OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpRound.sv] - Diff between revs 48 and 49

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 48 Rev 49
Line 9... Line 9...
//    - floating point rounding unit
//    - floating point rounding unit
//    - parameterized width
//    - parameterized width
//    - IEEE 754 representation
//    - IEEE 754 representation
//
//
//
//
// This source file is free software: you can redistribute it and/or modify
// BSD 3-Clause License
// it under the terms of the GNU Lesser General Public License as published
// Redistribution and use in source and binary forms, with or without
// by the Free Software Foundation, either version 3 of the License, or
// modification, are permitted provided that the following conditions are met:
// (at your option) any later version.
 
//
 
// This source file is distributed in the hope that it will be useful,
 
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
// GNU General Public License for more details.
 
//
//
// You should have received a copy of the GNU General Public License
// 1. Redistributions of source code must retain the above copyright notice, this
// along with this program.  If not, see .
//    list of conditions and the following disclaimer.
 
//
 
// 2. Redistributions in binary form must reproduce the above copyright notice,
 
//    this list of conditions and the following disclaimer in the documentation
 
//    and/or other materials provided with the distribution.
 
//
 
// 3. Neither the name of the copyright holder nor the names of its
 
//    contributors may be used to endorse or promote products derived from
 
//    this software without specific prior written permission.
 
//
 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// ============================================================================
// ============================================================================
 
 
import fp::*;
import fp::*;
 
 
 
`ifdef MIN_LATENCY
 
`define PIPE_ADV  *
 
`else
 
`define PIPE_ADV  (posedge clk)
 
`endif
 
 
module fpRound(clk, ce, rm, i, o);
module fpRound(clk, ce, rm, i, o);
input clk;
input clk;
input ce;
input ce;
input [2:0] rm;                 // rounding mode
input [2:0] rm;                 // rounding mode
input [MSB+3:0] i;              // intermediate format input
input [MSB+3:0] i;              // intermediate format input
Line 44... Line 63...
reg [FMSB+3:0] mo1;
reg [FMSB+3:0] mo1;
wire xInf = &i[MSB+2:FMSB+4];
wire xInf = &i[MSB+2:FMSB+4];
wire so0 = i[MSB+3];
wire so0 = i[MSB+3];
assign o = {so,xo,mo};
assign o = {so,xo,mo};
 
 
 
wire l = i[3];
wire g = i[2];  // guard bit: always the same bit for all operations
wire g = i[2];  // guard bit: always the same bit for all operations
wire r = i[1];  // rounding bit
wire r = i[1];  // rounding bit
wire s = i[0];  // sticky bit
wire s = i[0];  // sticky bit
reg rnd;
reg rnd;
 
 
//------------------------------------------------------------
//------------------------------------------------------------
// Clock #1
// Clock #1
// - determine round amount (add 1 or 0)
// - determine round amount (add 1 or 0)
//------------------------------------------------------------
//------------------------------------------------------------
 
 
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
if (ce) xo1 <= i[MSB+2:FMSB+4];
if (ce) xo1 <= i[MSB+2:FMSB+4];
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
if (ce) mo1 <= i[FMSB+3:0];
if (ce) mo1 <= i[FMSB+3:0];
 
 
 
wire tie = g & ~(r|s);
// Compute the round bit
// Compute the round bit
// Infinities and NaNs are not rounded!
// Infinities and NaNs are not rounded!
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
if (ce)
if (ce)
        casez ({xInf,rm})
        casez ({xInf,rm})
        4'b0000:        rnd <= (g & r) | (r & s);     // round to nearest even
        4'b0000:  rnd <= (g & (r|s)) | (l & tie); // round to nearest ties to even
        4'b0001:        rnd <= 1'd0;                                                    // round to zero (truncate)
        4'b0001:        rnd <= 1'd0;                                                    // round to zero (truncate)
        4'b0010:        rnd <= (r | s) & !so0;                // round towards +infinity
        4'b0010:        rnd <= g & !so0;              // round towards +infinity
        4'b0011:        rnd <= (r | s) & so0;                        // round towards -infinity
        4'b0011:        rnd <= g & so0;                      // round towards -infinity
        4'b0100:  rnd <= (r | s);                                       // round to nearest away from zero
        4'b0100:  rnd <= (g & (r|s)) | tie; // round to nearest ties away from zero
        4'b1???:        rnd <= 1'd0;    // no rounding if exponent indicates infinite or NaN
        4'b1???:        rnd <= 1'd0;    // no rounding if exponent indicates infinite or NaN
        default:        rnd <= 0;
        default:        rnd <= 0;
        endcase
        endcase
 
