Line 70... |
Line 70... |
bus_i_wait_i : in std_ulogic; -- wait for bus
|
bus_i_wait_i : in std_ulogic; -- wait for bus
|
bus_d_wait_i : in std_ulogic; -- wait for bus
|
bus_d_wait_i : in std_ulogic; -- wait for bus
|
-- data input --
|
-- data input --
|
instr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- instruction
|
instr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- instruction
|
cmp_i : in std_ulogic_vector(1 downto 0); -- comparator status
|
cmp_i : in std_ulogic_vector(1 downto 0); -- comparator status
|
alu_add_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU.add result
|
|
alu_res_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU processing result
|
alu_res_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU processing result
|
-- data output --
|
-- data output --
|
imm_o : out std_ulogic_vector(data_width_c-1 downto 0); -- immediate
|
imm_o : out std_ulogic_vector(data_width_c-1 downto 0); -- immediate
|
fetch_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- PC for instruction fetch
|
fetch_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- PC for instruction fetch
|
curr_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- current PC (corresponding to current instruction)
|
curr_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- current PC (corresponding to current instruction)
|
Line 159... |
Line 158... |
i_reg_nxt : std_ulogic_vector(31 downto 0);
|
i_reg_nxt : std_ulogic_vector(31 downto 0);
|
is_ci : std_ulogic; -- current instruction is de-compressed instruction
|
is_ci : std_ulogic; -- current instruction is de-compressed instruction
|
is_ci_nxt : std_ulogic;
|
is_ci_nxt : std_ulogic;
|
is_jump : std_ulogic; -- current instruction is jump instruction
|
is_jump : std_ulogic; -- current instruction is jump instruction
|
is_jump_nxt : std_ulogic;
|
is_jump_nxt : std_ulogic;
|
|
is_cp_op : std_ulogic; -- current instruction is a co-processor operation
|
|
is_cp_op_nxt : std_ulogic;
|
branch_taken : std_ulogic; -- branch condition fullfilled
|
branch_taken : std_ulogic; -- branch condition fullfilled
|
pc : std_ulogic_vector(data_width_c-1 downto 0); -- actual PC, corresponding to current executed instruction
|
pc : std_ulogic_vector(data_width_c-1 downto 0); -- actual PC, corresponding to current executed instruction
|
pc_nxt : std_ulogic_vector(data_width_c-1 downto 0);
|
pc_nxt : std_ulogic_vector(data_width_c-1 downto 0);
|
next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next PC, corresponding to next instruction to be executed
|
next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next PC, corresponding to next instruction to be executed
|
last_pc : std_ulogic_vector(data_width_c-1 downto 0); -- PC of last executed instruction
|
last_pc : std_ulogic_vector(data_width_c-1 downto 0); -- PC of last executed instruction
|
Line 208... |
Line 209... |
|
|
-- RISC-V control and status registers (CSRs) --
|
-- RISC-V control and status registers (CSRs) --
|
type pmp_ctrl_t is array (0 to PMP_NUM_REGIONS-1) of std_ulogic_vector(7 downto 0);
|
type pmp_ctrl_t is array (0 to PMP_NUM_REGIONS-1) of std_ulogic_vector(7 downto 0);
|
type pmp_addr_t is array (0 to PMP_NUM_REGIONS-1) of std_ulogic_vector(data_width_c-1 downto 0);
|
type pmp_addr_t is array (0 to PMP_NUM_REGIONS-1) of std_ulogic_vector(data_width_c-1 downto 0);
|
type csr_t is record
|
type csr_t is record
|
we : std_ulogic; -- write enable
|
we : std_ulogic; -- csr write enable
|
we_nxt : std_ulogic;
|
we_nxt : std_ulogic;
|
re : std_ulogic; -- read enable
|
re : std_ulogic; -- csr read enable
|
re_nxt : std_ulogic;
|
re_nxt : std_ulogic;
|
wdata : std_ulogic_vector(data_width_c-1 downto 0); -- write data
|
wdata : std_ulogic_vector(data_width_c-1 downto 0); -- csr write data
|
rdata : std_ulogic_vector(data_width_c-1 downto 0); -- read data
|
rdata : std_ulogic_vector(data_width_c-1 downto 0); -- csr read data
|
|
--
|
mstatus_mie : std_ulogic; -- mstatus.MIE: global IRQ enable (R/W)
|
mstatus_mie : std_ulogic; -- mstatus.MIE: global IRQ enable (R/W)
|
mstatus_mpie : std_ulogic; -- mstatus.MPIE: previous global IRQ enable (R/-)
|
mstatus_mpie : std_ulogic; -- mstatus.MPIE: previous global IRQ enable (R/-)
|
|
mstatus_mpp : std_ulogic_vector(1 downto 0); -- mstatus.MPP: machine previous privilege mode
|
|
--
|
mie_msie : std_ulogic; -- mie.MSIE: machine software interrupt enable (R/W)
|
mie_msie : std_ulogic; -- mie.MSIE: machine software interrupt enable (R/W)
|
mie_meie : std_ulogic; -- mie.MEIE: machine external interrupt enable (R/W)
|
mie_meie : std_ulogic; -- mie.MEIE: machine external interrupt enable (R/W)
|
mie_mtie : std_ulogic; -- mie.MEIE: machine timer interrupt enable (R/W
|
mie_mtie : std_ulogic; -- mie.MEIE: machine timer interrupt enable (R/W
|
mie_firqe : std_ulogic_vector(3 downto 0); -- mie.firq*e: fast interrupt enabled (R/W)
|
mie_firqe : std_ulogic_vector(3 downto 0); -- mie.firq*e: fast interrupt enabled (R/W)
|
mpp : std_ulogic_vector(1 downto 0); -- machine previous privilege mode
|
--
|
privilege : std_ulogic_vector(1 downto 0); -- hart's current previous privilege mode
|
privilege : std_ulogic_vector(1 downto 0); -- hart's current previous privilege mode
|
|
--
|
mepc : std_ulogic_vector(data_width_c-1 downto 0); -- mepc: machine exception pc (R/W)
|
mepc : std_ulogic_vector(data_width_c-1 downto 0); -- mepc: machine exception pc (R/W)
|
mcause : std_ulogic_vector(data_width_c-1 downto 0); -- mcause: machine trap cause (R/-)
|
mcause : std_ulogic_vector(data_width_c-1 downto 0); -- mcause: machine trap cause (R/-)
|
mtvec : std_ulogic_vector(data_width_c-1 downto 0); -- mtvec: machine trap-handler base address (R/W), bit 1:0 == 00
|
mtvec : std_ulogic_vector(data_width_c-1 downto 0); -- mtvec: machine trap-handler base address (R/W), bit 1:0 == 00
|
mtval : std_ulogic_vector(data_width_c-1 downto 0); -- mtval: machine bad address or isntruction (R/W)
|
mtval : std_ulogic_vector(data_width_c-1 downto 0); -- mtval: machine bad address or isntruction (R/W)
|
mscratch : std_ulogic_vector(data_width_c-1 downto 0); -- mscratch: scratch register (R/W)
|
mscratch : std_ulogic_vector(data_width_c-1 downto 0); -- mscratch: scratch register (R/W)
|
Line 545... |
Line 550... |
if rising_edge(clk_i) then
|
if rising_edge(clk_i) then
|
execute_engine.state_prev <= execute_engine.state;
|
execute_engine.state_prev <= execute_engine.state;
|
execute_engine.i_reg <= execute_engine.i_reg_nxt;
|
execute_engine.i_reg <= execute_engine.i_reg_nxt;
|
execute_engine.is_ci <= execute_engine.is_ci_nxt;
|
execute_engine.is_ci <= execute_engine.is_ci_nxt;
|
execute_engine.is_jump <= execute_engine.is_jump_nxt;
|
execute_engine.is_jump <= execute_engine.is_jump_nxt;
|
|
execute_engine.is_cp_op <= execute_engine.is_cp_op_nxt;
|
--
|
--
|
ctrl <= ctrl_nxt;
|
ctrl <= ctrl_nxt;
|
end if;
|
end if;
|
end process execute_engine_fsm_sync;
|
end process execute_engine_fsm_sync;
|
|
|
Line 561... |
Line 567... |
next_pc_o <= next_pc_tmp(data_width_c-1 downto 1) & '0';
|
next_pc_o <= next_pc_tmp(data_width_c-1 downto 1) & '0';
|
|
|
|
|
-- CPU Control Bus Output -----------------------------------------------------------------
|
-- CPU Control Bus Output -----------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
ctrl_output: process(ctrl, fetch_engine, trap_ctrl, csr, bus_fast_ir)
|
ctrl_output: process(ctrl, fetch_engine, trap_ctrl, bus_fast_ir, execute_engine)
|
begin
|
begin
|
ctrl_o <= ctrl;
|
ctrl_o <= ctrl;
|
-- fast bus access requests --
|
-- fast bus access requests --
|
ctrl_o(ctrl_bus_if_c) <= ctrl(ctrl_bus_if_c) or bus_fast_ir;
|
ctrl_o(ctrl_bus_if_c) <= ctrl(ctrl_bus_if_c) or bus_fast_ir;
|
-- bus error control --
|
-- bus error control --
|
ctrl_o(ctrl_bus_ierr_ack_c) <= fetch_engine.bus_err_ack;
|
ctrl_o(ctrl_bus_ierr_ack_c) <= fetch_engine.bus_err_ack;
|
ctrl_o(ctrl_bus_derr_ack_c) <= trap_ctrl.env_start_ack;
|
ctrl_o(ctrl_bus_derr_ack_c) <= trap_ctrl.env_start_ack;
|
|
-- co-processor operation --
|
|
ctrl_o(ctrl_cp_cmd2_c downto ctrl_cp_cmd0_c) <= execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c);
|
end process ctrl_output;
