OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [sw/] [example/] [bitmanip_test/] [neorv32_b_extension_intrinsics.h] - Diff between revs 66 and 71

Show entire file | Details | Blame | View Log

Rev 66 Rev 71
Line 4... Line 4...
// # The intrinsics provided by this library allow to use the hardware bit manipulation unit of    #
// # The intrinsics provided by this library allow to use the hardware bit manipulation unit of    #
// # the RISC-V B CPU extension without the need for support by the compiler.                      #
// # the RISC-V B CPU extension without the need for support by the compiler.                      #
// # ********************************************************************************************* #
// # ********************************************************************************************* #
// # BSD 3-Clause License                                                                          #
// # BSD 3-Clause License                                                                          #
// #                                                                                               #
// #                                                                                               #
// # Copyright (c) 2021, Stephan Nolting. All rights reserved.                                     #
// # Copyright (c) 2022, Stephan Nolting. All rights reserved.                                     #
// #                                                                                               #
// #                                                                                               #
// # Redistribution and use in source and binary forms, with or without modification, are          #
// # Redistribution and use in source and binary forms, with or without modification, are          #
// # permitted provided that the following conditions are met:                                     #
// # permitted provided that the following conditions are met:                                     #
// #                                                                                               #
// #                                                                                               #
// # 1. Redistributions of source code must retain the above copyright notice, this list of        #
// # 1. Redistributions of source code must retain the above copyright notice, this list of        #
Line 59... Line 59...
// ================================================================================================
// ================================================================================================
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CLZ (count leading zeros) [B.Zbb]
 * Intrinsic: Bit manipulation CLZ (count leading zeros) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of leading zeros in source operand.
 * @return Number of leading zeros in source operand.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clz(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clz(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00000, rs1, 0b001, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // clz a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00000, a0, 0b001, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CTZ (count trailing zeros) [B.Zbb]
 * Intrinsic: Bit manipulation CTZ (count trailing zeros) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of trailing zeros in source operand.
 * @return Number of trailing zeros in source operand.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ctz(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ctz(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00001, rs1, 0b001, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // ctz a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00001, a0, 0b001, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CPOP (count set bits) [B.Zbb]
 * Intrinsic: Bit manipulation CPOP (count set bits) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of set bits in source operand.
 * @return Number of set bits in source operand.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_cpop(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_cpop(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00010, rs1, 0b001, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // cpop a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00010, a0, 0b001, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [B.Zbb]
 * Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Sign extended byte (operand(7:0)).
 * @return Sign extended byte (operand(7:0)).
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sextb(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sextb(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00100, rs1, 0b001, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // sext.b a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00100, a0, 0b001, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [B.Zbb]
 * Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Sign-extended half-word (operand(15:0)).
 * @return Sign-extended half-word (operand(15:0)).
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sexth(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sexth(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00101, rs1, 0b001, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // sext.h a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b00101, a0, 0b001, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [B.Zbb]
 * Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Zero-extended half-word (operand(15:0)).
 * @return Zero-extended half-word (operand(15:0)).
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_zexth(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_zexth(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0000100, 0b00000, rs1, 0b100, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // sext.h a0, a0
 
