Line 1... |
Line 1... |
|
-- Copyright (c)2006, Jeremy Seth Henry
|
|
-- All rights reserved.
|
|
--
|
|
-- Redistribution and use in source and binary forms, with or without
|
|
-- modification, are permitted provided that the following conditions are met:
|
|
-- * Redistributions of source code must retain the above copyright
|
|
-- notice, this list of conditions and the following disclaimer.
|
|
-- * Redistributions in binary form must reproduce the above copyright
|
|
-- notice, this list of conditions and the following disclaimer in the
|
|
-- documentation and/or other materials provided with the distribution,
|
|
-- where applicable (as part of a user interface, debugging port, etc.)
|
|
--
|
|
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
|
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
|
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
-- VHDL Units : Open8_CPU
|
|
-- Description: VHDL model of the V8 uRISC 8-bit processor core
|
|
-- Notes : Generic definitions
|
|
-- : Stack_Start_Address - determines the initial (reset) value of
|
|
-- : the stack pointer. Also used for the RSP instruction if
|
|
-- : Allow_Stack_Address_Move is 0.
|
|
-- :
|
|
-- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be
|
|
-- : programmed via thet RSP instruction. If enabled, the contents
|
|
-- : of R1:R0 are used to initialize the stack pointer.
|
|
-- :
|
|
-- : ISR_Start_Addr - determines the location of the interrupt
|
|
-- : service vector table. There are 8 service vectors, or 16
|
|
-- : bytes, which must be allocated to either ROM or RAM.
|
|
-- :
|
|
-- : Program_Start_Addr - Determines the initial value of the
|
|
-- : program counter.
|
|
-- :
|
|
-- : Default_Interrupt_Mask - Determines the intial value of the
|
|
-- : interrupt mask. To remain true to the original core, which
|
|
-- : had no interrupt mask, this should be set to x"FF". Otherwise
|
|
-- : it can be initialized to any value.
|
|
-- :
|
|
-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is
|
|
-- : connected or not. This signal is typically used to halt the
|
|
-- : processor for a few cycles when accessing slower peripherals,
|
|
-- : but may also be used to single step the processor. If this
|
|
-- : feature isn't used, it can be disabled to increase Fmax.
|
|
-- :
|
|
-- : The CPU_Halt signal can be used to access slower peripherals
|
|
-- : by allowing the device to "pause" the CPU. This can be used,
|
|
-- : for example, to write to a standard LCD panel, which requires
|
|
-- : a 4MHz interface, by halting on writes. Alternately, devices
|
|
-- : such as SDRAM controllers, can pause the processor until the
|
|
-- : data is ready to be presented.
|
|
-- :
|
|
-- : The Enable_Auto_Increment generic can be used to modify the
|
|
-- : indexed instructions such that specifying an odd register
|
|
-- : will use the next lower register pair, post-incrementing the
|
|
-- : value in that pair. IOW, specifying STX R1 will instead
|
|
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1
|
|
-- :
|
|
-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL
|
|
-- : respectively. DBNZ decrements the specified register, and will
|
|
-- : branch if the result is non-zero (Zero flag is not set). MUL
|
|
-- : places the result of R0 * Rn into R1:R0, and executes in two
|
|
-- : cycles. (R1:R0 = R0 * Rn)
|
|
-- :
|
|
-- Revision History
|
|
-- Author Date Change
|
|
------------------ -------- ---------------------------------------------------
|
|
-- Seth Henry 07/19/06 Design Start
|
|
|
|
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.std_logic_unsigned.all;
|
|
use ieee.std_logic_arith.all;
|
|
|
|
library work;
|
|
use work.Open8_pkg.all;
|
|
|
|
entity Open8_CPU is
|
|
generic(
|
|
Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack
|
|
Allow_Stack_Address_Move : std_logic := '0'; -- Use Normal v8 RSP
|
|
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's