|
end process ctrl_output;
|
|
|
|
|
-- Execute Engine FSM Comb ----------------------------------------------------------------
|
-- Execute Engine FSM Comb ----------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
execute_engine_fsm_comb: process(execute_engine, fetch_engine, ipb, trap_ctrl, csr, ctrl, csr_acc_valid,
|
execute_engine_fsm_comb: process(execute_engine, fetch_engine, ipb, trap_ctrl, csr, ctrl, csr_acc_valid,
|
alu_add_i, alu_wait_i, bus_d_wait_i, ma_load_i, be_load_i, ma_store_i, be_store_i)
|
alu_res_i, alu_wait_i, bus_d_wait_i, ma_load_i, be_load_i, ma_store_i, be_store_i)
|
variable alu_immediate_v : std_ulogic;
|
variable alu_immediate_v : std_ulogic;
|
variable rs1_is_r0_v : std_ulogic;
|
variable rs1_is_r0_v : std_ulogic;
|
begin
|
begin
|
-- arbiter defaults --
|
-- arbiter defaults --
|
execute_engine.state_nxt <= execute_engine.state;
|
execute_engine.state_nxt <= execute_engine.state;
|
execute_engine.i_reg_nxt <= execute_engine.i_reg;
|
execute_engine.i_reg_nxt <= execute_engine.i_reg;
|
execute_engine.is_jump_nxt <= '0';
|
execute_engine.is_jump_nxt <= '0';
|
|
execute_engine.is_cp_op_nxt <= execute_engine.is_cp_op;
|
execute_engine.is_ci_nxt <= execute_engine.is_ci;
|
execute_engine.is_ci_nxt <= execute_engine.is_ci;
|
execute_engine.pc_nxt <= execute_engine.pc;
|
execute_engine.pc_nxt <= execute_engine.pc;
|
execute_engine.last_pc_nxt <= execute_engine.last_pc;
|
execute_engine.last_pc_nxt <= execute_engine.last_pc;
|
execute_engine.sleep_nxt <= execute_engine.sleep;
|
execute_engine.sleep_nxt <= execute_engine.sleep;
|
execute_engine.if_rst_nxt <= execute_engine.if_rst;
|
execute_engine.if_rst_nxt <= execute_engine.if_rst;
|
Line 618... |
Line 627... |
ctrl_nxt(ctrl_alu_unsigned_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1); -- unsigned branches (BLTU, BGEU)
|
ctrl_nxt(ctrl_alu_unsigned_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1); -- unsigned branches (BLTU, BGEU)
|
end if;
|
end if;
|
ctrl_nxt(ctrl_bus_unsigned_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- unsigned LOAD (LBU, LHU)
|
ctrl_nxt(ctrl_bus_unsigned_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- unsigned LOAD (LBU, LHU)
|
ctrl_nxt(ctrl_alu_shift_dir_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- shift direction (left/right)
|
ctrl_nxt(ctrl_alu_shift_dir_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- shift direction (left/right)
|
ctrl_nxt(ctrl_alu_shift_ar_c) <= execute_engine.i_reg(30); -- is arithmetic shift
|
ctrl_nxt(ctrl_alu_shift_ar_c) <= execute_engine.i_reg(30); -- is arithmetic shift
|
ctrl_nxt(ctrl_cp_cmd2_c downto ctrl_cp_cmd0_c) <= execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c); -- CP operation
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_addsub_c; -- default ALU operation: ADD(I)
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- default ALU operation: ADD(I)
|
|
ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_muldiv_c; -- only CP0 (=MULDIV) implemented yet
|
ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_muldiv_c; -- only CP0 (=MULDIV) implemented yet
|
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ctrl(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c); -- keep rd addr
|
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ctrl(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c); -- keep rd addr
|
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ctrl(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- keep rs1 addr
|
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ctrl(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- keep rs1 addr
|
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ctrl(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- keep rs2 addr
|
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ctrl(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- keep rs2 addr
|
ctrl_nxt(ctrl_bus_size_msb_c downto ctrl_bus_size_lsb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c); -- mem transfer size
|
ctrl_nxt(ctrl_bus_size_msb_c downto ctrl_bus_size_lsb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c); -- mem transfer size
|
Line 697... |
Line 705... |
|
|
when opcode_alu_c | opcode_alui_c => -- (immediate) ALU operation
|
when opcode_alu_c | opcode_alui_c => -- (immediate) ALU operation
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPB for immediate operations
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPB for immediate operations
|
ctrl_nxt(ctrl_alu_opc_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPC for immediate operations (SLT(I)(U))
|
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
|
|
-- actual ALU operation (re-coding) --
|
-- cp access? --
|
case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is
|
if (CPU_EXTENSION_RISCV_M = true) and (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_alu_c(5)) and
|
|
(execute_engine.i_reg(instr_funct7_lsb_c) = '1') then -- MULDIV?
|
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_cp_c;
|
|
execute_engine.is_cp_op_nxt <= '1'; -- use CP
|
|
-- ALU operation --
|
|
else
|
|
case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is -- actual ALU operation (re-coding)
|
when funct3_sll_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c; -- SLL(I)
|
when funct3_sll_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c; -- SLL(I)
|
when funct3_slt_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_slt_c; -- SLT(I)
|
when funct3_slt_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_slt_c; -- SLT(I)
|
when funct3_sltu_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_slt_c; -- SLTU(I)
|
when funct3_sltu_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_slt_c; -- SLTU(I)
|
when funct3_xor_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_xor_c; -- XOR(I)
|
when funct3_xor_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_xor_c; -- XOR(I)
|
when funct3_sr_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c; -- SRL(I) / SRA(I)
|
when funct3_sr_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c; -- SRL(I) / SRA(I)
|
when funct3_or_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_or_c; -- OR(I)
|
when funct3_or_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_or_c; -- OR(I)
|
when funct3_and_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_and_c; -- AND(I)
|
when funct3_and_c => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_and_c; -- AND(I)
|
when others => -- ADD(I) / SUB
|
when others => ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_addsub_c; -- ADD(I) / SUB
|
if (alu_immediate_v = '0') and (execute_engine.i_reg(instr_funct7_msb_c-1) = '1') then -- not an immediate op and funct7.6 set => SUB
|
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_sub_c; -- SUB
|
|
else
|
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- ADD(I)
|
|
end if;
|
|
end case;
|
end case;
|
|
execute_engine.is_cp_op_nxt <= '0'; -- no CP operation
|
|
end if;
|
|
|
-- cp access? --
|
-- ADD/SUB --
|
if (CPU_EXTENSION_RISCV_M = true) and (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_alu_c(5)) and
|
if ((alu_immediate_v = '0') and (execute_engine.i_reg(instr_funct7_msb_c-1) = '1')) or -- not an immediate op and funct7.6 set => SUB
|
(execute_engine.i_reg(instr_funct7_lsb_c) = '1') then -- MULDIV?
|
(execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_slt_c) or -- SLT operation
|
ctrl_nxt(ctrl_cp_use_c) <= '1'; -- use CP
|
(execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sltu_c) then -- SLTU operation
|
|
ctrl_nxt(ctrl_alu_addsub_c) <= '1'; -- SUB/SLT
|
|
else
|
|
ctrl_nxt(ctrl_alu_addsub_c) <= '0'; -- ADD(I)
|
end if;
|
end if;
|
|
|
-- multi cycle alu operation? --
|
-- multi cycle alu operation? --
|
if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sll_c) or -- SLL shift operation?
|
if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sll_c) or -- SLL shift operation?
|
(execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sr_c) or -- SR shift operation?
|
(execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sr_c) or -- SR shift operation?
