Line 5... |
Line 5... |
// \/_// robfinch<remove>@finitron.ca
|
// \/_// robfinch<remove>@finitron.ca
|
// ||
|
// ||
|
//
|
//
|
// fpDiv.v
|
// fpDiv.v
|
// - floating point divider
|
// - floating point divider
|
// - parameterized FPWIDth
|
// - parameterized width
|
// - IEEE 754 representation
|
// - IEEE 754 representation
|
//
|
//
|
//
|
//
|
// This source file is free software: you can redistribute it and/or modify
|
// This source file is free software: you can redistribute it and/or modify
|
// it under the terms of the GNU Lesser General Public License as published
|
// it under the terms of the GNU Lesser General Public License as published
|
Line 36... |
Line 36... |
`include "fp_defines.v"
|
`include "fp_defines.v"
|
//`define GOLDSCHMIDT 1'b1
|
//`define GOLDSCHMIDT 1'b1
|
|
|
module fpDiv(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
module fpDiv(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
|
|
parameter FPWID = 128;
|
parameter FPWID = 64;
|
`include "fpSize.sv"
|
`include "fpSize.sv"
|
// FADD is a constant that makes the divider FPWIDth a multiple of four and includes eight extra bits.
|
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
localparam FADD = FPWID+`EXTRA_BITS==128 ? 9 :
|
localparam FADD = FPWID==128 ? 9 :
|
FPWID+`EXTRA_BITS==96 ? 9 :
|
FPWID==96 ? 9 :
|
FPWID+`EXTRA_BITS==84 ? 9 :
|
FPWID==84 ? 9 :
|
FPWID+`EXTRA_BITS==80 ? 9 :
|
FPWID==80 ? 9 :
|
FPWID+`EXTRA_BITS==64 ? 13 :
|
FPWID==64 ? 13 :
|
FPWID+`EXTRA_BITS==52 ? 9 :
|
FPWID==52 ? 9 :
|
FPWID+`EXTRA_BITS==48 ? 10 :
|
FPWID==48 ? 10 :
|
FPWID+`EXTRA_BITS==44 ? 9 :
|
FPWID==44 ? 9 :
|
FPWID+`EXTRA_BITS==42 ? 11 :
|
FPWID==42 ? 11 :
|
FPWID+`EXTRA_BITS==40 ? 8 :
|
FPWID==40 ? 8 :
|
FPWID+`EXTRA_BITS==32 ? 10 :
|
FPWID==32 ? 10 :
|
FPWID+`EXTRA_BITS==24 ? 9 : 11;
|
FPWID==24 ? 9 : 11;
|
|
|
input rst;
|
input rst;
|
input clk;
|
input clk;
|
input clk4x;
|
input clk4x;
|
input ce;
|
input ce;
|
Line 128... |
Line 128... |
// check for exponent underflow/overflow
|
// check for exponent underflow/overflow
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
|
|
// Perform divide
|
// Perform divide
|
// Divider FPWIDth must be a multiple of four
|
// Divider width must be a multiple of four
|
`ifndef GOLDSCHMIDT
|
`ifndef GOLDSCHMIDT
|
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
|
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
|
`else
|
`else
|
DivGoldschmidt #(.FPWID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
|
DivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
|
u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
|
u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
|
wire [(FMSB+6)*2+1:0] divo1 =
|
wire [(FMSB+6)*2+1:0] divo1 =
|
lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
|
lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
|
divo >> (8'd6-lzcnt);
|
divo >> (8'd6-lzcnt);
|
;
|
;
|
Line 170... |
Line 170... |
5'b00001: xo <= 1'd0; // underflow
|
5'b00001: xo <= 1'd0; // underflow
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
endcase
|
endcase
|
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
8'b1???????: mo <= {1'b1,1'b1,a[FMSB-1:0],{FMSB+1{1'b0}}};
|
8'b1???????: mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
|
8'b01??????: mo <= {1'b1,1'b1,b[FMSB-1:0],{FMSB+1{1'b0}}};
|
8'b01??????: mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
|
8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
8'b0001????: mo <= 1'd0; // div by inf
|
8'b0001????: mo <= 1'd0; // div by inf
|
8'b00001???: mo <= 1'd0; // div by zero
|
8'b00001???: mo <= 1'd0; // div by zero
|
8'b000001??: mo <= 1'd0; // Inf exponent
|
8'b000001??: mo <= 1'd0; // Inf exponent
|
8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
|
8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
|
Line 195... |
Line 195... |
end
|
end
|
|
|
endmodule
|
endmodule
|
|
|
module fpDivnr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
module fpDivnr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
parameter FPWID=32;
|
parameter FPWID=64;
|
`include "fpSize.sv"
|
`include "fpSize.sv"
|
|
|
input rst;
|
input rst;
|
input clk;
|
input clk;
|
input clk4x;
|
input clk4x;
|
Line 219... |
Line 219... |
wire sign_exe1, inf1, overflow1, underflow1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire [MSB+3:0] fpn0;
|
wire [MSB+3:0] fpn0;
|
wire done1;
|
wire done1;
|
|
|
fpDiv #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
fpDiv #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) );
|
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));
|
vtdl #(1) u8(.clk(clk), .ce(ce), .a(4'd13), .d(done1), .q(done));
|
endmodule
|
endmodule
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|