Line 1... |
Line 1... |
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
-- Light8080 simulation test bench 1 : Interrupt response test
|
-- Generated from template tb_template.vhdl by hexconv.pl
|
|
--------------------------------------------------------------------------------
|
|
-- Light8080 simulation test bench.
|
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
-- Source for the 8080 program is in asm\tb1.asm
|
-- Source for the 8080 program is in asm\tb1.asm
|
-- Upon completion, a value of 033h in ACC means success and a 0aah means
|
--------------------------------------------------------------------------------
|
-- failure, but the proper behavior of intr/inta/halt has to be verified
|
--
|
-- visually.
|
-- This test bench provides a simulated CPU system to test programs. This test
|
|
-- bench does not do any assertions or checks, all assertions are left to the
|
|
-- software.
|
|
--
|
|
-- The simulated environment has 2KB of RAM, mirror-mapped to all the memory
|
|
-- map of the 8080, initialized with the test program object code. See the perl
|
|
-- script 'util\hexconv.pl' and BAT files in the asm directory.
|
|
--
|
|
-- Besides, it provides some means to trigger hardware irq from software,
|
|
-- including the specification of the instructions fed to the CPU as interrupt
|
|
-- vectors during inta cycles.
|
|
--
|
|
-- We will simulate 8 possible irq sources. The software can trigger any one of
|
|
-- them by writing at registers 0x010 and 0x011. Register 0x010 holds the irq
|
|
-- source to be triggered (0 to 7) and register 0x011 holds the number of clock
|
|
-- cycles that will elapse from the end of the instruction that writes to the
|
|
-- register to the assertion of intr.
|
|
--
|
|
-- When the interrupt is acknowledged and inta is asserted, the test bench reads
|
|
-- the value at register 0x010 as the irq source, and feeds an instruction to
|
|
-- the CPU starting from the RAM address 0040h+source*4.
|
|
-- That is, address range 0040h-005fh is reserved for the simulated 'interrupt
|
|
-- vectors', a total of 4 bytes for each of the 8 sources. This allows the
|
|
-- software to easily test different interrupt vectors without any hand
|
|
-- assembly. All of this is strictly simulation-only stuff.
|
|
--
|
|
--
|
|
-- Upon completion, the software must write a value to register 0x020. Writing
|
|
-- a 0x055 means 'success', writing a 0x0aa means 'failure'. Success and
|
|
-- failure conditions are defined by the software.
|
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
|
|
LIBRARY ieee;
|
library ieee;
|
USE ieee.std_logic_1164.ALL;
|
use ieee.std_logic_1164.ALL;
|
USE ieee.std_logic_unsigned.all;
|
use ieee.std_logic_unsigned.all;
|
USE ieee.numeric_std.ALL;
|
use ieee.numeric_std.ALL;
|
|
|
ENTITY light8080_tb1 IS
|
entity light8080_tb1 is
|
END light8080_tb1;
|
end entity light8080_tb1;
|
|
|
ARCHITECTURE behavior OF light8080_tb1 IS
|
architecture behavior of light8080_tb1 is
|
|
|
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
-- Simulation parameters
|
-- Simulation parameters
|
|
|
-- T: simulation clock period
|
-- T: simulated clock period
|
constant T : time := 100 ns;
|
constant T : time := 100 ns;
|
|
|
-- sim_length: total simulation time
|
-- MAX_SIM_LENGTH: maximum simulation time
|
constant sim_length : time := 45000 ns;
|