|
|
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location
|
|
Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints
|
|
Enable_CPU_Halt : std_logic := '0'; -- Disable HALT pin
|
|
Enable_Auto_Increment : std_logic := '0' ); -- Modify indexed instr
|
|
port(
|
|
Clock : in std_logic;
|
|
Reset_n : in std_logic;
|
|
CPU_Halt : in std_logic;
|
|
Interrupts : in INTERRUPT_BUNDLE;
|
|
--
|
|
Address : out ADDRESS_TYPE;
|
|
Rd_Data : in DATA_TYPE;
|
|
Rd_Enable : out std_logic;
|
|
Wr_Data : out DATA_TYPE;
|
|
Wr_Enable : out std_logic );
|
|
end entity;
|
|
|
|
architecture rtl of Open8_CPU is
|
|
subtype OPCODE_TYPE is std_logic_vector(4 downto 0);
|
|
subtype SUBOP_TYPE is std_logic_vector(2 downto 0);
|
|
|
|
-- Most of the ALU instructions are the same as their Opcode equivalents with
|
|
-- three exceptions (for IDLE, UPP2, and MUL2)
|
|
constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00"
|
|
constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01"
|
|
constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02"
|
|
constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03"
|
|
constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04"
|
|
constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05"
|
|
constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06"
|
|
constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07"
|
|
constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08"
|
|
constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09"
|
|
constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A"
|
|
constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B"
|
|
constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C"
|
|
constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D"
|
|
constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E"
|
|
constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F"
|
|
constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11"
|
|
constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16"
|
|
constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18"
|
|
constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C"
|
|
constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E"
|
|
|
|
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10"
|
|
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"11"
|
|
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"12"
|
|
|
|
constant FL_ZERO : integer := 0;
|
|
constant FL_CARRY : integer := 1;
|
|
constant FL_NEG : integer := 2;
|
|
constant FL_INT_EN : integer := 3;
|
|
constant FL_GP1 : integer := 4;
|
|
constant FL_GP2 : integer := 5;
|
|
constant FL_GP3 : integer := 6;
|
|
constant FL_GP4 : integer := 7;
|
|
|
|
type ALU_CTRL_TYPE is record
|
|
Oper : OPCODE_TYPE;
|
|
Reg : SUBOP_TYPE;
|
|
Data : DATA_TYPE;
|
|
end record;
|
|
|
|
constant ACCUM : SUBOP_TYPE := "000";
|
|
constant INT_FLAG : SUBOP_TYPE := "011";
|
|
|
|
-- There are only 8 byte-wide registers - and the write register is always 0,
|
|
-- so there is little point in making a RAM out of this
|
|
type REGFILE_TYPE is array (0 to 7) of DATA_TYPE;
|
|
|
|
subtype FLAG_TYPE is DATA_TYPE;
|
|
|
|
type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD );
|
|
|
|
type PC_CTRL_TYPE is record
|
|
Oper : PC_MODES;
|
|
Offset : DATA_TYPE;
|
|
Addr : ADDRESS_TYPE;
|
|
end record;
|
|
|
|
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH );
|
|
|
|
type SP_CTRL_TYPE is record
|
|
Oper : SP_MODES;
|
|
Addr : ADDRESS_TYPE;
|
|
end record;
|
|
|
|
type INT_CTRL_TYPE is record
|
|
Mask_Set : std_logic;
|
|
Mask_Data : DATA_TYPE;
|
|
Soft_Ints : INTERRUPT_BUNDLE;
|
|
Incr_ISR : std_logic;
|
|
end record;
|
|
|
|
type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR);
|
|
|
|
type ADDR_CTRL_TYPE is record
|
|
Src : AS_MODES;
|
|
end record;
|
|
|
|
type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC );
|
|
|
|
