Line 74... |
Line 74... |
);
|
);
|
end neorv32_cfs;
|
end neorv32_cfs;
|
|
|
architecture neorv32_cfs_rtl of neorv32_cfs is
|
architecture neorv32_cfs_rtl of neorv32_cfs is
|
|
|
-- IO space: module base address (DO NOT MODIFY!) --
|
-- IO space: module base address --
|
|
-- WARNING: Do not modify the CFS base address or the CFS' occupied address
|
|
-- space as this might cause access collisions with other processor modules.
|
constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit
|
constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit
|
constant lo_abb_c : natural := index_size_f(cfs_size_c); -- low address boundary bit
|
constant lo_abb_c : natural := index_size_f(cfs_size_c); -- low address boundary bit
|
|
|
-- access control --
|
-- access control --
|
signal acc_en : std_ulogic; -- module access enable
|
signal acc_en : std_ulogic; -- module access enable
|
Line 93... |
Line 95... |
|
|
begin
|
begin
|
|
|
-- Access Control -------------------------------------------------------------------------
|
-- Access Control -------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- This logic is required to handle the CPU accesses.
|
-- This logic is required to handle the CPU accesses - DO NOT MODIFY!
|
-- DO NOT MODIFY this unless you really know what you are doing.
|
|
acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = cfs_base_c(hi_abb_c downto lo_abb_c)) else '0';
|
acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = cfs_base_c(hi_abb_c downto lo_abb_c)) else '0';
|
addr <= cfs_base_c(31 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 2) & "00"; -- word aligned
|
addr <= cfs_base_c(31 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 2) & "00"; -- word aligned
|
wren <= acc_en and wren_i; -- write accesses always write a full 32-bit word
|
wren <= acc_en and wren_i; -- only full-word write accesses are supported
|
rden <= acc_en and rden_i; -- read accesses always return a full 32-bit word
|
rden <= acc_en and rden_i; -- read accesses always return a full 32-bit word
|
|
|
-- NOTE: Do not modify the CFS base address or the CFS' occupied address space as this might cause access
|
|
-- collisions with other modules.
|
|
|
|
|
|
-- CFS Generics ---------------------------------------------------------------------------
|
-- CFS Generics ---------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- In it's default version the CFS provides three configuration generics:
|
-- In it's default version the CFS provides three configuration generics:
|
-- CFS_IN_SIZE - configures the size (in bits) of the CFS input conduit cfs_in_i
|
-- > CFS_IN_SIZE - configures the size (in bits) of the CFS input conduit cfs_in_i
|
-- CFS_OUT_SIZE - configures the size (in bits) of the CFS output conduit cfs_out_o
|
-- > CFS_OUT_SIZE - configures the size (in bits) of the CFS output conduit cfs_out_o
|
-- CFS_CONFIG - is a blank 32-bit generic. It is intended as a "generic conduit" to propagate
|
-- > CFS_CONFIG - is a blank 32-bit generic. It is intended as a "generic conduit" to propagate
|
-- custom configuration flags from the top entity down to this module.
|
-- custom configuration flags from the top entity down to this module.
|
|
|
|
|
-- CFS IOs --------------------------------------------------------------------------------
|
-- CFS IOs --------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
Line 139... |
Line 137... |
-- The processor top unit implements a clock generator providing 8 "derived clocks".
|
-- The processor top unit implements a clock generator providing 8 "derived clocks".
|
-- Actually, these signals should not be used as direct clock signals, but as *clock enable* signals.
|
-- Actually, these signals should not be used as direct clock signals, but as *clock enable* signals.
|
-- clkgen_i is always synchronous to the main system clock (clk_i).
|
-- clkgen_i is always synchronous to the main system clock (clk_i).