constant MAX_SIM_LENGTH : time := T*5000;
|
|
|
|
|
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
|
|
-- Component Declaration for the Unit Under Test (UUT)
|
-- Component Declaration for the Unit Under Test (UUT)
|
COMPONENT light8080
|
component light8080
|
PORT (
|
port (
|
addr_out : out std_logic_vector(15 downto 0);
|
addr_out : out std_logic_vector(15 downto 0);
|
|
|
inta : out std_logic;
|
inta : out std_logic;
|
inte : out std_logic;
|
inte : out std_logic;
|
halt : out std_logic;
|
halt : out std_logic;
|
Line 41... |
Line 72... |
|
|
vma : out std_logic;
|
vma : out std_logic;
|
io : out std_logic;
|
io : out std_logic;
|
rd : out std_logic;
|
rd : out std_logic;
|
wr : out std_logic;
|
wr : out std_logic;
|
|
fetch : out std_logic;
|
data_in : in std_logic_vector(7 downto 0);
|
data_in : in std_logic_vector(7 downto 0);
|
data_out : out std_logic_vector(7 downto 0);
|
data_out : out std_logic_vector(7 downto 0);
|
|
|
clk : in std_logic;
|
clk : in std_logic;
|
reset : in std_logic );
|
reset : in std_logic );
|
END COMPONENT;
|
end component;
|
|
|
|
|
SIGNAL data_i : std_logic_vector(7 downto 0) := (others=>'0');
|
|
|
|
SIGNAL vma_o : std_logic;
|
|
SIGNAL rd_o : std_logic;
|
|
SIGNAL wr_o : std_logic;
|
|
SIGNAL io_o : std_logic;
|
|
SIGNAL data_o : std_logic_vector(7 downto 0);
|
|
SIGNAL data_mem : std_logic_vector(7 downto 0);
|
|
SIGNAL addr_o : std_logic_vector(15 downto 0);
|
|
|
|
|
signal data_i : std_logic_vector(7 downto 0) := (others=>'0');
|
|
signal vma_o : std_logic;
|
|
signal rd_o : std_logic;
|
|
signal wr_o : std_logic;
|
|
signal io_o : std_logic;
|
|
signal data_o : std_logic_vector(7 downto 0);
|
|
signal data_mem : std_logic_vector(7 downto 0);
|
|
signal addr_o : std_logic_vector(15 downto 0);
|
|
signal fetch_o : std_logic;
|
signal inta_o : std_logic;
|
signal inta_o : std_logic;
|
signal inte_o : std_logic;
|
signal inte_o : std_logic;
|
signal intr_i : std_logic := '0';
|
signal intr_i : std_logic := '0';
|
signal halt_o : std_logic;
|
signal halt_o : std_logic;
|
|
|
Line 72... |
Line 103... |
|
|
type t_rom is array(0 to 2047) of std_logic_vector(7 downto 0);
|
type t_rom is array(0 to 2047) of std_logic_vector(7 downto 0);
|
|
|
signal rom : t_rom := (
|
signal rom : t_rom := (
|
|
|
X"c3",X"40",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"c3",X"60",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"c6",X"07",X"fb",X"c9",X"00",X"00",X"00",X"00",
|
X"c6",X"07",X"fb",X"c9",X"00",X"00",X"00",X"00",
|
X"47",X"c9",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"47",X"c9",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"31",X"06",X"02",X"fb",X"3e",X"00",X"ef",X"c6",
|
X"3c",X"00",X"00",X"00",X"cf",X"00",X"00",X"00",
|
X"01",X"c6",X"01",X"c6",X"01",X"c6",X"01",X"c6",
|
X"23",X"00",X"00",X"00",X"3e",X"42",X"00",X"00",
|
X"01",X"c6",X"01",X"c6",X"01",X"fb",X"c6",X"01",
|
X"21",X"34",X"12",X"00",X"c3",X"10",X"01",X"00",
|
X"c6",X"01",X"c6",X"01",X"fb",X"76",X"fe",X"11",
|
X"cd",X"15",X"01",X"00",X"cd",X"18",X"01",X"00",
|
X"c2",X"7b",X"00",X"78",X"fe",X"00",X"c2",X"7b",
|
X"31",X"5b",X"01",X"3e",X"13",X"e7",X"fe",X"1a",
|
X"00",X"79",X"fe",X"0c",X"c2",X"7b",X"00",X"7a",
|
X"c2",X"0b",X"01",X"3e",X"00",X"d3",X"10",X"fb",
|
X"fe",X"12",X"7b",X"fe",X"34",X"c2",X"7b",X"00",
|
X"3e",X"14",X"d3",X"11",X"3e",X"27",X"00",X"00",
|