type DATA_CTRL_TYPE is record
|
|
Src : DP_MODES;
|
|
Reg : SUBOP_TYPE;
|
|
end record;
|
|
|
|
signal Halt : std_logic;
|
|
signal ALU_Ctrl : ALU_CTRL_TYPE;
|
|
signal ALU_Regs : REGFILE_TYPE;
|
|
signal ALU_Flags : FLAG_TYPE;
|
|
signal PC_Ctrl : PC_CTRL_TYPE;
|
|
signal SP_Ctrl : SP_CTRL_TYPE;
|
|
signal AS_Ctrl : ADDR_CTRL_TYPE;
|
|
signal DP_Ctrl : DATA_CTRL_TYPE;
|
|
signal INT_Ctrl : INT_CTRL_TYPE;
|
|
signal Int_Req, Int_Ack : std_logic;
|
|
signal Int_RTI : std_logic;
|
|
signal Int_Mask : DATA_TYPE;
|
|
signal PC : ADDRESS_TYPE;
|
|
signal SP : ADDRESS_TYPE;
|
|
signal ISR : ADDRESS_TYPE;
|
|
signal IMM : ADDRESS_TYPE;
|
|
begin
|
|
|
|
Halt_Disabled_fn: if( Enable_CPU_Halt = '0' )generate
|
|
Halt <= '0';
|
|
end generate;
|
|
|
|
Halt_Enabled_fn: if( Enable_CPU_Halt = '1' )generate
|
|
Halt <= CPU_Halt;
|
|
end generate;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- ALU (Arithmetic / Logic Unit
|
|
-- Notes:
|
|
-- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_ALU : block is
|
|
|
|
-- Preinitialization is for simulation only - check actual reset conditions
|
|
signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') );
|
|
signal Flags_D, Flags : FLAG_TYPE := (others => '0');
|
|
signal Mult : ADDRESS_TYPE := (others => '0');
|
|
|
|
signal Sum : std_logic_vector(8 downto 0) := (others => '0');
|
|
signal Addend_A, Addend_B : DATA_TYPE := (others => '0');
|
|
signal Carry : std_logic := '0';
|
|
|
|
begin
|
|
|
|
ALU_Regs <= Regfile;
|
|
ALU_Flags <= Flags;
|
|
|
|
ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum )
|
|
variable Index : integer range 0 to 7 := 0;
|
|
variable Temp : std_logic_vector(8 downto 0);
|
|
begin
|
|
Regfile_D <= Regfile;
|
|
Flags_D <= Flags;
|
|
Addend_A <= x"00";
|
|
Addend_B <= x"00";
|
|
Carry <= '0';
|
|
|
|
Temp := (others => '0');
|
|
Index := conv_integer(ALU_Ctrl.Reg);
|
|
|
|
case ALU_Ctrl.Oper is
|
|
when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z
|
|
Addend_A <= x"01";
|
|
Addend_B <= Regfile(Index);
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Regfile_D(Index) <= Sum(7 downto 0);
|
|
-- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP
|
|
-- doesn't set the N or Z flags. Note that the MSB can be used to
|
|
-- distinguish between the two ALU modes.
|
|
if( ALU_Ctrl.Oper(4) = '0' )then
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
end if;
|
|
|
|
when ALU_UPP2 => -- Rn = Rn + C
|
|
Addend_A <= x"00";
|
|
Addend_B <= Regfile(Index);
|
|
Carry <= Flags(FL_CARRY);
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Regfile_D(Index) <= Sum(7 downto 0);
|
|
|
|
when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z
|
|
Addend_A <= Regfile(0);
|
|
Addend_B <= Regfile(Index);
|
|
Carry <= Flags(FL_CARRY);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
Regfile_D(0) <= Sum(7 downto 0);
|
|
|
|
when ALU_TX0 => -- R0 = Rn : Flags N,Z
|
|
Temp := "0" & Regfile(Index);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(0) <= Temp(7 downto 0);
|
|
|
|
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z
|
|
Temp(7 downto 0) := Regfile(0) or Regfile(Index);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(0) <= Temp(7 downto 0);
|
|
|
|
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z
|
|
Temp(7 downto 0) := Regfile(0) and Regfile(Index);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(0) <= Temp(7 downto 0);
|
|
|
|
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z
|
|
Temp(7 downto 0) := Regfile(0) xor Regfile(Index);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(0) <= Temp(7 downto 0);
|
|
|
|
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z
|
|
Temp := Regfile(Index) & Flags(FL_CARRY);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Temp(8);
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(Index) <= Temp(7 downto 0);
|
|
|
|
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z
|
|
Temp := Regfile(Index)(0) & Flags(FL_CARRY) &