|
Line 740... |
Line 753... |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- ALU.OPA = PC (for AUIPC only)
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- ALU.OPA = PC (for AUIPC only)
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB
|
if (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_lui_c(5)) then -- LUI
|
if (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_lui_c(5)) then -- LUI
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_movb_c; -- actual ALU operation = MOVB
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_movb_c; -- actual ALU operation = MOVB
|
else -- AUIPC
|
else -- AUIPC
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- actual ALU operation = ADD
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_addsub_c; -- actual ALU operation = ADD
|
end if;
|
end if;
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back
|
execute_engine.state_nxt <= DISPATCH;
|
execute_engine.state_nxt <= DISPATCH;
|
|
|
when opcode_load_c | opcode_store_c => -- load/store
|
when opcode_load_c | opcode_store_c => -- load/store
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- actual ALU operation = ADD
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_addsub_c; -- actual ALU operation = ADD
|
ctrl_nxt(ctrl_bus_mar_we_c) <= '1'; -- write to MAR
|
ctrl_nxt(ctrl_bus_mar_we_c) <= '1'; -- write to MAR
|
ctrl_nxt(ctrl_bus_mdo_we_c) <= '1'; -- write to MDO (only relevant for stores)
|
ctrl_nxt(ctrl_bus_mdo_we_c) <= '1'; -- write to MDO (only relevant for stores)
|
execute_engine.state_nxt <= LOADSTORE_0;
|
execute_engine.state_nxt <= LOADSTORE_0;
|
|
|
when opcode_branch_c => -- branch instruction
|
when opcode_branch_c | opcode_jal_c | opcode_jalr_c => -- branch / jump and link (with register)
|
-- ------------------------------------------------------------
|
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA (branch target address base)
|
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB (branch target address offset)
|
|
ctrl_nxt(ctrl_alu_opc_mux_c) <= '0'; -- use RS2 as ALU.OPC (for branch condition check)
|
|
execute_engine.state_nxt <= BRANCH;
|
|
|
|
when opcode_jal_c | opcode_jalr_c => -- jump and link (with register)
|
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_addsub_c; -- actual ALU operation = ADD
|
-- compute target address --
|
-- compute target address --
|
if (execute_engine.i_reg(instr_opcode_lsb_c+3) = opcode_jal_c(3)) then -- JAL
|
if (execute_engine.i_reg(instr_opcode_lsb_c+3 downto instr_opcode_lsb_c+2) = opcode_jalr_c(3 downto 2)) then -- JALR
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA (branch target address base)
|
else -- JALR
|
else -- JAL / branch
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA
|
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA (branch target address base)
|
end if;
|
end if;
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB
|
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB (branch target address offset)
|
-- save return address --
|
-- save return address --
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "10"; -- RF input = next PC (save return address)
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "10"; -- RF input = next PC (save return address)
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back
|
ctrl_nxt(ctrl_rf_wb_en_c) <= execute_engine.i_reg(instr_opcode_lsb_c+2); -- valid RF write-back? (for JAL/JALR)
|
execute_engine.is_jump_nxt <= '1'; -- this is a jump operation
|
execute_engine.is_jump_nxt <= execute_engine.i_reg(instr_opcode_lsb_c+2); -- is this is a jump operation? (for JAL/JALR)
|
execute_engine.state_nxt <= BRANCH;
|
execute_engine.state_nxt <= BRANCH;
|
|
|
when opcode_fence_c => -- fence operations
|
when opcode_fence_c => -- fence operations
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
-- for simplicity: internally, fence and fence.i perform the same operations (flush and reload of instruction prefetch buffer)
|
-- for simplicity: internally, fence and fence.i perform the same operations (flush and reload of instruction prefetch buffer)
|
Line 838... |
Line 845... |
case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is
|
case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is
|
when funct3_csrrw_c | funct3_csrrwi_c => -- CSRRW(I)
|
when funct3_csrrw_c | funct3_csrrwi_c => -- CSRRW(I)
|
csr.we_nxt <= csr_acc_valid; -- always write CSR if valid access
|
csr.we_nxt <= csr_acc_valid; -- always write CSR if valid access
|
when funct3_csrrs_c | funct3_csrrsi_c | funct3_csrrc_c | funct3_csrrci_c => -- CSRRS(I) / CSRRC(I)
|
when funct3_csrrs_c | funct3_csrrsi_c | funct3_csrrc_c | funct3_csrrci_c => -- CSRRS(I) / CSRRC(I)
|
csr.we_nxt <= (not rs1_is_r0_v) and csr_acc_valid; -- write CSR if rs1/imm is not zero and if valid access
|
csr.we_nxt <= (not rs1_is_r0_v) and csr_acc_valid; -- write CSR if rs1/imm is not zero and if valid access
|
when others =>
|
when others => -- invalid
|
csr.we_nxt <= '0';
|
csr.we_nxt <= '0';
|
end case;
|
end case;
|
-- register file write back --
|
-- register file write back --
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "11"; -- RF input = CSR output
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "11"; -- RF input = CSR output
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back
|
execute_engine.state_nxt <= SYS_WAIT; -- have another cycle to let side-effects kick in (FIXME?)
|
execute_engine.state_nxt <= SYS_WAIT; -- have another cycle to let side-effects kick in (FIXME?)
|
|
|
when ALU_WAIT => -- wait for multi-cycle ALU operation (shifter or CP) to finish
|
when ALU_WAIT => -- wait for multi-cycle ALU operation (shifter or CP) to finish
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c;
|
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back (permanent write-back)
|
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back (permanent write-back)
|
-- cp access? --
|
-- cp access or alu shift? --
|
if (CPU_EXTENSION_RISCV_M = true) and (execute_engine.i_reg(instr_funct7_lsb_c) = '1') then -- MULDIV?
|
if (execute_engine.is_cp_op = '1') then
|
ctrl_nxt(ctrl_cp_use_c) <= '1'; -- use CP
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_cp_c;
|
|
else
|
|
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_shift_c;
|
end if;
|
end if;
|
-- wait for result --
|
-- wait for result --
|
if (alu_wait_i = '0') then
|
if (alu_wait_i = '0') then
|
execute_engine.state_nxt <= DISPATCH;
|
execute_engine.state_nxt <= DISPATCH;
|
end if;
|
end if;
|
|
|
when BRANCH => -- update PC for taken branches and jumps
|
when BRANCH => -- update PC for taken branches and jumps
|
-- ------------------------------------------------------------
|
-- ------------------------------------------------------------
|
if (execute_engine.is_jump = '1') or (execute_engine.branch_taken = '1') then
|
if (execute_engine.is_jump = '1') or (execute_engine.branch_taken = '1') then
|
execute_engine.pc_nxt <= alu_add_i; -- branch/jump destination
|
execute_engine.pc_nxt <= alu_res_i; -- branch/jump destination
|
fetch_engine.reset <= '1'; -- trigger new instruction fetch from modified PC
|
fetch_engine.reset <= '1'; -- trigger new instruction fetch from modified PC
|
execute_engine.if_rst_nxt <= '1'; -- this is a non-linear PC modification
|
execute_engine.if_rst_nxt <= '1'; -- this is a non-linear PC modification
|
execute_engine.state_nxt <= SYS_WAIT;
|
execute_engine.state_nxt <= SYS_WAIT;
|
else
|
else
|
execute_engine.state_nxt <= DISPATCH;
|
execute_engine.state_nxt <= DISPATCH;
|
Line 917... |
Line 925... |
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
invalid_csr_access_check: process(execute_engine.i_reg, csr.privilege)
|
invalid_csr_access_check: process(execute_engine.i_reg, csr.privilege)
|
variable is_m_mode_v : std_ulogic;
|
variable is_m_mode_v : std_ulogic;
|
begin
|
begin
|