 
//------------------------------------------------------------
//------------------------------------------------------------
Line 97... Line 106...
reg [MSB:0] rounded2;
reg [MSB:0] rounded2;
reg carry2;
reg carry2;
reg rnd2;
reg rnd2;
reg dn2;
reg dn2;
wire [EMSB:0] xo2;
wire [EMSB:0] xo2;
wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:2]} + rnd;
wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:3],1'b0} + {rnd,1'b0};  // Add onto LSB, GRS=0
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
        if (ce) rounded2 <= rounded1;
        if (ce) rounded2 <= rounded1;
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
        if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1];
        if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1];
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
        if (ce) rnd2 <= rnd;
        if (ce) rnd2 <= rnd;
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
 
`else
 
always @(posedge clk)
 
`endif
 
        if (ce) dn2 <= !(|xo1);
        if (ce) dn2 <= !(|xo1);
assign xo2 = rounded2[MSB:FMSB+2];
assign xo2 = rounded2[MSB:FMSB+2];
 
 
//------------------------------------------------------------
//------------------------------------------------------------
// Clock #3
// Clock #3
Line 136... Line 129...
`else
`else
delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so));
delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so));
delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo));
delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo));
`endif
`endif
 
 
`ifdef MIN_LATENCY
always @`PIPE_ADV
always @*
if (ce)
`else
 
always @(posedge clk)
 
`endif
 
        casez({rnd2,&xo2,carry2,dn2})
        casez({rnd2,&xo2,carry2,dn2})
        4'b0??0:        mo <= mo1[FMSB+2:2];		// not rounding, not denormalized, => hide MSB
        4'b0??0:        mo <= mo1[FMSB+2:2];		// not rounding, not denormalized, => hide MSB
        4'b0??1:        mo <= mo1[FMSB+3:3];            // not rounding, denormalized
        4'b0??1:        mo <= mo1[FMSB+3:3];            // not rounding, denormalized
        4'b1000:        mo <= rounded2[FMSB  :0];	// exponent didn't change, number was normalized, => hide MSB,
        4'b1000:        mo <= rounded2[FMSB  :0];	// exponent didn't change, number was normalized, => hide MSB,
        4'b1001:        mo <= rounded2[FMSB+1:1];	// exponent didn't change, but number was denormalized, => retain MSB
        4'b1001:        mo <= rounded2[FMSB+1:1];	// exponent didn't change, but number was denormalized, => retain MSB
Line 152... Line 142...
        4'b1011:        mo <= rounded2[FMSB+1:1];	// exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
        4'b1011:        mo <= rounded2[FMSB+1:1];	// exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
        4'b11??:        mo <= 1'd0;                                             // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
        4'b11??:        mo <= 1'd0;                                             // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
        endcase
        endcase
 
 
endmodule
endmodule
 
 
 
 
// Round and register the output
 
/*
 
module fpRoundReg(clk, ce, rm, i, o);
 
parameter WID = 128;
 
`include "fpSize.sv"
 
 
 
input clk;
 
input ce;
 
input [2:0] rm;                 // rounding mode
 
input [MSB+3:0] i;              // expanded format input
 
output reg [WID-1:0] o;         // rounded output
 
 
 
wire [WID-1:0] o1;
 
fpRound #(WID) u1 (.rm(rm), .i(i), .o(o1) );
 
 
 
always @(posedge clk)
 
        if (ce)
 
                o <= o1;
 
 
 
endmodule
 
*/
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.