|
|
Regfile(Index)(7 downto 1);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Temp(8);
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(Index) <= Temp(7 downto 0);
|
|
|
|
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z
|
|
Addend_A <= Regfile(Index);
|
|
Addend_B <= x"FF";
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
Regfile_D(Index) <= Sum(7 downto 0);
|
|
|
|
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z
|
|
Addend_A <= Regfile(0);
|
|
Addend_B <= not Regfile(Index);
|
|
Carry <= Flags(FL_CARRY);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
Regfile_D(0) <= Sum(7 downto 0);
|
|
|
|
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z
|
|
Addend_A <= Regfile(0);
|
|
Addend_B <= Regfile(Index);
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Regfile_D(0) <= Sum(7 downto 0);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
|
|
when ALU_STP => -- Sets bit(n) in the Flags register
|
|
Flags_D(Index) <= '1';
|
|
|
|
when ALU_BTT => -- Tests if R0 is negative or zero. No change to R0
|
|
Temp := "0" & Regfile(Index);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
|
|
when ALU_CLP => -- Clears bit(n) in the Flags register
|
|
Flags_D(Index) <= '0';
|
|
|
|
when ALU_T0X => -- Rn = R0 : Flags N,Z
|
|
Temp := "0" & Regfile(0);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Temp(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= Temp(7);
|
|
Regfile_D(Index) <= Temp(7 downto 0);
|
|
|
|
when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z
|
|
Addend_A <= Regfile(0);
|
|
Addend_B <= not Regfile(Index);
|
|
Carry <= '1';
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Sum(7 downto 0) = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_CARRY) <= Sum(8);
|
|
Flags_D(FL_NEG) <= Sum(7);
|
|
|
|
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags N,Z
|
|
Regfile_D(0) <= Mult(7 downto 0);
|
|
Regfile_D(1) <= Mult(15 downto 8);
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( Mult = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
|
|
when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z
|
|
-- The POP instruction doesn't alter the flags, so we need to check
|
|
if( ALU_Ctrl.Oper = ALU_LDI )then
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( ALU_Ctrl.Data = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
|
|
end if;
|
|
Regfile_D(Index) <= ALU_Ctrl.Data;
|
|
|
|
when ALU_LDX => -- R0 <= Data : Flags N,Z
|
|
Flags_D(FL_ZERO) <= '0';
|
|
if( ALU_Ctrl.Data = 0 )then
|
|
Flags_D(FL_ZERO) <= '1';
|
|
end if;
|
|
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
|
|
Regfile_D(0) <= ALU_Ctrl.Data;
|
|
|
|
when ALU_RFLG =>
|
|
Flags_D <= ALU_Ctrl.Data;
|
|
|
|
when others => null;
|
|
end case;
|
|
end process;
|
|
|
|
-- 8-bit Adder with carry
|
|
Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry;
|
|
|
|
-- We need to infer a hardware multipler, so we create a special clocked
|
|
-- process with no reset or clock enable
|
|
M_Reg: process( Clock )
|
|
begin
|
|
if( rising_edge(Clock) )then
|
|
Mult <= Regfile(0) *
|
|
Regfile(conv_integer(ALU_Ctrl.Reg));
|
|
end if;
|
|
end process;
|
|
|
|
S_Regs: process( Reset_n, Clock )
|
|
begin
|
|
if( Reset_n = '0' )then
|
|
for i in 0 to 7 loop
|
|
Regfile(i) <= (others => '0');
|
|
end loop;
|
|
Flags <= x"00";
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
Regfile <= Regfile_D;
|
|
Flags <= Flags_D;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Program Counter
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_PC : block is
|
|
-- Preinitialization is for simulation only - check actual reset conditions
|
|
signal PC_Q : ADDRESS_TYPE := (others => '0');
|
|
signal Rewind_1_2n : std_logic := '0';
|
|
begin
|
|
|
|
PC <= PC_Q;
|
|
|
|
-- This sets the carry input on the "rewind" adder. If the rewind command is
|
|
-- PC_REV2, then we clear the carry. Otherwise, we leave it high.