|
--
|
--
|
-- The following clock dividers are available:
|
-- The following clock dividers are available:
|
-- + clkgen_i(clk_div2_c) -> MAIN_CLK/2
|
-- > clkgen_i(clk_div2_c) -> MAIN_CLK/2
|
-- + clkgen_i(clk_div4_c) -> MAIN_CLK/4
|
-- > clkgen_i(clk_div4_c) -> MAIN_CLK/4
|
-- + clkgen_i(clk_div8_c) -> MAIN_CLK/8
|
-- > clkgen_i(clk_div8_c) -> MAIN_CLK/8
|
-- + clkgen_i(clk_div64_c) -> MAIN_CLK/64
|
-- > clkgen_i(clk_div64_c) -> MAIN_CLK/64
|
-- + clkgen_i(clk_div128_c) -> MAIN_CLK/128
|
-- > clkgen_i(clk_div128_c) -> MAIN_CLK/128
|
-- + clkgen_i(clk_div1024_c) -> MAIN_CLK/1024
|
-- > clkgen_i(clk_div1024_c) -> MAIN_CLK/1024
|
-- + clkgen_i(clk_div2048_c) -> MAIN_CLK/2048
|
-- > clkgen_i(clk_div2048_c) -> MAIN_CLK/2048
|
-- + clkgen_i(clk_div4096_c) -> MAIN_CLK/4096
|
-- > clkgen_i(clk_div4096_c) -> MAIN_CLK/4096
|
--
|
--
|
-- For instance, if you want to drive a clock process at MAIN_CLK/8 clock speed you can use the following construct:
|
-- For instance, if you want to drive a clock process at MAIN_CLK/8 clock speed you can use the following construct:
|
--
|
--
|
-- if (rstn_i = '0') then -- async and low-active reset (if required at all)
|
-- if (rstn_i = '0') then -- async and low-active reset (if required at all)
|
-- ...
|
-- ...
|
-- elsif rising_edge(clk_i) then -- always use the main clock for all clock processes!
|
-- elsif rising_edge(clk_i) then -- always use the main clock for all clock processes
|
-- if (clkgen_i(clk_div8_c) = '1') then -- the div8 "clock" is actually a clock enable
|
-- if (clkgen_i(clk_div8_c) = '1') then -- the div8 "clock" is actually a clock enable
|
-- ...
|
-- ...
|
-- end if;
|
-- end if;
|
-- end if;
|
-- end if;
|
--
|
--
|
-- The clkgen_i input clocks are available when at least one IO/peripheral device (for example the UART) requires the clocks
|
-- The clkgen_i input clocks are available when at least one IO/peripheral device (for example UART0) requires the clocks
|
-- generated by the clock generator. The CFS can enable the clock generator by itself by setting the clkgen_en_o signal high.
|
-- generated by the clock generator. The CFS can enable the clock generator by itself by setting the clkgen_en_o signal high.
|
-- The CFS cannot ensure to deactivate the clock generator by setting the clkgen_en_o signal low as other peripherals might
|
-- The CFS cannot ensure to deactivate the clock generator by setting the clkgen_en_o signal low as other peripherals might
|
-- still keep the generator activated. Make sure to deactivate the CFS's clkgen_en_o if no clocks are required in here to
|
-- still keep the generator activated. Make sure to deactivate the CFS's clkgen_en_o if no clocks are required in here to
|
-- reduce dynamic power consumption.
|
-- reduce dynamic power consumption.
|
|
|
Line 179... |
Line 177... |
irq_o <= '0'; -- not used for this minimal example
|
irq_o <= '0'; -- not used for this minimal example
|
|
|
|
|
-- Read/Write Access ----------------------------------------------------------------------
|
-- Read/Write Access ----------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- Here we are reading/writing from/to the interface registers of the module. Please note that the peripheral/IO modules
|
-- Here we are reading/writing from/to the interface registers of the module and generate the CPU access handshake (bus response).
|
-- of the NEORV32 can only be written in full word mode (32-bit). Any other write accesses (half-word or byte) will raise
|
|
-- a store bus access fault exception.