X"3e",X"33",X"76",X"3e",X"aa",X"76",X"00",X"00",
|
X"00",X"00",X"fe",X"28",X"c2",X"0b",X"01",X"3e",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"01",X"d3",X"10",X"fb",X"3e",X"14",X"d3",X"11",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"3e",X"20",X"00",X"00",X"00",X"00",X"fe",X"27",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"c2",X"0b",X"01",X"21",X"ff",X"13",X"3e",X"02",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"d3",X"10",X"fb",X"3e",X"04",X"d3",X"11",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"7d",X"fe",X"00",X"c2",X"0b",X"01",X"7c",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"fe",X"14",X"c2",X"0b",X"01",X"3e",X"03",X"d3",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"10",X"fb",X"3e",X"04",X"d3",X"11",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"fe",X"42",X"c2",X"0b",X"01",X"3e",X"04",X"d3",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"10",X"fb",X"3e",X"04",X"d3",X"11",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"7c",X"fe",X"12",X"c2",X"0b",X"01",X"7d",X"fe",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"34",X"c2",X"0b",X"01",X"3e",X"05",X"d3",X"10",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"fb",X"3e",X"04",X"d3",X"11",X"00",X"00",X"fe",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"79",X"c2",X"0b",X"01",X"3e",X"06",X"d3",X"10",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"fb",X"3e",X"04",X"d3",X"11",X"3c",X"00",X"fe",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"05",X"c2",X"0b",X"01",X"78",X"fe",X"19",X"c2",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"0b",X"01",X"f3",X"3e",X"07",X"d3",X"10",X"3e",
|
X"c6",X"09",X"06",X"77",X"fb",X"c9",X"00",X"00",
|
X"04",X"d3",X"11",X"00",X"00",X"00",X"3e",X"55",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"d3",X"20",X"76",X"3e",X"aa",X"d3",X"20",X"76",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"3e",X"79",X"c3",X"df",X"00",X"06",X"19",X"c9",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"c3",X"0b",X"01",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
Line 331... |
Line 362... |
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00",
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00"
|
X"00",X"00",X"00",X"00",X"00",X"00",X"00",X"00"
|
|
|
);
|
);
|
|
|
|
signal irq_vector_byte: std_logic_vector(7 downto 0);
|
|
signal irq_source : integer range 0 to 7;
|
|
signal cycles_to_intr : integer range -10 to 255;
|
|
signal int_vector_index : integer range 0 to 3;
|
|
signal addr_vector_table: integer range 0 to 65535;
|
|
|
type t_int_vectors is array(0 to 15) of std_logic_vector(7 downto 0);
|
begin
|
|
|
-- This ROM holds the int vectors that will be fed to the CPU along the test.
|
|
-- It will be read like a progrm ROM except a special pointer (vector_counter)
|
|
-- will be used instead of the PC (see below).
|
|
-- Of course this is a simulation trick not meant to be synthesized.
|
|
signal int_vectors : t_int_vectors := (
|
|
X"00", -- not used (see below)
|
|
X"e7", -- rst 4 (rst 20h)
|
|
X"4f", -- mov c,a
|
|
X"11", X"34", X"12", -- lxi d, 1234h
|
|
X"00", -- nop
|
|
X"00", -- not used
|
|
X"00", X"00", X"00", X"00", X"00", X"00", X"00", X"00"
|
|
);
|
|
|
|
-- This will be used to read the irq vector ROM. It's a pointer that increments
|
|
-- whenever the CPU fetches a byte while inta_o is high.
