obb10 : oaa10 + obb10;
|
|
delay #(.WID(1), .DEP(8)) udly11a (.clk(clk), .ce(ce), .i(aInf3&bInf3), .o(abInf11));
|
|
delay #(.WID(1), .DEP(10)) udly11c (.clk(clk), .ce(ce), .i(aNan), .o(aNan11));
|
|
delay #(.WID(1), .DEP(10)) udly11d (.clk(clk), .ce(ce), .i(bNan), .o(bNan11));
|
|
delay #(.WID(1), .DEP(3)) udly11e (.clk(clk), .ce(ce), .i(op8), .o(op11));
|
|
delay #(.WID(FMSB+2), .DEP(3)) udly11f (.clk(clk), .ce(ce), .i(fracta8), .o(fracta11));
|
|
delay #(.WID(FMSB+2), .DEP(3)) udly11g (.clk(clk), .ce(ce), .i(fractb8), .o(fractb11));
|
|
|
|
always @(posedge clk)
|
|
if (ce) xoinf11 <= &xo10;
|
|
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #12
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
reg [FX:0] mo12; // mantissa output
|
|
|
|
always @(posedge clk)
|
|
if (ce)
|
|
casez({abInf11,aNan11,bNan11,xoinf11})
|
|
4'b1???: mo12 <= {1'b0,op11,{FMSB-1{1'b0}},op11,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
|
4'b01??: mo12 <= {1'b0,fracta11[FMSB+1:0],{FMSB{1'b0}}};
|
|
4'b001?: mo12 <= {1'b0,fractb11[FMSB+1:0],{FMSB{1'b0}}};
|
|
4'b0001: mo12 <= 1'd0;
|
|
default: mo12 <= {mab11,{FMSB-2{1'b0}}}; // mab has an extra lead bit and three trailing bits
|
endcase
|
endcase
|
|
|
delay1 #(FX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// Clock #13
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
wire so; // sign output
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
|
wire [FX:0] mo; // mantissa output
|
|
|
|
delay #(.WID(1), .DEP(9)) udly13a (.clk(clk), .ce(ce), .i(so4), .o(so));
|
|
delay #(.WID(EMSB+1), .DEP(3)) udly13b (.clk(clk), .ce(ce), .i(xo10), .o(xo));
|
|
delay #(.WID(FX+1), .DEP(1)) u13c (.clk(clk), .ce(ce), .i(mo12), .o(mo) );
|
|
|
|
assign o = {so,xo,mo};
|
|
|
endmodule
|
endmodule
|
|
|
module fpAddsubnr(clk, ce, rm, op, a, b, o);
|
module fpAddsubnr(clk, ce, rm, op, a, b, o);
|
input clk; // system clock
|
input clk; // system clock
|
Line 208... |
Line 376... |
output [MSB:0] o; // output
|
output [MSB:0] o; // output
|
|
|
wire [EX:0] o1;
|
wire [EX:0] o1;
|
wire [MSB+3:0] fpn0;
|
wire [MSB+3:0] fpn0;
|
|
|
fpAddsub #(FPWID) u1 (clk, ce, rm, op, a, b, o1);
|
fpAddsub u1 (clk, ce, rm, op, a, b, o1);
|
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
|
fpNormalize u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
fpRound u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
|
|
endmodule
|
endmodule
|