|
|
--
|
--
|
-- The CFS provides up to 32 memory-mapped 32-bit interface register. For instance, these could be used to provide a
|
-- The CFS provides up to 32 memory-mapped 32-bit interface registers. For instance, these could be used to provide a
|
-- <control register> for global control of the unit, a <data register> for reading/writing from/to a data FIFO, a
|
-- <control register> for global control of the unit, a <data register> for reading/writing from/to a data FIFO, a
|
-- <command register> for issuing commands and a <status register> for status information.
|
-- <command register> for issuing commands and a <status register> for status information.
|
--
|
--
|
-- Following the interface protocol, each read or write access has to be acknowledged in the following cycle using the ack_o
|
-- Following the interface protocol, each read or write access has to be acknowledged in the following cycle using the ack_o
|
-- signal (or even later if the module needs additional time; exceeding the maximum ACK latency will raise a bus exception).
|
-- signal (or even later if the module needs additional time). If no ACK is generated at all, the bus access will time out
|
-- If no ACK is generated at all, the bus access will time out and cause a bus access fault exception.
|
-- and cause a bus access fault exception.
|
--
|
--
|
-- This module also provides an optional ERROR signal to indicate a faulty access operation (for example when accessing an
|
-- This module also provides an optional ERROR signal to indicate a faulty access operation (for example when accessing an
|
-- unused, read-only or "locked" CFS register address). This signal may only be set when the module is actually accessed
|
-- unused, read-only or "locked" CFS register address). This signal may only be set when the module is actually accessed
|
-- and is asserted INSTEAD of the ACK signal. Setting the ERR signal will raise a bus access exception that can be handled
|
-- and is set INSTEAD of the ACK signal. Setting the ERR signal will raise a bus access exception with a "Device Error" qualifier
|
-- by the application software.
|
-- that can be handled by the application software.
|
|
|
err_o <= '0'; -- Tie to zero if not explicitly used.
|
err_o <= '0'; -- Tie to zero if not explicitly used.
|
|
|
-- Host access: Read and write access to the interface registers + bus transfer acknowledge. This example only implements
|
|
-- four physical r/w register (the four lowest CFS registers). The remaining addresses of the CFS are not associated with
|
-- Host access example: Read and write access to the interface registers + bus transfer acknowledge. This example only
|
-- any physical registers - any access to those is simply ignored but still acknowledged.
|
-- implements four physical r/w register (the four lowest CFS registers). The remaining addresses of the CFS are not associated
|
|
-- with any physical registers - any access to those is simply ignored but still acknowledged. Only full-word write accesses are
|
|
-- supported (and acknowledged) by this example. Sub-word write access will not alter any CFS register state and will cause
|
|
-- a "bus store access" exception (with a "Device Timeout" qualifier as not ACK is generated in that case).
|
|
|
host_access: process(clk_i)
|
host_access: process(clk_i)
|
begin
|
begin
|
if rising_edge(clk_i) then -- synchronous interface for read and write accesses
|
if rising_edge(clk_i) then -- synchronous interface for read and write accesses
|
-- transfer/access acknowledge --
|
-- transfer/access acknowledge --
|
ack_o <= rden or wren; -- default: required for the CPU to check the CFS is answering a bus read OR write request;
|
-- default: required for the CPU to check the CFS is answering a bus read OR write request;
|
-- all r/w accesses (to any cfs_reg) will succeed
|
-- all read and write accesses (to any cfs_reg, even if there is no according physical register implemented) will succeed.