|
|
signal vector_counter : integer := 0;
|
|
-- Vector byte to be fed to the CPU in inta cycles
|
|
signal int_vector : std_logic_vector(7 downto 0);
|
|
|
|
BEGIN
|
|
|
|
-- Instantiate the Unit Under Test (UUT)
|
-- Instantiate the Unit Under Test (UUT)
|
uut: light8080 PORT MAP(
|
uut: light8080 PORT MAP(
|
clk => clk,
|
clk => clk,
|
reset => reset,
|
reset => reset,
|
vma => vma_o,
|
vma => vma_o,
|
rd => rd_o,
|
rd => rd_o,
|
wr => wr_o,
|
wr => wr_o,
|
io => io_o,
|
io => io_o,
|
|
fetch => fetch_o,
|
addr_out => addr_o,
|
addr_out => addr_o,
|
data_in => data_i,
|
data_in => data_i,
|
data_out => data_o,
|
data_out => data_o,
|
|
|
intr => intr_i,
|
intr => intr_i,
|
Line 375... |
Line 390... |
inta => inta_o,
|
inta => inta_o,
|
halt => halt_o
|
halt => halt_o
|
);
|
);
|
|
|
|
|
---------------------------------------------------------------------------
|
-- clock: run clock until test is done
|
-- clock: Clocking process.
|
|
clock:
|
clock:
|
process(done, clk)
|
process(done, clk)
|
begin
|
begin
|
if done = '0' then
|
if done = '0' then
|
clk <= not clk after T/2;
|
clk <= not clk after T/2;
|
end if;
|
end if;
|
end process clock;
|
end process clock;
|
|
|
|
|
|
-- Drive reset and done
|
main_test:
|
main_test:
|
process
|
process
|
begin
|
begin
|
-- Assert reset for at least one full clk period
|
-- Assert reset for at least one full clk period
|
reset <= '1';
|
reset <= '1';
|
Line 397... |
Line 412... |
wait for T/2;
|
wait for T/2;
|
reset <= '0';
|
reset <= '0';
|
|
|
-- Remember to 'cut away' the preceding 3 clk semiperiods from
|
-- Remember to 'cut away' the preceding 3 clk semiperiods from
|
-- the wait statement...
|
-- the wait statement...
|
wait for (sim_length - T*1.5);
|
wait for (MAX_SIM_LENGTH - T*1.5);
|
|
|
-- Stop the clk process asserting 'done'
|
-- Maximum sim time elapsed, assume the program ran away and
|
|
-- stop the clk process asserting 'done' (which will stop the simulation)
|
done <= '1';
|
done <= '1';
|
|
|
assert (done = '1')
|
assert (done = '1')
|
report "Test finished."
|
report "Test timed out."
|
severity failure;
|
severity failure;
|
|
|
wait;
|
wait;
|
end process main_test;
|
end process main_test;
|
|
|
-- (Code) RAM access
|
|
|
-- Synchronous RAM; 2KB mirrored everywhere
|
|
synchronous_ram:
|
process(clk)
|
process(clk)
|
begin
|
begin
|
if (clk'event and clk='1') then
|
if (clk'event and clk='1') then
|
data_mem <= rom(conv_integer(addr_o(10 downto 0)));
|
data_mem <= rom(conv_integer(addr_o(10 downto 0)));
|
if wr_o = '1' then
|
if wr_o = '1' and addr_o(15 downto 11)="00000" then
|
rom(conv_integer(addr_o(10 downto 0))) <= data_o;
|
rom(conv_integer(addr_o(10 downto 0))) <= data_o;
|
end if;
|
end if;
|
end if;
|
end if;
|
end process;
|
end process synchronous_ram;
|
|
|
-- Interrupt vector ROM pointer; update it whenever the CPU fetches a byte
|
|
-- while in INTA state.