-- are we in machine mode? --
|
-- are we in machine mode? --
|
if (csr.privilege = m_priv_mode_c) then
|
if (csr.privilege = priv_mode_m_c) then
|
is_m_mode_v := '1';
|
is_m_mode_v := '1';
|
else
|
else
|
is_m_mode_v := '0';
|
is_m_mode_v := '0';
|
end if;
|
end if;
|
|
|
-- check CSR access --
|
-- check CSR access --
|
case execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) is
|
case execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) is
|
when x"300" => csr_acc_valid <= is_m_mode_v; -- mstatus
|
when csr_mstatus_c => csr_acc_valid <= is_m_mode_v;
|
when x"301" => csr_acc_valid <= is_m_mode_v; -- misa
|
when csr_misa_c => csr_acc_valid <= is_m_mode_v;
|
when x"304" => csr_acc_valid <= is_m_mode_v; -- mie
|
when csr_mie_c => csr_acc_valid <= is_m_mode_v;
|
when x"305" => csr_acc_valid <= is_m_mode_v; -- mtvec
|
when csr_mtvec_c => csr_acc_valid <= is_m_mode_v;
|
when x"340" => csr_acc_valid <= is_m_mode_v; -- mscratch
|
when csr_mscratch_c => csr_acc_valid <= is_m_mode_v;
|
when x"341" => csr_acc_valid <= is_m_mode_v; -- mepc
|
when csr_mepc_c => csr_acc_valid <= is_m_mode_v;
|
when x"342" => csr_acc_valid <= is_m_mode_v; -- mcause
|
when csr_mcause_c => csr_acc_valid <= is_m_mode_v;
|
when x"343" => csr_acc_valid <= is_m_mode_v; -- mtval
|
when csr_mtval_c => csr_acc_valid <= is_m_mode_v;
|
when x"344" => csr_acc_valid <= is_m_mode_v; -- mip
|
when csr_mip_c => csr_acc_valid <= is_m_mode_v;
|
--
|
--
|
when x"3a0" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 1)) and is_m_mode_v; -- pmpacfg0
|
when csr_pmpcfg0_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 1)) and is_m_mode_v;
|
when x"3a1" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 5)) and is_m_mode_v; -- pmpacfg1
|
when csr_pmpcfg1_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 5)) and is_m_mode_v;
|
--
|
--
|
when x"3b0" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 1)) and is_m_mode_v; -- pmpaddr0
|
when csr_pmpaddr0_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 1)) and is_m_mode_v;
|
when x"3b1" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 2)) and is_m_mode_v; -- pmpaddr1
|
when csr_pmpaddr1_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 2)) and is_m_mode_v;
|
when x"3b2" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 3)) and is_m_mode_v; -- pmpaddr2
|
when csr_pmpaddr2_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 3)) and is_m_mode_v;
|
when x"3b3" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 4)) and is_m_mode_v; -- pmpaddr3
|
when csr_pmpaddr3_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 4)) and is_m_mode_v;
|
when x"3b4" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 5)) and is_m_mode_v; -- pmpaddr4
|
when csr_pmpaddr4_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 5)) and is_m_mode_v;
|
when x"3b5" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 6)) and is_m_mode_v; -- pmpaddr5
|
when csr_pmpaddr5_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 6)) and is_m_mode_v;
|
when x"3b6" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 7)) and is_m_mode_v; -- pmpaddr6
|
when csr_pmpaddr6_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 7)) and is_m_mode_v;
|
when x"3b7" => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 8)) and is_m_mode_v; -- pmpaddr7
|
when csr_pmpaddr7_c => csr_acc_valid <= bool_to_ulogic_f(PMP_USE) and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS >= 8)) and is_m_mode_v;
|
--
|
--
|
when x"c00" => csr_acc_valid <= '1'; -- cycle
|
when csr_mcycle_c => csr_acc_valid <= is_m_mode_v;
|
when x"c01" => csr_acc_valid <= '1'; -- time
|
when csr_minstret_c => csr_acc_valid <= is_m_mode_v;
|
when x"c02" => csr_acc_valid <= '1'; -- instret
|
--
|
when x"c80" => csr_acc_valid <= '1'; -- cycleh
|
when csr_mcycleh_c => csr_acc_valid <= is_m_mode_v;
|
when x"c81" => csr_acc_valid <= '1'; -- timeh
|
when csr_minstreth_c => csr_acc_valid <= is_m_mode_v;
|
when x"c82" => csr_acc_valid <= '1'; -- instreth
|
--
|
--
|
when csr_cycle_c => csr_acc_valid <= '1';
|
when x"b00" => csr_acc_valid <= is_m_mode_v; -- mcycle
|
when csr_time_c => csr_acc_valid <= '1';
|
when x"b02" => csr_acc_valid <= is_m_mode_v; -- minstret
|
when csr_instret_c => csr_acc_valid <= '1';
|
when x"b80" => csr_acc_valid <= is_m_mode_v; -- mcycleh
|
--
|
when x"b82" => csr_acc_valid <= is_m_mode_v; -- minstreth
|
when csr_cycleh_c => csr_acc_valid <= '1';
|
--
|
when csr_timeh_c => csr_acc_valid <= '1';
|
when x"f11" => csr_acc_valid <= is_m_mode_v; -- mvendorid
|
when csr_instreth_c => csr_acc_valid <= '1';
|
when x"f12" => csr_acc_valid <= is_m_mode_v; -- marchid
|
--
|
when x"f13" => csr_acc_valid <= is_m_mode_v; -- mimpid
|
when csr_mvendorid_c => csr_acc_valid <= is_m_mode_v;
|
when x"f14" => csr_acc_valid <= is_m_mode_v; -- mhartid
|
when csr_marchid_c => csr_acc_valid <= is_m_mode_v;
|
|
when csr_mimpid_c => csr_acc_valid <= is_m_mode_v;
|
|
when csr_mhartid_c => csr_acc_valid <= is_m_mode_v;
|
--
|
--
|
when x"fc0" => csr_acc_valid <= is_m_mode_v; -- mzext (custom CSR)
|
when csr_mzext_c => csr_acc_valid <= is_m_mode_v;
|
--
|
--
|
when others => csr_acc_valid <= '0'; -- undefined, invalid access
|
when others => csr_acc_valid <= '0'; -- undefined, invalid access
|
end case;
|
end case;
|
end process invalid_csr_access_check;
|
end process invalid_csr_access_check;
|
|
|
Line 1193... |
Line 1203... |
((execute_engine.state = EXECUTE) or (execute_engine.state = TRAP))) then -- sample IRQs in EXECUTE or TRAP state only -> continue execution even if permanent IRQ
|
((execute_engine.state = EXECUTE) or (execute_engine.state = TRAP))) then -- sample IRQs in EXECUTE or TRAP state only -> continue execution even if permanent IRQ
|
trap_ctrl.cause <= trap_ctrl.cause_nxt; -- capture source ID for program (for mcause csr)
|
trap_ctrl.cause <= trap_ctrl.cause_nxt; -- capture source ID for program (for mcause csr)
|
trap_ctrl.exc_ack <= '1'; -- clear execption
|
trap_ctrl.exc_ack <= '1'; -- clear execption
|
trap_ctrl.irq_ack <= trap_ctrl.irq_ack_nxt; -- capture and clear with interrupt ACK mask
|
trap_ctrl.irq_ack <= trap_ctrl.irq_ack_nxt; -- capture and clear with interrupt ACK mask
|
trap_ctrl.env_start <= '1'; -- now execute engine can start trap handler
|
trap_ctrl.env_start <= '1'; -- now execute engine can start trap handler
|
-- assert false report "NEORV32.CPU TRAP: mcause=" & integer'image(to_integer(unsigned(trap_ctrl.cause_nxt))) severity note; -- for debugging
|
|
end if;
|
end if;
|
else -- trap waiting to get started
|
else -- trap waiting to get started
|
if (trap_ctrl.env_start_ack = '1') then -- start of trap handler acknowledged by execution engine
|
if (trap_ctrl.env_start_ack = '1') then -- start of trap handler acknowledged by execution engine
|
trap_ctrl.exc_ack <= '0';
|
trap_ctrl.exc_ack <= '0';
|
trap_ctrl.irq_ack <= (others => '0');
|
trap_ctrl.irq_ack <= (others => '0');
|
Line 1317... |
Line 1326... |
|
|
-- Control and Status Registers Write Data ------------------------------------------------
|
-- Control and Status Registers Write Data ------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
csr_write_data: process(execute_engine.i_reg, csr.rdata, alu_res_i)
|
csr_write_data: process(execute_engine.i_reg, csr.rdata, alu_res_i)
|
begin
|
begin
|
|
-- "mini ALU" for CSR update operations --
|
case execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c) is
|
case execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c) is
|
when "10" => csr.wdata <= csr.rdata or alu_res_i; -- CSRRS(I)
|
when "10" => csr.wdata <= csr.rdata or alu_res_i; -- CSRRS(I)
|
when "11" => csr.wdata <= csr.rdata and (not alu_res_i); -- CSRRC(I)
|
when "11" => csr.wdata <= csr.rdata and (not alu_res_i); -- CSRRC(I)
|
when others => csr.wdata <= alu_res_i; -- CSRRW(I)
|
when others => csr.wdata <= alu_res_i; -- CSRRW(I)
|
end case;
|
end case;
|
Line 1331... |