  CUSTOM_INSTR_R1_TYPE(0b0000100, 0b00000, a0, 0b100, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MIN (select signed minimum) [B.Zbb]
 * Intrinsic: Bit manipulation MIN (select signed minimum) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Signed minimum.
 * @return Signed minimum.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_min(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_min(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b100, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // min a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b100, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MINU (select unsigned minimum) [B.Zbb]
 * Intrinsic: Bit manipulation MINU (select unsigned minimum) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Unsigned minimum.
 * @return Unsigned minimum.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_minu(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_minu(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b101, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // minu a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b101, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MAX (select signed maximum) [B.Zbb]
 * Intrinsic: Bit manipulation MAX (select signed maximum) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Signed maximum.
 * @return Signed maximum.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_max(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_max(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b110, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // max a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b110, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MAXU (select unsigned maximum) [B.Zbb]
 * Intrinsic: Bit manipulation MAXU (select unsigned maximum) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Unsigned maximum.
 * @return Unsigned maximum.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_maxu(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_maxu(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b111, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // maxu a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0000101, a1, a0, 0b111, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ANDN (logical and-negate) [B.Zbb]
 * Intrinsic: Bit manipulation ANDN (logical and-negate) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 1 AND NOT operand 2.
 * @return Operand 1 AND NOT operand 2.
 **************************************************************************/
 **************************************************************************/
inline inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_andn(uint32_t rs1, uint32_t rs2) {
inline inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_andn(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0100000, rs2, rs1, 0b111, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // andn a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b111, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ORN (logical or-negate) [B.Zbb]
 * Intrinsic: Bit manipulation ORN (logical or-negate) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 1 OR NOT operand 2.
 * @return Operand 1 OR NOT operand 2.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orn(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orn(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0100000, rs2, rs1, 0b110, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // orn a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b110, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation XNOR (logical xor-negate) [B.Zbb]
 * Intrinsic: Bit manipulation XNOR (logical xor-negate) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 1 XOR NOT operand 2.
 * @return Operand 1 XOR NOT operand 2.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_xnor(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_xnor(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0100000, rs2, rs1, 0b100, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // xnor a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0100000, a1, a0, 0b100, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ROL (rotate-left) [B.Zbb]
 * Intrinsic: Bit manipulation ROL (rotate-left) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 1 rotated left by operand_2(4:0) positions.
 * @return Operand 1 rotated left by operand_2(4:0) positions.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rol(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rol(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0110000, rs2, rs1, 0b001, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // rol a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0110000, a1, a0, 0b001, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ROR (rotate-right) [B.Zbb]
 * Intrinsic: Bit manipulation ROR (rotate-right) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 1 rotated right by operand_2(4:0) positions.
 * @return Operand 1 rotated right by operand_2(4:0) positions.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ror(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_ror(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0110000, rs2, rs1, 0b101, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // ror a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0110000, a1, a0, 0b101, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation RORI (rotate-right) by 20 positions. [B.Zbb]
 * Intrinsic: Bit manipulation RORI (rotate-right) by 20 positions. [B.Zbb]
 * @warning Fixed shift amount (20) for now.
 * @warning Fixed shift amount (20) for now.
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Operand 1 rotated right by 20 positions.
 * @return Operand 1 rotated right by 20 positions.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rori20(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rori20(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110000, 0b10100, rs1, 0b101, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // rori a0, a0, 20
 
  CUSTOM_INSTR_R1_TYPE(0b0110000, 0b10100, a0, 0b101, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ORC.B (or-combine byte) [B.Zbb]
 * Intrinsic: Bit manipulation ORC.B (or-combine byte) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return OR-combined bytes of operand 1.
 * @return OR-combined bytes of operand 1.
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orcb(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_orcb(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0010100, 0b00111, rs1, 0b101, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // gorci a0, a0, 7 (pseudo-instruction: orc.b a0, a0)
 
  CUSTOM_INSTR_R1_TYPE(0b0010100, 0b00111, a0, 0b101, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation REV8 (byte-swap) [B.Zbb]
 * Intrinsic: Bit manipulation REV8 (byte-swap) [B.Zbb]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Byte swap of operand 1
 * @return Byte swap of operand 1
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rev8(uint32_t rs1) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_rev8(uint32_t rs1) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R1_TYPE(0b0110100, 0b11000, rs1, 0b101, 0b0010011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a));
 
 
 
  // grevi a0, a0, -8 (pseudo-instruction: rev8 a0, a0)
 
  CUSTOM_INSTR_R1_TYPE(0b0110100, 0b11000, a0, 0b101, a0, 0b0010011);
 
 
 
  return result;
 
}
}
 
 
 
 
// ================================================================================================
// ================================================================================================
// Zbb - Base instructions
// Zba - Address-generation instructions
// ================================================================================================
// ================================================================================================
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [B.Zba]
 * Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [B.Zba]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 2 + (Operand 1 << 1)
 * @return Operand 2 + (Operand 1 << 1)
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh1add(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh1add(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0010000, rs2, rs1, 0b010, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // sh1add a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b010, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [B.Zba]
 * Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [B.Zba]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 2 + (Operand 1 << 2)
 * @return Operand 2 + (Operand 1 << 2)
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh2add(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh2add(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0010000, rs2, rs1, 0b100, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
 
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
 
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
 
 
 
  // sh2add a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b100, a0, 0b0110011);
 
 
 
  return result;
 