|
|
Rewind_PC_Calc: process( PC_Ctrl )
|
|
begin
|
|
Rewind_1_2n <= '1';
|
|
if( PC_Ctrl.Oper = PC_REV2 )then
|
|
Rewind_1_2n <= '0';
|
|
end if;
|
|
end process;
|
|
|
|
Program_Counter: process( Reset_n, Clock, Halt, PC_Ctrl, PC_Q, Rewind_1_2n )
|
|
variable PC_Offset_SX : ADDRESS_TYPE := x"0000";
|
|
begin
|
|
PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7));
|
|
PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset;
|
|
if( Reset_n = '0' )then
|
|
PC_Q <= Program_Start_Addr;
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
case PC_Ctrl.Oper is
|
|
when PC_IDLE =>
|
|
null;
|
|
when PC_REV1 | PC_REV2 =>
|
|
PC_Q <= PC_Q - 2 + Rewind_1_2n;
|
|
when PC_INCR =>
|
|
PC_Q <= PC_Q + PC_Offset_SX - 2;
|
|
when PC_LOAD =>
|
|
PC_Q <= PC_Ctrl.Addr;
|
|
end case;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Stack Pointer
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_SP : block is
|
|
-- Preinitialization is for simulation only - check actual reset conditions
|
|
signal SP_Q : ADDRESS_TYPE := (others => '0');
|
|
begin
|
|
|
|
SP <= SP_Q;
|
|
|
|
Stack_Pointer: process( Reset_n, Clock )
|
|
begin
|
|
if( Reset_n = '0' )then
|
|
SP_Q <= Stack_Start_Addr;
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
case SP_Ctrl.Oper is
|
|
when SP_IDLE => null;
|
|
when SP_RSET => SP_Q <= SP_Ctrl.Addr;
|
|
when SP_POP => SP_Q <= SP_Q + 1;
|
|
when SP_PUSH => SP_Q <= SP_Q - 1;
|
|
end case;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Interrupt Controller
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_INT : block is
|
|
|
|
-- Preinitialization is for simulation only - check actual reset conditions
|
|
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr;
|
|
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2;
|
|
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4;
|
|
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6;
|
|
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8;
|
|
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10;
|
|
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12;
|
|
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14;
|
|
|
|
signal i_Ints : INTERRUPT_BUNDLE := (others => '0');
|
|
signal Pending_D : INTERRUPT_BUNDLE := (others => '0');
|
|
signal Pending : INTERRUPT_BUNDLE := (others => '0');
|
|
signal Wait_for_FSM : std_logic := '0';
|
|
signal Mask : std_logic_vector(6 downto 0) := (others => '0');
|
|
signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0');
|
|
|
|
type INT_HIST is array (0 to 8) of integer range 0 to 7;
|
|
signal History : INT_HIST := (others => 0);
|
|
signal Int_Trig : std_logic := '0';
|
|
signal Hist_Level : integer range 0 to 7 := 0;
|
|
signal Hist_Ptr : integer range 0 to 8 := 0;
|
|
|
|
begin
|
|
Int_Mask <= Mask & '1';
|
|
ISR <= ISR_Q;
|
|
|
|
Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl )
|
|
variable S_Mask : std_logic_vector(7 downto 0);
|
|
begin
|
|
S_Mask := Mask & '1';
|
|
for i in 0 to 7 loop
|
|
i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i))
|
|
and S_Mask(i);
|
|
end loop;
|
|
end process;
|
|
|
|
Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl,
|
|
History, Hist_Ptr )
|
|
begin
|
|
ISR_D <= ISR_Q;
|
|
Pending_D <= Pending;
|
|
Int_Trig <= '0';
|
|
Hist_Level <= 0;
|
|
|
|
-- Record any incoming interrupts to the pending buffer
|
|
if( i_Ints > 0 )then
|
|
Pending_D <= i_Ints;
|
|
end if;
|
|
|
|
-- Incr_ISR allows the CPU Core to advance the vector address to pop the
|
|
-- lower half of the address.