Line 1341... |
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
csr_write_access: process(rstn_i, clk_i)
|
csr_write_access: process(rstn_i, clk_i)
|
begin
|
begin
|
if (rstn_i = '0') then
|
if (rstn_i = '0') then
|
csr.we <= '0';
|
csr.we <= '0';
|
csr.re <= '0';
|
|
--
|
--
|
csr.mstatus_mie <= '0';
|
csr.mstatus_mie <= '0';
|
csr.mstatus_mpie <= '0';
|
csr.mstatus_mpie <= '0';
|
|
csr.mstatus_mpp <= priv_mode_m_c; -- start in MACHINE mode
|
|
csr.privilege <= priv_mode_m_c; -- start in MACHINE mode
|
csr.mie_msie <= '0';
|
csr.mie_msie <= '0';
|
csr.mie_meie <= '0';
|
csr.mie_meie <= '0';
|
csr.mie_mtie <= '0';
|
csr.mie_mtie <= '0';
|
csr.mie_firqe <= (others => '0');
|
csr.mie_firqe <= (others => '0');
|
csr.mtvec <= (others => '0');
|
csr.mtvec <= (others => '0');
|
csr.mscratch <= (others => '0');
|
csr.mscratch <= (others => '0');
|
csr.mepc <= (others => '0');
|
csr.mepc <= (others => '0');
|
csr.mcause <= (others => '0');
|
csr.mcause <= (others => '0');
|
csr.mtval <= (others => '0');
|
csr.mtval <= (others => '0');
|
csr.mpp <= m_priv_mode_c; -- start in MACHINE mode
|
|
csr.privilege <= m_priv_mode_c; -- start in MACHINE mode
|
|
csr.pmpcfg <= (others => (others => '0'));
|
csr.pmpcfg <= (others => (others => '0'));
|
csr.pmpaddr <= (others => (others => '0'));
|
csr.pmpaddr <= (others => (others => '0'));
|
elsif rising_edge(clk_i) then
|
elsif rising_edge(clk_i) then
|
if (CPU_EXTENSION_RISCV_Zicsr = true) then
|
|
-- access --
|
-- write access? --
|
csr.we <= csr.we_nxt;
|
csr.we <= csr.we_nxt;
|
csr.re <= csr.re_nxt;
|
|
|
|
-- registers that can be modified by user --
|
-- --------------------------------------------------------------------------------
|
if (csr.we = '1') then -- manual update
|
-- CSRs that can be written by application software only
|
|
-- --------------------------------------------------------------------------------
|
|
if (CPU_EXTENSION_RISCV_Zicsr = true) and (csr.we = '1') then -- manual update
|
|
|
|
-- machine CSRs --
|
|
if (execute_engine.i_reg(31 downto 28) = csr_mie_c(11 downto 8)) then
|
|
|
-- Machine CSRs --
|
|
if (execute_engine.i_reg(31 downto 28) = x"3") then
|
|
-- machine trap setup --
|
-- machine trap setup --
|
if (execute_engine.i_reg(27 downto 24) = x"0") then
|
if (execute_engine.i_reg(27 downto 24) = csr_mie_c(7 downto 4)) then
|
case execute_engine.i_reg(23 downto 20) is
|
if (execute_engine.i_reg(23 downto 20) = csr_mie_c(3 downto 0)) then -- R/W: mie - machine interrupt-enable register
|
when x"0" => -- R/W: mstatus - machine status register
|
|
csr.mstatus_mie <= csr.wdata(03);
|
|
csr.mstatus_mpie <= csr.wdata(07);
|
|
--
|
|
if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented
|
|
csr.mpp(0) <= csr.wdata(11) and csr.wdata(12);
|
|
csr.mpp(1) <= csr.wdata(11) and csr.wdata(12);
|
|
end if;
|
|
when x"4" => -- R/W: mie - machine interrupt-enable register
|
|
csr.mie_msie <= csr.wdata(03); -- machine SW IRQ enable
|
csr.mie_msie <= csr.wdata(03); -- machine SW IRQ enable
|
csr.mie_mtie <= csr.wdata(07); -- machine TIMER IRQ enable
|
csr.mie_mtie <= csr.wdata(07); -- machine TIMER IRQ enable
|
csr.mie_meie <= csr.wdata(11); -- machine EXT IRQ enable
|
csr.mie_meie <= csr.wdata(11); -- machine EXT IRQ enable
|
--
|
--
|
csr.mie_firqe(0) <= csr.wdata(16); -- fast interrupt channel 0
|
csr.mie_firqe(0) <= csr.wdata(16); -- fast interrupt channel 0
|
csr.mie_firqe(1) <= csr.wdata(17); -- fast interrupt channel 1
|
csr.mie_firqe(1) <= csr.wdata(17); -- fast interrupt channel 1
|
csr.mie_firqe(2) <= csr.wdata(18); -- fast interrupt channel 2
|
csr.mie_firqe(2) <= csr.wdata(18); -- fast interrupt channel 2
|
csr.mie_firqe(3) <= csr.wdata(19); -- fast interrupt channel 3
|
csr.mie_firqe(3) <= csr.wdata(19); -- fast interrupt channel 3
|
when x"5" => -- R/W: mtvec - machine trap-handler base address (for ALL exceptions)
|
end if;
|
|
if (execute_engine.i_reg(23 downto 20) = csr_mtvec_c(3 downto 0)) then -- R/W: mtvec - machine trap-handler base address (for ALL exceptions)
|
csr.mtvec <= csr.wdata(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0
|
csr.mtvec <= csr.wdata(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0
|
when others =>
|
|
NULL;
|
|
end case;
|
|
end if;
|
end if;
|
|
end if;
|
|
|
-- machine trap handling --
|
-- machine trap handling --
|
if (execute_engine.i_reg(27 downto 24) = x"4") then
|
if (execute_engine.i_reg(27 downto 20) = csr_mscratch_c(7 downto 0)) then -- R/W: mscratch - machine scratch register
|
case execute_engine.i_reg(23 downto 20) is
|
|
when x"0" => -- R/W: mscratch - machine scratch register
|
|
csr.mscratch <= csr.wdata;
|
csr.mscratch <= csr.wdata;
|
when x"1" => -- R/W: mepc - machine exception program counter
|
|
csr.mepc <= csr.wdata(data_width_c-1 downto 1) & '0';
|
|
when x"3" => -- R/W: mtval - machine bad address or instruction
|
|
csr.mtval <= csr.wdata;
|
|
when others =>
|
|
NULL;
|
|
end case;
|
|
end if;
|
end if;
|
|
|
-- machine physical memory protection (pmp) --
|
-- machine physical memory protection (pmp) --
|
if (PMP_USE = true) then
|
if (PMP_USE = true) then
|
-- pmpcfg --
|
-- pmpcfg --
|
if (execute_engine.i_reg(27 downto 24) = x"a") then
|
if (execute_engine.i_reg(27 downto 24) = csr_pmpcfg0_c(7 downto 4)) then
|
if (PMP_NUM_REGIONS >= 1) then
|
if (PMP_NUM_REGIONS >= 1) then
|
if (execute_engine.i_reg(23 downto 20) = x"0") then -- pmpcfg0
|
if (execute_engine.i_reg(23 downto 20) = csr_pmpcfg0_c(3 downto 0)) then -- pmpcfg0
|
for j in 0 to 3 loop -- bytes in pmpcfg CSR
|
for j in 0 to 3 loop -- bytes in pmpcfg CSR
|
if ((j+1) <= PMP_NUM_REGIONS) then
|
if ((j+1) <= PMP_NUM_REGIONS) then
|
if (csr.pmpcfg(0+j)(7) = '0') then -- unlocked pmpcfg access
|
if (csr.pmpcfg(0+j)(7) = '0') then -- unlocked pmpcfg access
|
csr.pmpcfg(0+j)(0) <= csr.wdata(j*8+0); -- R
|
csr.pmpcfg(0+j)(0) <= csr.wdata(j*8+0); -- R
|
csr.pmpcfg(0+j)(1) <= csr.wdata(j*8+1); -- W
|
csr.pmpcfg(0+j)(1) <= csr.wdata(j*8+1); -- W
|
Line 1421... |
Line 1415... |
end if;
|
end if;
|
end loop; -- j (bytes in CSR)
|
end loop; -- j (bytes in CSR)
|
end if;
|
end if;
|
end if;
|
end if;
|
if (PMP_NUM_REGIONS >= 5) then
|
if (PMP_NUM_REGIONS >= 5) then
|
if (execute_engine.i_reg(23 downto 20) = x"1") then -- pmpcfg1
|
if (execute_engine.i_reg(23 downto 20) = csr_pmpcfg1_c(3 downto 0)) then -- pmpcfg1
|
for j in 0 to 3 loop -- bytes in pmpcfg CSR
|
for j in 0 to 3 loop -- bytes in pmpcfg CSR
|
if ((j+1+4) <= PMP_NUM_REGIONS) then
|
if ((j+1+4) <= PMP_NUM_REGIONS) then
|
if (csr.pmpcfg(4+j)(7) = '0') then -- unlocked pmpcfg access
|
if (csr.pmpcfg(4+j)(7) = '0') then -- unlocked pmpcfg access
|
csr.pmpcfg(4+j)(0) <= csr.wdata(j*8+0); -- R
|
csr.pmpcfg(4+j)(0) <= csr.wdata(j*8+0); -- R
|
csr.pmpcfg(4+j)(1) <= csr.wdata(j*8+1); -- W
|
csr.pmpcfg(4+j)(1) <= csr.wdata(j*8+1); -- W
|
Line 1440... |
Line 1434... |
end loop; -- j (bytes in CSR)
|
end loop; -- j (bytes in CSR)
|
end if;
|
end if;
|
end if;
|
end if;
|
end if;
|
end if;
|
-- pmpaddr --
|
-- pmpaddr --
|
if (execute_engine.i_reg(27 downto 24) = x"b") then
|
if (execute_engine.i_reg(27 downto 24) = csr_pmpaddr0_c(7 downto 4)) then
|
for i in 0 to PMP_NUM_REGIONS-1 loop
|
for i in 0 to PMP_NUM_REGIONS-1 loop
|
if (execute_engine.i_reg(23 downto 20) = std_ulogic_vector(to_unsigned(i, 4))) and (csr.pmpcfg(i)(7) = '0') then -- unlocked pmpaddr access
|
if (execute_engine.i_reg(23 downto 20) = std_ulogic_vector(to_unsigned(i, 4))) and (csr.pmpcfg(i)(7) = '0') then -- unlocked pmpaddr access
|
csr.pmpaddr(i) <= csr.wdata(31 downto 1) & '0'; -- min granularity is 8 bytes -> bit zero cannot be configured
|
csr.pmpaddr(i) <= csr.wdata(31 downto 1) & '0'; -- min granularity is 8 bytes -> bit zero cannot be configured
|
end if;
|
end if;
|
end loop; -- i (CSRs)
|
end loop; -- i (CSRs)
|
end if;
|
end if;
|
end if; -- implement PMP at all?
|
end if; -- implement PMP at all?