|
irq_trigger_register:
|
process(clk)
|
process(clk)
|
begin
|
begin
|
if (clk'event and clk='1') then
|
if (clk'event and clk='1') then
|
if inta_o = '1' and vma_o = '1' and rd_o='1' then
|
if reset='1' then
|
vector_counter <= vector_counter + 1;
|
cycles_to_intr <= -10; -- meaning no interrupt pending
|
|
intr_i <= '0';
|
|
else
|
|
if io_o='1' and wr_o='1' and addr_o(7 downto 0)=X"11" then
|
|
cycles_to_intr <= conv_integer(data_o) + 1;
|
|
else
|
|
if cycles_to_intr >= 0 then
|
|
cycles_to_intr <= cycles_to_intr - 1;
|
end if;
|
end if;
|
|
if cycles_to_intr = 0 then
|
|
intr_i <= '1';
|
|
else
|
|
intr_i <= '0';
|
end if;
|
end if;
|
end process;
|
end if;
|
|
end if;
|
-- (Since the vector pointer pre-increments and the ROM in asynchronous, the
|
end if;
|
-- first byte of the ROM is never used).
|
end process irq_trigger_register;
|
int_vector <= int_vectors(vector_counter);
|
|
|
|
data_i <= data_mem when inta_o='0' else int_vector;
|
|
|
|
-- Trigger the IRQ input in a pattern carefully synchronized to the code of
|
irq_source_register:
|
-- the test bench (see 'asm/tb1.asm').
|
process(clk)
|
int0:
|
|
process
|
|
begin
|
begin
|
intr_i <= '0';
|
if (clk'event and clk='1') then
|
|
if reset='1' then
|
|
irq_source <= 0;
|
|
else
|
|
if io_o='1' and wr_o='1' and addr_o(7 downto 0)=X"10" then
|
|
irq_source <= conv_integer(data_o(2 downto 0));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process irq_source_register;
|
|
|
--
|
|
wait for T*89;
|
|
intr_i <= '1';
|
|
wait for T;
|
|
intr_i <= '0';
|
|
|
|
--
|
-- 'interrupt vector' logic.
|
wait for T*87;
|
irq_vector_table:
|
intr_i <= '1';
|
process(clk)
|
wait for T;
|
begin
|
intr_i <= '0';
|
if (clk'event and clk='1') then
|
|
if vma_o = '1' and rd_o='1' then
|
|
if inta_o = '1' then
|
|
int_vector_index <= int_vector_index + 1;
|
|
else
|
|
int_vector_index <= 0;
|
|
end if;
|
|
end if;
|
|
-- this is the address of the byte we'll feed to the CPU
|
|
addr_vector_table <= 64+irq_source*4+int_vector_index;
|
|
end if;
|
|
end process irq_vector_table;
|
|
irq_vector_byte <= rom(addr_vector_table);
|
|
|
--
|
data_i <= data_mem when inta_o='0' else irq_vector_byte;
|
wait for T*49;
|
|
intr_i <= '1';
|
|
wait for T;
|
|
intr_i <= '0';
|
|
|
|
-- intr after cpu is halted
|
|
wait for T*41;
|
|
intr_i <= '1';
|
|
wait for T;
|
|
intr_i <= '0';
|
|
|
|
wait;
|
test_outcome_register:
|
end process int0;
|
process(clk)
|
|
variable outcome : std_logic_vector(7 downto 0);
|
|
begin
|
|
if (clk'event and clk='1') then
|
|
if io_o='1' and wr_o='1' and addr_o(7 downto 0)=X"20" then
|
|
assert (data_o /= X"55") report "Software reports SUCCESS" severity failure;
|
|
assert (data_o /= X"aa") report "Software reports FAILURE" severity failure;
|
|
assert ((data_o = X"aa") or (data_o = X"55"))
|
|
report "Software reports unexpected outcome value."
|
|
severity failure;
|
|
end if;
|
|
end if;
|
|
end process test_outcome_register;
|
|
|
|
|
END;
|
end;
|
|
|
No newline at end of file
|
No newline at end of file
|