|
|
if( INT_Ctrl.Incr_ISR = '1' )then
|
|
ISR_D <= ISR_Q + 1;
|
|
end if;
|
|
|
|
-- Only mess with interrupt signals while the CPU core is not currently
|
|
-- working with the ISR address (ie, not loading a new service vector)
|
|
if( Wait_for_FSM = '0' and Pending > 0 )then
|
|
if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then
|
|
ISR_D <= INT_VECTOR_0;
|
|
Pending_D(0) <= '0';
|
|
Hist_Level <= 0;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then
|
|
ISR_D <= INT_VECTOR_1;
|
|
Pending_D(1) <= '0';
|
|
Hist_Level <= 1;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then
|
|
ISR_D <= INT_VECTOR_2;
|
|
Pending_D(2) <= '0';
|
|
Hist_Level <= 2;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then
|
|
ISR_D <= INT_VECTOR_3;
|
|
Pending_D(3) <= '0';
|
|
Hist_Level <= 3;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then
|
|
ISR_D <= INT_VECTOR_4;
|
|
Pending_D(4) <= '0';
|
|
Hist_Level <= 4;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then
|
|
ISR_D <= INT_VECTOR_5;
|
|
Pending_D(5) <= '0';
|
|
Hist_Level <= 5;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then
|
|
ISR_D <= INT_VECTOR_6;
|
|
Pending_D(6) <= '0';
|
|
Hist_Level <= 6;
|
|
Int_Trig <= '1';
|
|
elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then
|
|
ISR_D <= INT_VECTOR_7;
|
|
Pending_D(7) <= '0';
|
|
Hist_Level <= 7;
|
|
Int_Trig <= '1';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
S_Regs: process( Reset_n, Clock )
|
|
begin
|
|
if( Reset_n = '0' )then
|
|
Int_Req <= '0';
|
|
Pending <= x"00";
|
|
Wait_for_FSM <= '0';
|
|
Mask <= Default_Interrupt_Mask(7 downto 1);
|
|
ISR_Q <= INT_VECTOR_0;
|
|
for i in 0 to 8 loop
|
|
History(i) <= 0;
|
|
end loop;
|
|
Hist_Ptr <= 0;
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
Int_Req <= Wait_for_FSM and (not Int_Ack);
|
|
Pending <= Pending_D;
|
|
-- Reset the Wait_for_FSM flag on Int_Ack
|
|
if( Int_Ack = '1' )then
|
|
Wait_for_FSM <= '0';
|
|
-- Set the Wait_for_FSM flag on Int_Trig
|
|
elsif( Int_Trig = '1' )then
|
|
Wait_for_FSM <= '1';
|
|
end if;
|
|
if( INT_Ctrl.Mask_Set = '1' )then
|
|
Mask <= INT_Ctrl.Mask_Data(7 downto 1);
|
|
end if;
|
|
ISR_Q <= ISR_D;
|
|
if( Int_Trig = '1' )then
|
|
History(Hist_Ptr+1) <= Hist_Level;
|
|
Hist_Ptr <= Hist_Ptr + 1;
|
|
elsif( Int_RTI = '1' and Hist_Ptr > 0 )then
|
|
Hist_Ptr <= Hist_Ptr - 1;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- State Logic / Instruction Decoding & Execution
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_FSM : block is
|
|
|
|
-- These are all the primary instructions/op-codes (upper 5-bits)
|
|
constant OP_INC : OPCODE_TYPE := "00000";
|
|
constant OP_ADC : OPCODE_TYPE := "00001";
|
|
constant OP_TX0 : OPCODE_TYPE := "00010";
|
|
constant OP_OR : OPCODE_TYPE := "00011";
|
|
constant OP_AND : OPCODE_TYPE := "00100";
|
|
constant OP_XOR : OPCODE_TYPE := "00101";
|
|
constant OP_ROL : OPCODE_TYPE := "00110";
