Line 79... |
Line 79... |
cycles to 0.
|
cycles to 0.
|
*/
|
*/
|
void
|
void
|
start_time(void)
|
start_time(void)
|
{
|
{
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // start all counters
|
|
GETMYTIME(&start_time_val);
|
GETMYTIME(&start_time_val);
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // start all counters
|
}
|
}
|
/* Function : stop_time
|
/* Function : stop_time
|
This function will be called right after ending the timed portion of the
|
This function will be called right after ending the timed portion of the
|
benchmark.
|
benchmark.
|
|
|
Line 101... |
Line 101... |
/* Function : get_time
|
/* Function : get_time
|
Return an abstract "ticks" number that signifies time on the system.
|
Return an abstract "ticks" number that signifies time on the system.
|
|
|
Actual value returned may be cpu cycles, milliseconds or any other
|
Actual value returned may be cpu cycles, milliseconds or any other
|
value, as long as it can be converted to seconds by <time_in_secs>. This
|
value, as long as it can be converted to seconds by <time_in_secs>. This
|
methodology is taken to accomodate any hardware or simulated platform. The
|
methodology is taken to accommodate any hardware or simulated platform. The
|
sample implementation returns millisecs by default, and the resolution is
|
sample implementation returns milliseconds by default, and the resolution is
|
controlled by <TIMER_RES_DIVIDER>
|
controlled by <TIMER_RES_DIVIDER>
|
*/
|
*/
|
CORE_TICKS
|
CORE_TICKS
|
get_time(void)
|
get_time(void)
|
{
|
{
|
Line 231... |
Line 231... |
exe_time.uint64 = (uint64_t)get_time();
|
exe_time.uint64 = (uint64_t)get_time();
|
exe_instructions.uint64 = neorv32_cpu_get_instret();
|
exe_instructions.uint64 = neorv32_cpu_get_instret();
|
|
|
neorv32_uart0_printf("\nNEORV32: All reported numbers only show the integer part.\n\n");
|
neorv32_uart0_printf("\nNEORV32: All reported numbers only show the integer part.\n\n");
|
|
|
neorv32_uart0_printf("NEORV32: HPM results\n");
|
neorv32_uart0_printf("NEORV32: HPM results (low words only)\n");
|
if (num_hpm_cnts_global == 0) {neorv32_uart0_printf("no HPMs available\n"); }
|
if (num_hpm_cnts_global == 0) {neorv32_uart0_printf("no HPMs available\n"); }
|
if (num_hpm_cnts_global > 0) {neorv32_uart0_printf("# Retired compr. instructions: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER3)); }
|
if (num_hpm_cnts_global > 0) {neorv32_uart0_printf(" > Retired compr. instructions: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER3)); }
|
if (num_hpm_cnts_global > 1) {neorv32_uart0_printf("# I-fetch wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER4)); }
|
if (num_hpm_cnts_global > 1) {neorv32_uart0_printf(" > Instr.-fetch wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER4)); }
|
if (num_hpm_cnts_global > 2) {neorv32_uart0_printf("# I-issue wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER5)); }
|
if (num_hpm_cnts_global > 2) {neorv32_uart0_printf(" > Instr.-issue wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER5)); }
|
if (num_hpm_cnts_global > 3) {neorv32_uart0_printf("# Multi-cycle ALU wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER6)); }
|
if (num_hpm_cnts_global > 3) {neorv32_uart0_printf(" > Multi-cycle ALU wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER6)); }
|
if (num_hpm_cnts_global > 4) {neorv32_uart0_printf("# Load operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER7)); }
|
if (num_hpm_cnts_global > 4) {neorv32_uart0_printf(" > Load operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER7)); }
|
if (num_hpm_cnts_global > 5) {neorv32_uart0_printf("# Store operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER8)); }
|
if (num_hpm_cnts_global > 5) {neorv32_uart0_printf(" > Store operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER8)); }
|
if (num_hpm_cnts_global > 6) {neorv32_uart0_printf("# Load/store wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER9)); }
|
if (num_hpm_cnts_global > 6) {neorv32_uart0_printf(" > Load/store wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER9)); }
|
if (num_hpm_cnts_global > 7) {neorv32_uart0_printf("# Unconditional jumps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER10)); }
|
if (num_hpm_cnts_global > 7) {neorv32_uart0_printf(" > Unconditional jumps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER10)); }
|
if (num_hpm_cnts_global > 8) {neorv32_uart0_printf("# Conditional branches (all): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER11)); }
|
if (num_hpm_cnts_global > 8) {neorv32_uart0_printf(" > Conditional branches (all): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER11)); }
|
if (num_hpm_cnts_global > 9) {neorv32_uart0_printf("# Conditional branches (taken): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER12)); }
|
if (num_hpm_cnts_global > 9) {neorv32_uart0_printf(" > Conditional branches (taken): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER12)); }
|
if (num_hpm_cnts_global > 10) {neorv32_uart0_printf("# Entered traps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER13)); }
|
if (num_hpm_cnts_global > 10) {neorv32_uart0_printf(" > Entered traps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER13)); }
|
if (num_hpm_cnts_global > 11) {neorv32_uart0_printf("# Illegal operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER14)); }
|
if (num_hpm_cnts_global > 11) {neorv32_uart0_printf(" > Illegal operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER14)); }
|
neorv32_uart0_printf("\n");
|
neorv32_uart0_printf("\n");
|
|
|
neorv32_uart0_printf("NEORV32: Executed instructions 0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
|
neorv32_uart0_printf("NEORV32: Executed instructions 0x%x%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
|
neorv32_uart0_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
|
neorv32_uart0_printf("NEORV32: CoreMark core clock cycles 0x%x%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
|
|
|
uint64_t average_cpi_int = exe_time.uint64 / exe_instructions.uint64;
|
uint64_t average_cpi_int = exe_time.uint64 / exe_instructions.uint64;
|
neorv32_uart0_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi_int);
|
neorv32_uart0_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi_int);
|
|
|
}
|
}
|