|
|
ack_o <= rden or wren;
|
|
|
-- write access --
|
-- write access --
|
if (wren = '1') then
|
if (wren = '1') then -- full-word write access, high for one cycle if there is an actual write access
|
if (addr = cfs_reg0_addr_c) then -- make sure to use the internal "addr" signal for the read/write interface
|
if (addr = cfs_reg0_addr_c) then -- make sure to use the internal "addr" signal for the read/write interface
|
cfs_reg_wr(0) <= data_i; -- physical register, for example: control register
|
cfs_reg_wr(0) <= data_i; -- some physical register, for example: control register
|
end if;
|
end if;
|
if (addr = cfs_reg1_addr_c) then
|
if (addr = cfs_reg1_addr_c) then
|
cfs_reg_wr(1) <= data_i; -- physical register, for example: data in/out fifo
|
cfs_reg_wr(1) <= data_i; -- some physical register, for example: data in/out fifo
|
end if;
|
end if;
|
if (addr = cfs_reg2_addr_c) then
|
if (addr = cfs_reg2_addr_c) then
|
cfs_reg_wr(2) <= data_i; -- physical register, for example: command fifo
|
cfs_reg_wr(2) <= data_i; -- some physical register, for example: command fifo
|
end if;
|
end if;
|
if (addr = cfs_reg3_addr_c) then
|
if (addr = cfs_reg3_addr_c) then
|
cfs_reg_wr(3) <= data_i; -- physical register, for example: status register
|
cfs_reg_wr(3) <= data_i; -- some physical register, for example: status register
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
-- read access --
|
-- read access --
|
data_o <= (others => '0'); -- the output has to be zero if there is no actual read access
|
data_o <= (others => '0'); -- the output HAS TO BE ZERO if there is no actual read access
|
if (rden = '1') then -- the read access is always a full 32-bit word wide
|
if (rden = '1') then -- the read access is always 32-bit wide, high for one cycle if there is an actual read access
|
case addr is -- make sure to use the internal 'addr' signal for the read/write interface
|
case addr is -- make sure to use the internal 'addr' signal for the read/write interface
|
when cfs_reg0_addr_c => data_o <= cfs_reg_rd(0);
|
when cfs_reg0_addr_c => data_o <= cfs_reg_rd(0);
|
when cfs_reg1_addr_c => data_o <= cfs_reg_rd(1);
|
when cfs_reg1_addr_c => data_o <= cfs_reg_rd(1);
|
when cfs_reg2_addr_c => data_o <= cfs_reg_rd(2);
|
when cfs_reg2_addr_c => data_o <= cfs_reg_rd(2);
|
when cfs_reg3_addr_c => data_o <= cfs_reg_rd(3);
|
when cfs_reg3_addr_c => data_o <= cfs_reg_rd(3);
|
Line 245... |
Line 245... |
-- CFS Function Core ----------------------------------------------------------------------
|
-- CFS Function Core ----------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
|
|
-- This is where the actual functionality can be implemented.
|
-- This is where the actual functionality can be implemented.
|
-- The logic below is just a very simple example that transforms data
|
-- The logic below is just a very simple example that transforms data
|
-- from an inpout register into data in an output register.
|
-- from an input register into data in an output register.
|
cfs_core_logic: process(cfs_reg_wr)
|
|
begin
|
|
cfs_reg_rd(0) <= bin_to_gray_f(cfs_reg_wr(0)); -- convert binary to gray code
|
cfs_reg_rd(0) <= bin_to_gray_f(cfs_reg_wr(0)); -- convert binary to gray code
|
cfs_reg_rd(1) <= gray_to_bin_f(cfs_reg_wr(1)); -- convert gray to binary code
|
cfs_reg_rd(1) <= gray_to_bin_f(cfs_reg_wr(1)); -- convert gray to binary code
|
cfs_reg_rd(2) <= bit_rev_f(cfs_reg_wr(2)); -- bit reversal
|
cfs_reg_rd(2) <= bit_rev_f(cfs_reg_wr(2)); -- bit reversal
|
cfs_reg_rd(3) <= bswap32_f(cfs_reg_wr(3)); -- byte swap (endianness conversion)
|
cfs_reg_rd(3) <= bswap32_f(cfs_reg_wr(3)); -- byte swap (endianness conversion)
|
end process cfs_core_logic;
|
|
|
|
|
|
end neorv32_cfs_rtl;
|
end neorv32_cfs_rtl;
|
|
|
No newline at end of file
|
No newline at end of file
|