}
}
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH1ADD (add with logical-3-shift) [B.Zba]
 * Intrinsic: Address generation instructions SH1ADD (add with logical-3-shift) [B.Zba]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 2 (a0).
 * @param[in] rs2 Source operand 2.
 * @return Operand 2 + (Operand 1 << 3)
 * @return Operand 2 + (Operand 1 << 3)
 **************************************************************************/
 **************************************************************************/
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh3add(uint32_t rs1, uint32_t rs2) {
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_sh3add(uint32_t rs1, uint32_t rs2) {
 
 
  register uint32_t result __asm__ ("a0");
  return CUSTOM_INSTR_R2_TYPE(0b0010000, rs2, rs1, 0b110, 0b0110011);
  register uint32_t tmp_a  __asm__ ("a0") = rs1;
}
  register uint32_t tmp_b  __asm__ ("a1") = rs2;
 
 
 
  // dummy instruction to prevent GCC "constprop" optimization
// ================================================================================================
  asm volatile ("" : [output] "=r" (result) : [input_i] "r" (tmp_a), [input_j] "r" (tmp_b));
// Zbs - Single-bit instructions
 
// ================================================================================================
 
 
  // sh3add a0, a0, a1
 
  CUSTOM_INSTR_R2_TYPE(0b0010000, a1, a0, 0b110, a0, 0b0110011);
 
 
 
  return result;
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BCLR (bit-clear) [B.Zbs]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Operand 1 with bit cleared indexed by operand_2(4:0).
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bclr(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0100100, rs2, rs1, 0b001, 0b0110011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BCLRI (bit-clear) by 20 positions. [B.Zbs]
 
 * @warning Fixed shift amount (20) for now.
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @return Operand 1 with bit cleared at position 20.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bclri20(uint32_t rs1) {
 
 
 
  return CUSTOM_INSTR_R1_TYPE(0b0100100, 0b10100, rs1, 0b001, 0b0010011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BEXT (bit-extract) [B.Zbs]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Extract bit from Operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bext(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0100100, rs2, rs1, 0b101, 0b0110011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BEXTI (bit-extract) by 20 positions. [B.Zbs]
 
 * @warning Fixed shift amount (20) for now.
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @return Extract bit from Operand 1 at position 20.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bexti20(uint32_t rs1) {
 
 
 
  return CUSTOM_INSTR_R1_TYPE(0b0100100, 0b10100, rs1, 0b101, 0b0010011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BINV (bit-invert) [B.Zbs]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Invert bit from Operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_binv(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0110100, rs2, rs1, 0b001, 0b0110011);
}
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BINVI (bit-invert) by 20 positions. [B.Zbs]
 
 * @warning Fixed shift amount (20) for now.
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @return Invert bit from Operand 1 at position 20.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_binvi20(uint32_t rs1) {
 
 
 
  return CUSTOM_INSTR_R1_TYPE(0b0110100, 0b10100, rs1, 0b001, 0b0010011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BSET (bit-set) [B.Zbs]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return set bit from Operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bset(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0010100, rs2, rs1, 0b001, 0b0110011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BSETI (bit-set) by 20 positions. [B.Zbs]
 
 * @warning Fixed shift amount (20) for now.
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @return Set bit from Operand 1 at position 20.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_bseti20(uint32_t rs1) {
 
 
 
  return CUSTOM_INSTR_R1_TYPE(0b0010100, 0b10100, rs1, 0b001, 0b0010011);
 
}
 
 
 
 
 
// ================================================================================================
 
// Zbc - Carry-less multiplication instructions
 
// ================================================================================================
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMUL (carry-less multiplication, low-part) [B.Zbc]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Carry-less product, low part.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clmul(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b001, 0b0110011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMULH (carry-less multiplication, high-part) [B.Zbc]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Carry-less product, high part.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clmulh(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs2, rs1, 0b011, 0b0110011);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMULR (carry-less multiplication, reversed) [B.Zbc]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 2.
 
 * @return Carry-less product, low part, reversed.
 
 **************************************************************************/
 
inline uint32_t __attribute__ ((always_inline)) riscv_intrinsic_clmulr(uint32_t rs1, uint32_t rs2) {
 
 
 
  return CUSTOM_INSTR_R2_TYPE(0b0000101, rs1, rs2, 0b010, 0b0110011);
 
}
 
 
 
 
// ################################################################################################
// ################################################################################################
// Emulation functions
// Emulation functions
// ################################################################################################
// ################################################################################################
 
