Line 2... |
Line 2... |
-- # << NEORV32 - CPU General Purpose Data Register File >> #
|
-- # << NEORV32 - CPU General Purpose Data Register File >> #
|
-- # ********************************************************************************************* #
|
-- # ********************************************************************************************* #
|
-- # General purpose data register file. 32 entries (= 1024 bit) for normal mode (RV32I), #
|
-- # General purpose data register file. 32 entries (= 1024 bit) for normal mode (RV32I), #
|
-- # 16 entries (= 512 bit) for embedded mode (RV32E) when RISC-V "E" extension is enabled. #
|
-- # 16 entries (= 512 bit) for embedded mode (RV32E) when RISC-V "E" extension is enabled. #
|
-- # #
|
-- # #
|
-- # Register zero (r0/x0) is a "normal" physical register that has to be initialized to zero by #
|
-- # Register zero (x0) is a "normal" physical register that should be initialized to zero by #
|
-- # the early boot code. Register zero is always set to zero when written. #
|
-- # the early boot code. However, it is always set to zero when written. #
|
-- # #
|
-- # #
|
-- # The register file uses synchronous read accesses and a *single* (multiplexed) address port #
|
-- # The register file uses synchronous read accesses and a *single* (multiplexed) address port #
|
-- # for writing and reading rd/rs1 and a single read-only port for rs2. Therefore, the whole #
|
-- # for writing and reading rd/rs1 and a single read-only port for rs2. Therefore, the whole #
|
-- # register file can be mapped to a single true-dual-port block RAM. #
|
-- # register file can be mapped to a single true-dual-port block RAM. #
|
-- # ********************************************************************************************* #
|
-- # ********************************************************************************************* #
|
-- # BSD 3-Clause License #
|
-- # BSD 3-Clause License #
|
-- # #
|
-- # #
|
-- # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
|
-- # Copyright (c) 2022, Stephan Nolting. All rights reserved. #
|
-- # #
|
-- # #
|
-- # Redistribution and use in source and binary forms, with or without modification, are #
|
-- # Redistribution and use in source and binary forms, with or without modification, are #
|
-- # permitted provided that the following conditions are met: #
|
-- # permitted provided that the following conditions are met: #
|
-- # #
|
-- # #
|
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
Line 56... |
Line 56... |
port (
|
port (
|
-- global control --
|
-- global control --
|
clk_i : in std_ulogic; -- global clock, rising edge
|
clk_i : in std_ulogic; -- global clock, rising edge
|
ctrl_i : in std_ulogic_vector(ctrl_width_c-1 downto 0); -- main control bus
|
ctrl_i : in std_ulogic_vector(ctrl_width_c-1 downto 0); -- main control bus
|
-- data input --
|
-- data input --
|
mem_i : in std_ulogic_vector(data_width_c-1 downto 0); -- memory read data
|
|
alu_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU result
|
alu_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU result
|
|
mem_i : in std_ulogic_vector(data_width_c-1 downto 0); -- memory read data
|
|
csr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- CSR read data
|
|
pc2_i : in std_ulogic_vector(data_width_c-1 downto 0); -- next PC
|
-- data output --
|
-- data output --
|
rs1_o : out std_ulogic_vector(data_width_c-1 downto 0); -- operand 1
|
rs1_o : out std_ulogic_vector(data_width_c-1 downto 0); -- operand 1
|
rs2_o : out std_ulogic_vector(data_width_c-1 downto 0) -- operand 2
|
rs2_o : out std_ulogic_vector(data_width_c-1 downto 0) -- operand 2
|
);
|
);
|
end neorv32_cpu_regfile;
|
end neorv32_cpu_regfile;
|
Line 72... |
Line 74... |
type reg_file_t is array (31 downto 0) of std_ulogic_vector(data_width_c-1 downto 0);
|
type reg_file_t is array (31 downto 0) of std_ulogic_vector(data_width_c-1 downto 0);
|
type reg_file_emb_t is array (15 downto 0) of std_ulogic_vector(data_width_c-1 downto 0);
|
type reg_file_emb_t is array (15 downto 0) of std_ulogic_vector(data_width_c-1 downto 0);
|
signal reg_file : reg_file_t;
|
signal reg_file : reg_file_t;
|
signal reg_file_emb : reg_file_emb_t;
|
signal reg_file_emb : reg_file_emb_t;
|
signal rf_wdata : std_ulogic_vector(data_width_c-1 downto 0); -- actual write-back data
|
signal rf_wdata : std_ulogic_vector(data_width_c-1 downto 0); -- actual write-back data
|
signal rd_is_r0 : std_ulogic; -- writing to r0?
|
signal rd_is_x0 : std_ulogic; -- writing to x0?
|
signal dst_addr : std_ulogic_vector(4 downto 0); -- destination address
|
|
signal opa_addr : std_ulogic_vector(4 downto 0); -- rs1/dst address
|
signal opa_addr : std_ulogic_vector(4 downto 0); -- rs1/dst address
|
signal opb_addr : std_ulogic_vector(4 downto 0); -- rs2 address
|
signal opb_addr : std_ulogic_vector(4 downto 0); -- rs2 address
|
signal rs1, rs2 : std_ulogic_vector(data_width_c-1 downto 0); -- read data
|
|
|
|
begin
|
begin
|
|
|
-- Data Input Mux -------------------------------------------------------------------------
|
-- Data Input Mux -------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
input_mux: process(rd_is_r0, ctrl_i, alu_i, mem_i)
|
input_mux: process(rd_is_x0, ctrl_i, alu_i, mem_i, csr_i, pc2_i)
|
begin
|
begin
|
if (rd_is_r0 = '1') then -- write zero if accessing x0 to "emulate" it is hardwired to zero
|
if (rd_is_x0 = '1') then -- write zero if accessing x0 to "emulate" it is hardwired to zero
|
rf_wdata <= (others => '0');
|
rf_wdata <= (others => '0'); -- TODO: FIXME! but how???