|
end if;
|
end if;
|
|
|
-- automatic update by hardware --
|
end if;
|
else
|
|
|
-- --------------------------------------------------------------------------------
|
|
-- CSRs that can be written by application and hardware (application access)
|
|
-- --------------------------------------------------------------------------------
|
|
if (CPU_EXTENSION_RISCV_Zicsr = true) and (csr.we = '1') then -- manual update
|
|
|
|
-- machine CSRs --
|
|
if (execute_engine.i_reg(31 downto 28) = csr_mstatus_c(11 downto 8)) then
|
|
|
|
-- machine trap setup --
|
|
if (execute_engine.i_reg(27 downto 20) = csr_mstatus_c(7 downto 0)) then -- R/W: mstatus - machine status register
|
|
csr.mstatus_mie <= csr.wdata(03);
|
|
csr.mstatus_mpie <= csr.wdata(07);
|
|
--
|
|
if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented
|
|
csr.mstatus_mpp(0) <= csr.wdata(11) or csr.wdata(12);
|
|
csr.mstatus_mpp(1) <= csr.wdata(11) or csr.wdata(12);
|
|
end if;
|
|
end if;
|
|
|
|
-- machine trap handling --
|
|
if (execute_engine.i_reg(27 downto 24) = csr_mepc_c(7 downto 4)) then
|
|
if (execute_engine.i_reg(23 downto 20) = csr_mepc_c(3 downto 0)) then -- R/W: mepc - machine exception program counter
|
|
csr.mepc <= csr.wdata(data_width_c-1 downto 1) & '0';
|
|
end if;
|
|
if (execute_engine.i_reg(23 downto 20) = csr_mtval_c(3 downto 0)) then -- R/W: mtval - machine bad address or instruction
|
|
csr.mtval <= csr.wdata;
|
|
end if;
|
|
end if;
|
|
|
|
end if;
|
|
|
-- machine exception PC & machine trap value register --
|
-- --------------------------------------------------------------------------------
|
|
-- CSRs that can be written by application and hardware (hardware access)
|
|
-- --------------------------------------------------------------------------------
|
|
else -- hardware update
|
|
|
|
-- mepc & mtval: machine exception PC & machine trap value register --
|
if (trap_ctrl.env_start_ack = '1') then -- trap handler starting?
|
if (trap_ctrl.env_start_ack = '1') then -- trap handler starting?
|
-- trap ID code --
|
|
csr.mcause <= (others => '0');
|
|
csr.mcause(csr.mcause'left) <= trap_ctrl.cause(trap_ctrl.cause'left); -- 1: interrupt, 0: exception
|
|
csr.mcause(4 downto 0) <= trap_ctrl.cause(4 downto 0); -- identifier
|
|
if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS (is mcause(31))
|
if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS (is mcause(31))
|
csr.mepc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- this is the CURRENT pc = interrupted instruction
|
csr.mepc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- this is the CURRENT pc = interrupted instruction
|
csr.mtval <= (others => '0'); -- mtval is zero for interrupts
|
csr.mtval <= (others => '0'); -- mtval is zero for interrupts
|
else -- for EXCEPTIONS (according to their priority)
|
else -- for EXCEPTIONS (according to their priority)
|
csr.mepc <= execute_engine.last_pc(data_width_c-1 downto 1) & '0'; -- this is the LAST pc = last executed instruction
|
csr.mepc <= execute_engine.last_pc(data_width_c-1 downto 1) & '0'; -- this is the LAST pc = last executed instruction
|
Line 1477... |
Line 1502... |
csr.mtval <= mar_i; -- faulting data access address
|
csr.mtval <= mar_i; -- faulting data access address
|
end if;
|
end if;
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
-- context switch in mstatus --
|
-- mstatus: context switch --
|
if (trap_ctrl.env_start_ack = '1') then -- ENTER: trap handler starting?
|
if (trap_ctrl.env_start_ack = '1') then -- ENTER: trap handler starting?
|
csr.mstatus_mie <= '0'; -- disable interrupts
|
csr.mstatus_mie <= '0'; -- disable interrupts
|
csr.mstatus_mpie <= csr.mstatus_mie; -- buffer previous mie state
|
csr.mstatus_mpie <= csr.mstatus_mie; -- buffer previous mie state
|
if (CPU_EXTENSION_RISCV_U = true) then -- implement user mode
|
if (CPU_EXTENSION_RISCV_U = true) then -- implement user mode
|
csr.privilege <= m_priv_mode_c; -- execute trap in machine mode
|
csr.privilege <= priv_mode_m_c; -- execute trap in machine mode
|
csr.mpp <= csr.privilege; -- buffer previous privilege mode
|
csr.mstatus_mpp <= csr.privilege; -- buffer previous privilege mode
|
end if;
|
end if;
|
elsif (trap_ctrl.env_end = '1') then -- EXIT: return from exception
|
elsif (trap_ctrl.env_end = '1') then -- EXIT: return from exception
|
csr.mstatus_mie <= csr.mstatus_mpie; -- restore global IRQ enable flag
|
csr.mstatus_mie <= csr.mstatus_mpie; -- restore global IRQ enable flag
|
csr.mstatus_mpie <= '1';
|
csr.mstatus_mpie <= '1';
|
if (CPU_EXTENSION_RISCV_U = true) then -- implement user mode
|
if (CPU_EXTENSION_RISCV_U = true) then -- implement user mode
|
csr.privilege <= csr.mpp; -- go back to previous privilege mode
|
csr.privilege <= csr.mstatus_mpp; -- go back to previous privilege mode
|
csr.mpp <= u_priv_mode_c;
|
csr.mstatus_mpp <= priv_mode_u_c;
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
-- user mode NOT implemented --
|
-- user mode NOT implemented --
|
if (CPU_EXTENSION_RISCV_U = false) then -- implement user mode
|
if (CPU_EXTENSION_RISCV_U = false) then
|
csr.privilege <= m_priv_mode_c;
|
csr.privilege <= priv_mode_m_c;
|
csr.mpp <= m_priv_mode_c;
|
csr.mstatus_mpp <= priv_mode_m_c;
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
|
-- --------------------------------------------------------------------------------
|
|
-- CSRs that can be written by hardware only
|
|
-- --------------------------------------------------------------------------------
|
|
|
|
-- mcause
|
|
if (trap_ctrl.env_start_ack = '1') then -- trap handler starting?
|
|
-- trap ID code --
|
|
csr.mcause <= (others => '0');
|
|
csr.mcause(csr.mcause'left) <= trap_ctrl.cause(trap_ctrl.cause'left); -- 1: interrupt, 0: exception
|
|
csr.mcause(4 downto 0) <= trap_ctrl.cause(4 downto 0); -- identifier
|
end if;
|
end if;
|
|
|
end if;
|
end if;
|
end process csr_write_access;
|
end process csr_write_access;
|
|
|
|
|
-- Control and Status Registers Read Access -----------------------------------------------
|
-- Control and Status Registers Read Access -----------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
csr_read_access: process(clk_i)
|
csr_read_access: process(clk_i)
|
begin
|
begin
|
if rising_edge(clk_i) then
|
if rising_edge(clk_i) then
|
csr.rdata <= (others => '0'); -- default
|
csr.rdata <= (others => '0'); -- default
|
|
csr.re <= csr.re_nxt; -- read access?