 
Line 539... Line 490...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CLZ (count leading zeros) [emulation]
 * Intrinsic: Bit manipulation CLZ (count leading zeros) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of leading zeros in source operand.
 * @return Number of leading zeros in source operand.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_clz(uint32_t rs1) {
uint32_t riscv_emulate_clz(uint32_t rs1) {
 
 
  uint32_t sreg = rs1;
  uint32_t sreg = rs1;
Line 564... Line 515...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CTZ (count trailing zeros) [emulation]
 * Intrinsic: Bit manipulation CTZ (count trailing zeros) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of trailing zeros in source operand.
 * @return Number of trailing zeros in source operand.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_ctz(uint32_t rs1) {
uint32_t riscv_emulate_ctz(uint32_t rs1) {
 
 
  uint32_t sreg = rs1;
  uint32_t sreg = rs1;
Line 589... Line 540...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation CPOP (population count) [emulation]
 * Intrinsic: Bit manipulation CPOP (population count) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Number of set bits in source operand.
 * @return Number of set bits in source operand.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_cpop(uint32_t rs1) {
uint32_t riscv_emulate_cpop(uint32_t rs1) {
 
 
  uint32_t sreg = rs1;
  uint32_t sreg = rs1;
Line 612... Line 563...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [emulation]
 * Intrinsic: Bit manipulation SEXT.B (sign-extend byte) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Sign-extended byte (operand(7:0)).
 * @return Sign-extended byte (operand(7:0)).
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_sextb(uint32_t rs1) {
uint32_t riscv_emulate_sextb(uint32_t rs1) {
 
 
  uint32_t tmp = rs1 & 0xff;
  uint32_t tmp = rs1 & 0xff;
Line 630... Line 581...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [emulation]
 * Intrinsic: Bit manipulation SEXT.H (sign-extend half-word) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Sign-extended half-word (operand(15:0)).
 * @return Sign-extended half-word (operand(15:0)).
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_sexth(uint32_t rs1) {
uint32_t riscv_emulate_sexth(uint32_t rs1) {
 
 
  uint32_t tmp = rs1 & 0xffff;
  uint32_t tmp = rs1 & 0xffff;
Line 648... Line 599...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [emulation]
 * Intrinsic: Bit manipulation ZEXT.H (zero-extend half-word) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Zero-extended half-word (operand(15:0)).
 * @return Zero-extended half-word (operand(15:0)).
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_zexth(uint32_t rs1) {
uint32_t riscv_emulate_zexth(uint32_t rs1) {
 
 
  return rs1 & 0x0000FFFFUL;
  return rs1 & 0x0000FFFFUL;
Line 660... Line 611...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MIN (select signed minimum) [emulation]
 * Intrinsic: Bit manipulation MIN (select signed minimum) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Signed minimum.
 * @return Signed minimum.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_min(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_min(uint32_t rs1, uint32_t rs2) {
 
 
  int32_t s_opa = (int32_t)rs1;
  int32_t s_opa = (int32_t)rs1;
Line 681... Line 632...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MINU (select unsigned minimum) [emulation]
 * Intrinsic: Bit manipulation MINU (select unsigned minimum) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Unsigned minimum.
 * @return Unsigned minimum.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_minu(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_minu(uint32_t rs1, uint32_t rs2) {
 
 
  if (rs1 < rs2) {
  if (rs1 < rs2) {
Line 699... Line 650...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MAX (select signed maximum) [emulation]
 * Intrinsic: Bit manipulation MAX (select signed maximum) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Signed maximum.
 * @return Signed maximum.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_max(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_max(uint32_t rs1, uint32_t rs2) {
 
 
  int32_t s_opa = (int32_t)rs1;
  int32_t s_opa = (int32_t)rs1;
Line 720... Line 671...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation MAXU (select unsigned maximum) [emulation]
 * Intrinsic: Bit manipulation MAXU (select unsigned maximum) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Unsigned maximum.
 * @return Unsigned maximum.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_maxu(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_maxu(uint32_t rs1, uint32_t rs2) {
 
 
  if (rs1 < rs2) {
  if (rs1 < rs2) {
Line 738... Line 689...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ANDN (logical and-negate) [emulation]
 * Intrinsic: Bit manipulation ANDN (logical and-negate) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 1 AND NOT operand 2.
 * @return Operand 1 AND NOT operand 2.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_andn(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_andn(uint32_t rs1, uint32_t rs2) {
 
 
  return rs1 & (~rs2);
  return rs1 & (~rs2);
Line 751... Line 702...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ORN (logical or-negate) [emulation]
 * Intrinsic: Bit manipulation ORN (logical or-negate) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 1 OR NOT operand 2.
 * @return Operand 1 OR NOT operand 2.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_orn(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_orn(uint32_t rs1, uint32_t rs2) {
 