|
|
constant OP_ROR : OPCODE_TYPE := "00111";
|
|
constant OP_DEC : OPCODE_TYPE := "01000";
|
|
constant OP_SBC : OPCODE_TYPE := "01001";
|
|
constant OP_ADD : OPCODE_TYPE := "01010";
|
|
constant OP_STP : OPCODE_TYPE := "01011";
|
|
constant OP_BTT : OPCODE_TYPE := "01100";
|
|
constant OP_CLP : OPCODE_TYPE := "01101";
|
|
constant OP_T0X : OPCODE_TYPE := "01110";
|
|
constant OP_CMP : OPCODE_TYPE := "01111";
|
|
constant OP_PSH : OPCODE_TYPE := "10000";
|
|
constant OP_POP : OPCODE_TYPE := "10001";
|
|
constant OP_BR0 : OPCODE_TYPE := "10010";
|
|
constant OP_BR1 : OPCODE_TYPE := "10011";
|
|
constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR
|
|
constant OP_INT : OPCODE_TYPE := "10101";
|
|
constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2
|
|
constant OP_STK : OPCODE_TYPE := "10111";
|
|
constant OP_UPP : OPCODE_TYPE := "11000";
|
|
constant OP_STA : OPCODE_TYPE := "11001";
|
|
constant OP_STX : OPCODE_TYPE := "11010";
|
|
constant OP_STO : OPCODE_TYPE := "11011";
|
|
constant OP_LDI : OPCODE_TYPE := "11100";
|
|
constant OP_LDA : OPCODE_TYPE := "11101";
|
|
constant OP_LDX : OPCODE_TYPE := "11110";
|
|
constant OP_LDO : OPCODE_TYPE := "11111";
|
|
|
|
-- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits)
|
|
constant SOP_RSP : SUBOP_TYPE := "000";
|
|
constant SOP_RTS : SUBOP_TYPE := "001";
|
|
constant SOP_RTI : SUBOP_TYPE := "010";
|
|
constant SOP_BRK : SUBOP_TYPE := "011";
|
|
constant SOP_JMP : SUBOP_TYPE := "100";
|
|
constant SOP_SMSK : SUBOP_TYPE := "101";
|
|
constant SOP_GMSK : SUBOP_TYPE := "110";
|
|
constant SOP_JSR : SUBOP_TYPE := "111";
|
|
|
|
-- Preinitialization is for simulation only - check actual reset conditions
|
|
type CPU_STATES is (
|
|
-- Instruction fetch & Decode
|
|
PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE,
|
|
-- Branching
|
|
BRN_C1, DBNZ_C1, JMP_C1, JMP_C2,
|
|
-- Loads
|
|
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3,
|
|
-- Stores
|
|
STA_C1, STA_C2, STA_C3, STO_C1, STX_C1, STX_C2,
|
|
-- 2-cycle math
|
|
MUL_C1, UPP_C1,
|
|
-- Stack
|
|
PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4,
|
|
-- Subroutines & Interrupts
|
|
WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2,
|
|
RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6,
|
|
-- Debugging
|
|
BRK_C1 );
|
|
|
|
signal CPU_Next_State : CPU_STATES := PIPE_FILL_0;
|
|
signal CPU_State : CPU_STATES := PIPE_FILL_0;
|
|
|
|
type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2,
|
|
CACHE_PREFETCH );
|
|
signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE;
|
|
|
|
signal Opcode : OPCODE_TYPE := (others => '0');
|
|
signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0');
|
|
-- synthesis translate_off
|
|
signal Instruction : DATA_TYPE := (others => '0');
|
|
-- synthesis translate_on
|
|
signal Prefetch : DATA_TYPE := (others => '0');
|
|
signal Operand1, Operand2 : DATA_TYPE := (others => '0');