|
if (CPU_EXTENSION_RISCV_Zicsr = true) and (csr.re = '1') then
|
if (CPU_EXTENSION_RISCV_Zicsr = true) and (csr.re = '1') then
|
case execute_engine.i_reg(31 downto 20) is
|
case execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) is
|
|
|
-- machine trap setup --
|
-- machine trap setup --
|
when x"300" => -- R/W: mstatus - machine status register
|
when csr_mstatus_c => -- R/W: mstatus - machine status register
|
csr.rdata(03) <= csr.mstatus_mie; -- MIE
|
csr.rdata(03) <= csr.mstatus_mie; -- MIE
|
csr.rdata(07) <= csr.mstatus_mpie; -- MPIE
|
csr.rdata(07) <= csr.mstatus_mpie; -- MPIE
|
csr.rdata(11) <= csr.mpp(0); -- MPP: machine previous privilege mode low
|
csr.rdata(11) <= csr.mstatus_mpp(0); -- MPP: machine previous privilege mode low
|
csr.rdata(12) <= csr.mpp(1); -- MPP: machine previous privilege mode high
|
csr.rdata(12) <= csr.mstatus_mpp(1); -- MPP: machine previous privilege mode high
|
when x"301" => -- R/-: misa - ISA and extensions
|
when csr_misa_c => -- R/-: misa - ISA and extensions
|
csr.rdata(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_C); -- C CPU extension
|
csr.rdata(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_C); -- C CPU extension
|
csr.rdata(04) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- E CPU extension
|
csr.rdata(04) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- E CPU extension
|
csr.rdata(08) <= not bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- I CPU extension (if not E)
|
csr.rdata(08) <= not bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- I CPU extension (if not E)
|
csr.rdata(12) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_M); -- M CPU extension
|
csr.rdata(12) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_M); -- M CPU extension
|
csr.rdata(20) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- U CPU extension
|
csr.rdata(20) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- U CPU extension
|
csr.rdata(23) <= '1'; -- X CPU extension (non-std extensions)
|
csr.rdata(23) <= '1'; -- X CPU extension (non-std extensions)
|
csr.rdata(30) <= '1'; -- 32-bit architecture (MXL lo)
|
csr.rdata(30) <= '1'; -- 32-bit architecture (MXL lo)
|
csr.rdata(31) <= '0'; -- 32-bit architecture (MXL hi)
|
csr.rdata(31) <= '0'; -- 32-bit architecture (MXL hi)
|
when x"304" => -- R/W: mie - machine interrupt-enable register
|
when csr_mie_c => -- R/W: mie - machine interrupt-enable register
|
csr.rdata(03) <= csr.mie_msie; -- machine software IRQ enable
|
csr.rdata(03) <= csr.mie_msie; -- machine software IRQ enable
|
csr.rdata(07) <= csr.mie_mtie; -- machine timer IRQ enable
|
csr.rdata(07) <= csr.mie_mtie; -- machine timer IRQ enable
|
csr.rdata(11) <= csr.mie_meie; -- machine external IRQ enable
|
csr.rdata(11) <= csr.mie_meie; -- machine external IRQ enable
|
--
|
--
|
csr.rdata(16) <= csr.mie_firqe(0); -- fast interrupt channel 0
|
csr.rdata(16) <= csr.mie_firqe(0); -- fast interrupt channel 0
|
csr.rdata(17) <= csr.mie_firqe(1); -- fast interrupt channel 1
|
csr.rdata(17) <= csr.mie_firqe(1); -- fast interrupt channel 1
|
csr.rdata(18) <= csr.mie_firqe(2); -- fast interrupt channel 2
|
csr.rdata(18) <= csr.mie_firqe(2); -- fast interrupt channel 2
|
csr.rdata(19) <= csr.mie_firqe(3); -- fast interrupt channel 3
|
csr.rdata(19) <= csr.mie_firqe(3); -- fast interrupt channel 3
|
when x"305" => -- R/W: mtvec - machine trap-handler base address (for ALL exceptions)
|
when csr_mtvec_c => -- R/W: mtvec - machine trap-handler base address (for ALL exceptions)
|
csr.rdata <= csr.mtvec(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0
|
csr.rdata <= csr.mtvec(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0
|
|
|
-- machine trap handling --
|
-- machine trap handling --
|
when x"340" => -- R/W: mscratch - machine scratch register
|
when csr_mscratch_c => -- R/W: mscratch - machine scratch register
|
csr.rdata <= csr.mscratch;
|
csr.rdata <= csr.mscratch;
|
when x"341" => -- R/W: mepc - machine exception program counter
|
when csr_mepc_c => -- R/W: mepc - machine exception program counter
|
csr.rdata <= csr.mepc(data_width_c-1 downto 1) & '0';
|
csr.rdata <= csr.mepc(data_width_c-1 downto 1) & '0';
|
when x"342" => -- R/-: mcause - machine trap cause
|
when csr_mcause_c => -- R/-: mcause - machine trap cause
|
csr.rdata <= csr.mcause;
|
csr.rdata <= csr.mcause;
|
when x"343" => -- R/W: mtval - machine bad address or instruction
|
when csr_mtval_c => -- R/W: mtval - machine bad address or instruction
|
csr.rdata <= csr.mtval;
|
csr.rdata <= csr.mtval;
|
when x"344" => -- R/W: mip - machine interrupt pending
|
when csr_mip_c => -- R/W: mip - machine interrupt pending
|
csr.rdata(03) <= trap_ctrl.irq_buf(interrupt_msw_irq_c);
|
csr.rdata(03) <= trap_ctrl.irq_buf(interrupt_msw_irq_c);
|
csr.rdata(07) <= trap_ctrl.irq_buf(interrupt_mtime_irq_c);
|
csr.rdata(07) <= trap_ctrl.irq_buf(interrupt_mtime_irq_c);
|
csr.rdata(11) <= trap_ctrl.irq_buf(interrupt_mext_irq_c);
|
csr.rdata(11) <= trap_ctrl.irq_buf(interrupt_mext_irq_c);
|
--
|
--
|
csr.rdata(16) <= trap_ctrl.irq_buf(interrupt_firq_0_c);
|
csr.rdata(16) <= trap_ctrl.irq_buf(interrupt_firq_0_c);
|
csr.rdata(17) <= trap_ctrl.irq_buf(interrupt_firq_1_c);
|
csr.rdata(17) <= trap_ctrl.irq_buf(interrupt_firq_1_c);
|
csr.rdata(18) <= trap_ctrl.irq_buf(interrupt_firq_2_c);
|
csr.rdata(18) <= trap_ctrl.irq_buf(interrupt_firq_2_c);
|
csr.rdata(19) <= trap_ctrl.irq_buf(interrupt_firq_3_c);
|
csr.rdata(19) <= trap_ctrl.irq_buf(interrupt_firq_3_c);
|
|
|
-- physical memory protection --
|
-- physical memory protection --
|
when x"3a0" => -- R/W: pmpcfg0 - physical memory protection configuration register 0
|
when csr_pmpcfg0_c => -- R/W: pmpcfg0 - physical memory protection configuration register 0
|
if (PMP_USE = true) then
|
if (PMP_USE = true) then
|
if (PMP_NUM_REGIONS >= 1) then
|
if (PMP_NUM_REGIONS >= 1) then
|
csr.rdata(07 downto 00) <= csr.pmpcfg(0);
|
csr.rdata(07 downto 00) <= csr.pmpcfg(0);
|
end if;
|
end if;
|
if (PMP_NUM_REGIONS >= 2) then
|
if (PMP_NUM_REGIONS >= 2) then
|
Line 1576... |
Line 1613... |
end if;
|
end if;
|
if (PMP_NUM_REGIONS >= 4) then
|
if (PMP_NUM_REGIONS >= 4) then
|
csr.rdata(31 downto 24) <= csr.pmpcfg(3);
|
csr.rdata(31 downto 24) <= csr.pmpcfg(3);
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3a1" => -- R/W: pmpcfg1 - physical memory protection configuration register 1
|
when csr_pmpcfg1_c => -- R/W: pmpcfg1 - physical memory protection configuration register 1
|
if (PMP_USE = true) then
|
if (PMP_USE = true) then
|
if (PMP_NUM_REGIONS >= 5) then
|
if (PMP_NUM_REGIONS >= 5) then
|
csr.rdata(07 downto 00) <= csr.pmpcfg(4);
|
csr.rdata(07 downto 00) <= csr.pmpcfg(4);
|
end if;
|
end if;
|
if (PMP_NUM_REGIONS >= 6) then
|
if (PMP_NUM_REGIONS >= 6) then
|
Line 1592... |
Line 1629... |
if (PMP_NUM_REGIONS >= 8) then
|
if (PMP_NUM_REGIONS >= 8) then
|
csr.rdata(31 downto 24) <= csr.pmpcfg(7);
|
csr.rdata(31 downto 24) <= csr.pmpcfg(7);
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
when x"3b0" => -- R/W: pmpaddr0 - physical memory protection address register 0
|
when csr_pmpaddr0_c => -- R/W: pmpaddr0 - physical memory protection address register 0
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 1) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 1) then
|
csr.rdata <= csr.pmpaddr(0);
|
csr.rdata <= csr.pmpaddr(0);
|
if (csr.pmpcfg(0)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(0)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b1" => -- R/W: pmpaddr1 - physical memory protection address register 1
|
when csr_pmpaddr1_c => -- R/W: pmpaddr1 - physical memory protection address register 1
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 2) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 2) then
|
csr.rdata <= csr.pmpaddr(1);
|
csr.rdata <= csr.pmpaddr(1);
|
if (csr.pmpcfg(1)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(1)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b2" => -- R/W: pmpaddr2 - physical memory protection address register 2
|
when csr_pmpaddr2_c => -- R/W: pmpaddr2 - physical memory protection address register 2
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 3) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 3) then
|
csr.rdata <= csr.pmpaddr(2);
|
csr.rdata <= csr.pmpaddr(2);
|
if (csr.pmpcfg(2)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(2)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b3" => -- R/W: pmpaddr3 - physical memory protection address register 3
|
when csr_pmpaddr3_c => -- R/W: pmpaddr3 - physical memory protection address register 3
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 4) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 4) then
|
csr.rdata <= csr.pmpaddr(3);
|
csr.rdata <= csr.pmpaddr(3);