 
  return rs1 | (~rs2);
  return rs1 | (~rs2);
Line 764... Line 715...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation XNOR (logical xor-negate) [emulation]
 * Intrinsic: Bit manipulation XNOR (logical xor-negate) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 1 XOR NOT operand 2.
 * @return Operand 1 XOR NOT operand 2.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_xnor(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_xnor(uint32_t rs1, uint32_t rs2) {
 
 
  return rs1 ^ (~rs2);
  return rs1 ^ (~rs2);
Line 777... Line 728...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ROL (rotate-left) [emulation]
 * Intrinsic: Bit manipulation ROL (rotate-left) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 1 rotated left by operand_2(4:0) positions.
 * @return Operand 1 rotated left by operand_2(4:0) positions.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_rol(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_rol(uint32_t rs1, uint32_t rs2) {
 
 
  uint32_t shamt = rs2 & 0x1f;
  uint32_t shamt = rs2 & 0x1f;
Line 795... Line 746...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ROR (rotate-right) [emulation]
 * Intrinsic: Bit manipulation ROR (rotate-right) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 1 rotated right by operand_2(4:0) positions.
 * @return Operand 1 rotated right by operand_2(4:0) positions.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_ror(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_ror(uint32_t rs1, uint32_t rs2) {
 
 
  uint32_t shamt = rs2 & 0x1f;
  uint32_t shamt = rs2 & 0x1f;
Line 813... Line 764...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation REV8 (byte swap) [emulation]
 * Intrinsic: Bit manipulation REV8 (byte swap) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return Operand 1 byte swapped.
 * @return Operand 1 byte swapped.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_rev8(uint32_t rs1) {
uint32_t riscv_emulate_rev8(uint32_t rs1) {
 
 
  uint32_t tmp_a = (rs1 & 0x000000ffUL) << 24;
  uint32_t tmp_a = (rs1 & 0x000000ffUL) << 24;
Line 830... Line 781...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Bit manipulation ORCB (or-combine bytes) [emulation]
 * Intrinsic: Bit manipulation ORCB (or-combine bytes) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @return OR-combined bytes of operand 1.
 * @return OR-combined bytes of operand 1.
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_orcb(uint32_t rs1) {
uint32_t riscv_emulate_orcb(uint32_t rs1) {
 
 
  uint32_t tmp = 0;
  uint32_t tmp = 0;
Line 862... Line 813...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [emulation]
 * Intrinsic: Address generation instructions SH1ADD (add with logical-1-shift) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 2 + (Operand 1 << 1)
 * @return Operand 2 + (Operand 1 << 1)
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_sh1add(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_sh1add(uint32_t rs1, uint32_t rs2) {
 
 
  return rs2 + (rs1 << 1);
  return rs2 + (rs1 << 1);
Line 875... Line 826...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [emulation]
 * Intrinsic: Address generation instructions SH2ADD (add with logical-2-shift) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 2 + (Operand 1 << 2)
 * @return Operand 2 + (Operand 1 << 2)
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_sh2add(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_sh2add(uint32_t rs1, uint32_t rs2) {
 
 
  return rs2 + (rs1 << 2);
  return rs2 + (rs1 << 2);
Line 888... Line 839...
 
 
 
 
/**********************************************************************//**
/**********************************************************************//**
 * Intrinsic: Address generation instructions SH3ADD (add with logical-3-shift) [emulation]
 * Intrinsic: Address generation instructions SH3ADD (add with logical-3-shift) [emulation]
 *
 *
 * @param[in] rs1 Source operand 1 (a0).
 * @param[in] rs1 Source operand 1.
 * @param[in] rs2 Source operand 1 (a0).
 * @param[in] rs2 Source operand 1.
 * @return Operand 2 + (Operand 1 << 3)
 * @return Operand 2 + (Operand 1 << 3)
 **************************************************************************/
 **************************************************************************/
uint32_t riscv_emulate_sh3add(uint32_t rs1, uint32_t rs2) {
uint32_t riscv_emulate_sh3add(uint32_t rs1, uint32_t rs2) {
 
 
  return rs2 + (rs1 << 3);
  return rs2 + (rs1 << 3);
}
}
 
 
 
 
 
// ================================================================================================
 
// Zbs - Single-bit instructions
 
// ================================================================================================
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BCLR (bit-clear) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Operand 1 with cleared bit indexed by operand_2(4:0).
 