|
else
|
else
|
if (ctrl_i(ctrl_rf_in_mux_c) = '0') then
|
case ctrl_i(ctrl_rf_mux1_c downto ctrl_rf_mux0_c) is
|
rf_wdata <= alu_i;
|
when rf_mux_alu_c => rf_wdata <= alu_i; -- ALU result
|
else
|
when rf_mux_mem_c => rf_wdata <= mem_i; -- memory read data
|
rf_wdata <= mem_i;
|
when rf_mux_csr_c => rf_wdata <= csr_i; -- CSR read data
|
end if;
|
when rf_mux_npc_c => rf_wdata <= pc2_i; -- next PC (branch return/link address)
|
|
when others => rf_wdata <= alu_i;
|
|
end case;
|
end if;
|
end if;
|
end process input_mux;
|
end process input_mux;
|
|
|
-- check if we are writing to x0 --
|
|
rd_is_r0 <= (not or_reduce_f(dst_addr(4 downto 0))) when (CPU_EXTENSION_RISCV_E = false) else (not or_reduce_f(dst_addr(3 downto 0)));
|
|
|
|
|
|
-- Register File Access -------------------------------------------------------------------
|
-- Register File Access -------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
-- -------------------------------------------------------------------------------------------
|
|
reg_file_rv32i: -- normal register file with 32 registers
|
|
if (CPU_EXTENSION_RISCV_E = false) generate
|
rf_access: process(clk_i)
|
rf_access: process(clk_i)
|
begin
|
begin
|
if rising_edge(clk_i) then -- sync read and write
|
if rising_edge(clk_i) then -- sync read and write
|
if (CPU_EXTENSION_RISCV_E = false) then -- normal register file with 32 entries
|
|
if (ctrl_i(ctrl_rf_wb_en_c) = '1') then
|
if (ctrl_i(ctrl_rf_wb_en_c) = '1') then
|
reg_file(to_integer(unsigned(opa_addr(4 downto 0)))) <= rf_wdata;
|
reg_file(to_integer(unsigned(opa_addr(4 downto 0)))) <= rf_wdata;
|
end if;
|
end if;
|
rs1 <= reg_file(to_integer(unsigned(opa_addr(4 downto 0))));
|
rs1_o <= reg_file(to_integer(unsigned(opa_addr(4 downto 0))));
|
rs2 <= reg_file(to_integer(unsigned(opb_addr(4 downto 0))));
|
rs2_o <= reg_file(to_integer(unsigned(opb_addr(4 downto 0))));
|
else -- embedded register file with 16 entries
|
end if;
|
|
end process rf_access;
|
|
|
|
-- writing to x0? --
|
|
rd_is_x0 <= not or_reduce_f(ctrl_i(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c));
|
|
end generate;
|
|
|
|
reg_file_rv32e: -- embedded register file with 16 registers
|
|
if (CPU_EXTENSION_RISCV_E = true) generate
|
|
rf_access: process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then -- sync read and write
|
if (ctrl_i(ctrl_rf_wb_en_c) = '1') then
|
if (ctrl_i(ctrl_rf_wb_en_c) = '1') then
|
reg_file_emb(to_integer(unsigned(opa_addr(3 downto 0)))) <= rf_wdata;
|
reg_file_emb(to_integer(unsigned(opa_addr(3 downto 0)))) <= rf_wdata;
|
end if;
|
end if;
|
rs1 <= reg_file_emb(to_integer(unsigned(opa_addr(3 downto 0))));
|
rs1_o <= reg_file_emb(to_integer(unsigned(opa_addr(3 downto 0))));
|
rs2 <= reg_file_emb(to_integer(unsigned(opb_addr(3 downto 0))));
|
rs2_o <= reg_file_emb(to_integer(unsigned(opb_addr(3 downto 0))));
|
end if;
|
|
end if;
|
end if;
|
end process rf_access;
|
end process rf_access;
|
|
|
|
-- writing to x0? --
|
|
rd_is_x0 <= not or_reduce_f(ctrl_i(ctrl_rf_rd_adr3_c downto ctrl_rf_rd_adr0_c));
|
|
end generate;
|
|
|
-- access addresses --
|
-- access addresses --
|
dst_addr <= ctrl_i(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c);
|
opa_addr <= ctrl_i(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) when (ctrl_i(ctrl_rf_wb_en_c) = '1') else
|
opa_addr <= dst_addr when (ctrl_i(ctrl_rf_wb_en_c) = '1') else ctrl_i(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- rd/rs1
|
ctrl_i(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- rd/rs1
|
opb_addr <= ctrl_i(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- rs2
|
opb_addr <= ctrl_i(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- rs2
|
|
|
-- data output --
|
|
rs1_o <= rs1;
|
|
rs2_o <= rs2;
|
|
|
|
|
|
end neorv32_cpu_regfile_rtl;
|
end neorv32_cpu_regfile_rtl;
|
|
|
No newline at end of file
|
No newline at end of file
|