|
if (csr.pmpcfg(3)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(3)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b4" => -- R/W: pmpaddr4 - physical memory protection address register 4
|
when csr_pmpaddr4_c => -- R/W: pmpaddr4 - physical memory protection address register 4
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 5) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 5) then
|
csr.rdata <= csr.pmpaddr(4);
|
csr.rdata <= csr.pmpaddr(4);
|
if (csr.pmpcfg(4)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(4)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b5" => -- R/W: pmpaddr5 - physical memory protection address register 5
|
when csr_pmpaddr5_c => -- R/W: pmpaddr5 - physical memory protection address register 5
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 6) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 6) then
|
csr.rdata <= csr.pmpaddr(5);
|
csr.rdata <= csr.pmpaddr(5);
|
if (csr.pmpcfg(5)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(5)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b6" => -- R/W: pmpaddr6 - physical memory protection address register 6
|
when csr_pmpaddr6_c => -- R/W: pmpaddr6 - physical memory protection address register 6
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 7) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 7) then
|
csr.rdata <= csr.pmpaddr(6);
|
csr.rdata <= csr.pmpaddr(6);
|
if (csr.pmpcfg(6)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(6)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
when x"3b7" => -- R/W: pmpaddr7 - physical memory protection address register 7
|
when csr_pmpaddr7_c => -- R/W: pmpaddr7 - physical memory protection address register 7
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 8) then
|
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 8) then
|
csr.rdata <= csr.pmpaddr(7);
|
csr.rdata <= csr.pmpaddr(7);
|
if (csr.pmpcfg(7)(4 downto 3) = "00") then -- mode = off
|
if (csr.pmpcfg(7)(4 downto 3) = "00") then -- mode = off
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW
|
else -- mode = NAPOT
|
else -- mode = NAPOT
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1');
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
-- counter and timers --
|
-- counters and timers --
|
when x"c00" | x"b00" => -- R/(W): cycle/mcycle: Cycle counter LOW
|
when csr_cycle_c | csr_mcycle_c => -- R/(W): [m]cycle: Cycle counter LOW
|
csr.rdata <= csr.mcycle(31 downto 0);
|
csr.rdata <= csr.mcycle(31 downto 0);
|
when x"c01" => -- R/-: time: System time LOW (from MTIME unit)
|
when csr_time_c => -- R/-: time: System time LOW (from MTIME unit)
|
csr.rdata <= time_i(31 downto 0);
|
csr.rdata <= time_i(31 downto 0);
|
when x"c02" | x"b02" => -- R/(W): instret/minstret: Instructions-retired counter LOW
|
when csr_instret_c | csr_minstret_c => -- R/(W): [m]instret: Instructions-retired counter LOW
|
csr.rdata <= csr.minstret(31 downto 0);
|
csr.rdata <= csr.minstret(31 downto 0);
|
when x"c80" | x"b80" => -- R/(W): cycleh/mcycleh: Cycle counter HIGH
|
when csr_cycleh_c | csr_mcycleh_c => -- R/(W): [m]cycleh: Cycle counter HIGH
|
csr.rdata <= csr.mcycleh(31 downto 0);
|
csr.rdata <= csr.mcycleh(31 downto 0);
|
when x"c81" => -- R/-: timeh: System time HIGH (from MTIME unit)
|
when csr_timeh_c => -- R/-: timeh: System time HIGH (from MTIME unit)
|
csr.rdata <= time_i(63 downto 32);
|
csr.rdata <= time_i(63 downto 32);
|
when x"c82" | x"b82" => -- R/(W): instreth/minstreth: Instructions-retired counter HIGH
|
when csr_instreth_c | csr_minstreth_c => -- R/(W): [m]instreth: Instructions-retired counter HIGH
|
csr.rdata <= csr.minstreth(31 downto 0);
|
csr.rdata <= csr.minstreth(31 downto 0);
|
|
|
-- machine information registers --
|
-- machine information registers --
|
when x"f11" => -- R/-: mvendorid - vendor ID
|
when csr_mvendorid_c => -- R/-: mvendorid - vendor ID
|
csr.rdata <= (others => '0');
|
csr.rdata <= (others => '0');
|
when x"f12" => -- R/-: marchid - architecture ID
|
when csr_marchid_c => -- R/-: marchid - architecture ID
|
csr.rdata <= (others => '0');
|
csr.rdata <= (others => '0');
|
when x"f13" => -- R/-: mimpid - implementation ID / NEORV32 hardware version
|
when csr_mimpid_c => -- R/-: mimpid - implementation ID / NEORV32 hardware version
|
csr.rdata <= hw_version_c;
|
csr.rdata <= hw_version_c;
|
when x"f14" => -- R/-: mhartid - hardware thread ID
|
when csr_mhartid_c => -- R/-: mhartid - hardware thread ID
|
csr.rdata <= HW_THREAD_ID;
|
csr.rdata <= HW_THREAD_ID;
|
|
|
-- custom machine read-only CSRs --
|
-- custom machine read-only CSRs --
|
when x"fc0" => -- R/-: mzext
|
when csr_mzext_c => -- R/-: mzext
|
csr.rdata(0) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicsr); -- Zicsr CPU extension
|
csr.rdata(0) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicsr); -- Zicsr CPU extension
|
csr.rdata(1) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zifencei); -- Zifencei CPU extension
|
csr.rdata(1) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zifencei); -- Zifencei CPU extension
|
|
|
-- undefined/unavailable --
|
-- undefined/unavailable --
|
when others =>
|
when others =>
|
csr.rdata <= (others => '0'); -- not implemented
|
csr.rdata <= (others => '0'); -- not implemented
|
|
|
end case;
|
end case;
|
else
|
|
csr.rdata <= (others => '0');
|
|
end if;
|
end if;
|
end if;
|
end if;
|
end process csr_read_access;
|
end process csr_read_access;
|
|
|
-- CSR read data output --
|
-- CSR read data output --
|
Line 1740... |
Line 1775... |
minstret_msb <= '0';
|
minstret_msb <= '0';
|
elsif rising_edge(clk_i) then
|
elsif rising_edge(clk_i) then
|
|
|
-- mcycle (cycle) --
|
-- mcycle (cycle) --
|
mcycle_msb <= csr.mcycle(csr.mcycle'left);
|
mcycle_msb <= csr.mcycle(csr.mcycle'left);
|
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b00") then -- write access
|
if (csr.we = '1') and (execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) = csr_mcycle_c) then -- write access
|
csr.mcycle(31 downto 0) <= csr.wdata;
|
csr.mcycle(31 downto 0) <= csr.wdata;
|
csr.mcycle(32) <= '0';
|
csr.mcycle(32) <= '0';
|
elsif (execute_engine.sleep = '0') then -- automatic update (if CPU is not in sleep mode)
|
elsif (execute_engine.sleep = '0') then -- automatic update (if CPU is not in sleep mode)
|
csr.mcycle <= std_ulogic_vector(unsigned(csr.mcycle) + 1);
|
csr.mcycle <= std_ulogic_vector(unsigned(csr.mcycle) + 1);
|
end if;
|
end if;
|
|
|
-- mcycleh (cycleh) --
|
-- mcycleh (cycleh) --
|
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b80") then -- write access
|
if (csr.we = '1') and (execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) = csr_mcycleh_c) then -- write access
|
csr.mcycleh <= csr.wdata(csr.mcycleh'left downto 0);
|
csr.mcycleh <= csr.wdata(csr.mcycleh'left downto 0);
|
elsif ((mcycle_msb xor csr.mcycle(csr.mcycle'left)) = '1') then -- automatic update
|
elsif ((mcycle_msb xor csr.mcycle(csr.mcycle'left)) = '1') then -- automatic update
|
csr.mcycleh <= std_ulogic_vector(unsigned(csr.mcycleh) + 1);
|
csr.mcycleh <= std_ulogic_vector(unsigned(csr.mcycleh) + 1);
|
end if;
|
end if;
|
|
|
-- minstret (instret) --
|
-- minstret (instret) --
|
minstret_msb <= csr.minstret(csr.minstret'left);
|
minstret_msb <= csr.minstret(csr.minstret'left);
|
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b02") then -- write access
|
if (csr.we = '1') and (execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) = csr_minstret_c) then -- write access
|
csr.minstret(31 downto 0) <= csr.wdata;
|
csr.minstret(31 downto 0) <= csr.wdata;
|
csr.minstret(32) <= '0';
|
csr.minstret(32) <= '0';
|
elsif (execute_engine.state_prev /= EXECUTE) and (execute_engine.state = EXECUTE) then -- automatic update
|
elsif (execute_engine.state_prev /= EXECUTE) and (execute_engine.state = EXECUTE) then -- automatic update
|
csr.minstret <= std_ulogic_vector(unsigned(csr.minstret) + 1);
|
csr.minstret <= std_ulogic_vector(unsigned(csr.minstret) + 1);
|
end if;
|
end if;
|
|
|
-- minstreth (instreth) --
|
-- minstreth (instreth) --
|
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b82") then -- write access
|
if (csr.we = '1') and (execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c) = csr_minstreth_c) then -- write access
|
csr.minstreth <= csr.wdata(csr.minstreth'left downto 0);
|
csr.minstreth <= csr.wdata(csr.minstreth'left downto 0);
|
elsif ((minstret_msb xor csr.minstret(csr.minstret'left)) = '1') then -- automatic update
|
elsif ((minstret_msb xor csr.minstret(csr.minstret'left)) = '1') then -- automatic update
|
csr.minstreth <= std_ulogic_vector(unsigned(csr.minstreth) + 1);
|
csr.minstreth <= std_ulogic_vector(unsigned(csr.minstreth) + 1);
|
end if;
|
end if;
|
end if;
|
end if;
|