 **************************************************************************/
 
uint32_t riscv_emulate_bclr(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t shamt = rs2 & 0x1f;
 
  uint32_t tmp = 1 << shamt;
 
 
 
  return rs1 & (~tmp);
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BEXT (bit-extract) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Extract bit from operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
uint32_t riscv_emulate_bext(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t shamt = rs2 & 0x1f;
 
  uint32_t tmp = rs1 >> shamt;
 
 
 
  return tmp & 1;
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BINV (bit-invert) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Invert bit from operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
uint32_t riscv_emulate_binv(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t shamt = rs2 & 0x1f;
 
  uint32_t tmp = 1 << shamt;
 
 
 
  return rs1 ^ tmp;
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation BSET (bit-set) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Set bit from operand 1 indexed by operand_2(4:0).
 
 **************************************************************************/
 
uint32_t riscv_emulate_bset(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t shamt = rs2 & 0x1f;
 
  uint32_t tmp = 1 << shamt;
 
 
 
  return rs1 | tmp;
 
}
 
 
 
 
 
// ================================================================================================
 
// Zbc - Carry-less multiplication instructions
 
// ================================================================================================
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMUL (carry-less multiply, low-part) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Carry-less multiplication product, low part
 
 **************************************************************************/
 
uint32_t riscv_emulate_clmul(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t i;
 
  uint64_t tmp;
 
  union {
 
    uint64_t uint64;
 
    uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
 
  } res;
 
 
 
  res.uint64 = 0;
 
  for (i=0; i<32; i++) {
 
    if ((rs2 >> i) & 1) {
 
      tmp = (uint64_t)rs1;
 
      tmp = tmp << i;
 
      res.uint64 = res.uint64 ^ tmp;
 
    }
 
  }
 
 
 
  return res.uint32[0];
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMULH (carry-less multiply, high-part) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Carry-less multiplication product, high part
 
 **************************************************************************/
 
uint32_t riscv_emulate_clmulh(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t i;
 
  uint64_t tmp;
 
  union {
 
    uint64_t uint64;
 
    uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
 
  } res;
 
 
 
  res.uint64 = 0;
 
  for (i=0; i<32; i++) {
 
    if ((rs2 >> i) & 1) {
 
      tmp = (uint64_t)rs1;
 
      tmp = tmp << i;
 
      res.uint64 = res.uint64 ^ tmp;
 
    }
 
  }
 
 
 
  return res.uint32[1];
 
}
 
 
 
 
 
/**********************************************************************//**
 
 * Intrinsic: Bit manipulation CLMUR (carry-less multiply, reversed) [emulation]
 
 *
 
 * @param[in] rs1 Source operand 1.
 
 * @param[in] rs2 Source operand 1.
 
 * @return Carry-less multiplication product, low part, reversed
 
 **************************************************************************/
 
uint32_t riscv_emulate_clmulr(uint32_t rs1, uint32_t rs2) {
 
 
 
  uint32_t i;
 
  uint64_t tmp;
 
  union {
 
    uint64_t uint64;
 
    uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
 
  } res;
 
 
 
  // bit-reversal of input operands
 
  uint32_t rs1_rev = 0, rs2_rev = 0;
 
  for (i=0; i<32; i++) {
 
    rs1_rev <<= 1;
 
    if ((rs1 >> i) & 1) {
 
      rs1_rev |= 1;
 
    }
 
    rs2_rev <<= 1;
 
    if ((rs2 >> i) & 1) {
 
      rs2_rev |= 1;
 
    }
 
  }
 
 
 
  res.uint64 = 0;
 
  for (i=0; i<32; i++) {
 
    if ((rs2_rev >> i) & 1) {
 
      tmp = (uint64_t)rs1_rev;
 
      tmp = tmp << i;
 
      res.uint64 = res.uint64 ^ tmp;
 
    }
 
  }
 
 
 
  // bit-reversal of result
 
  uint32_t result = 0;
 
  for (i=0; i<32; i++) {
 
    result <<= 1;
 
    if ((res.uint32[0] >> i) & 1) {
 
      result |= 1;
 
    }
 
  }
 
 
 
  return result;
 
}
 
 
 
 
#endif // neorv32_b_extension_intrinsics_h
#endif // neorv32_b_extension_intrinsics_h
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.