|
|
|
|
signal Instr_Prefetch : std_logic := '0';
|
|
|
|
signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0';
|
|
signal Int_RTI_D : std_logic := '0';
|
|
|
|
begin
|
|
|
|
-- synthesis translate_off
|
|
Instruction <= Opcode & SubOp;
|
|
-- synthesis translate_on
|
|
|
|
State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode,
|
|
SubOp , SubOp_p1, Operand1, Operand2, Int_Req )
|
|
variable Reg, Reg_1 : integer range 0 to 7 := 0;
|
|
variable Offset_SX : ADDRESS_TYPE;
|
|
begin
|
|
CPU_Next_State <= CPU_State;
|
|
Cache_Ctrl <= CACHE_IDLE;
|
|
--
|
|
ALU_Ctrl.Oper <= ALU_IDLE;
|
|
ALU_Ctrl.Reg <= ACCUM;
|
|
ALU_Ctrl.Data <= x"00";
|
|
--
|
|
PC_Ctrl.Oper <= PC_IDLE;
|
|
|
|
PC_Ctrl.Offset <= x"03";
|
|
PC_Ctrl.Addr <= x"0000";
|
|
--
|
|
SP_Ctrl.Oper <= SP_IDLE;
|
|
--
|
|
AS_Ctrl.Src <= ADDR_PC;
|
|
IMM <= x"0000";
|
|
--
|
|
DP_Ctrl.Src <= DATA_IDLE;
|
|
DP_Ctrl.Reg <= ACCUM;
|
|
--
|
|
INT_Ctrl.Mask_Set <= '0';
|
|
INT_Ctrl.Soft_Ints <= x"00";
|
|
INT_Ctrl.Incr_ISR <= '0';
|
|
Ack_D <= '0';
|
|
Int_RTI_D <= '0';
|
|
|
|
-- Assign the most common value of Reg and Reg1 outside the case structure
|
|
-- to simplify things.
|
|
Reg := conv_integer(SubOp);
|
|
Reg_1 := conv_integer(SubOp_p1);
|
|
Offset_SX(15 downto 0) := (others => Operand1(7));
|
|
Offset_SX(7 downto 0) := Operand1;
|
|
|
|
case CPU_State is
|
|
-------------------------------------------------------------------------------
|
|
-- Initial Instruction fetch & decode
|
|
-------------------------------------------------------------------------------
|
|
when PIPE_FILL_0 =>
|
|
CPU_Next_State <= PIPE_FILL_1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when PIPE_FILL_1 =>
|
|
CPU_Next_State <= PIPE_FILL_2;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when PIPE_FILL_2 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when INSTR_DECODE =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
|
|
case Opcode is
|
|
when OP_PSH =>
|
|
CPU_Next_State <= PSH_C1;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_REV1;
|
|
DP_Ctrl.Src <= DATA_REG;
|
|
DP_Ctrl.Reg <= SubOp;
|
|
|
|
when OP_POP =>
|
|
CPU_Next_State <= POP_C1;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
SP_Ctrl.Oper <= SP_POP;
|
|
|
|
when OP_BR0 | OP_BR1 =>
|
|
CPU_Next_State <= BRN_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when OP_DBNZ =>
|
|
CPU_Next_State <= DBNZ_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_DEC;
|
|
ALU_Ctrl.Reg <= SubOp;
|
|
|
|
when OP_INT =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
if( Int_Mask(Reg) = '1' )then
|
|
CPU_Next_State <= WAIT_FOR_INT;
|
|
INT_Ctrl.Soft_Ints(Reg) <= '1';
|
|
end if;
|
|
|
|
when OP_STK =>
|
|
case SubOp is
|
|
when SOP_RSP =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
SP_Ctrl.Oper <= SP_RSET;
|
|
|
|
when SOP_RTS | SOP_RTI =>
|
|
CPU_Next_State <= RTS_C1;
|
|
Cache_Ctrl <= CACHE_IDLE;
|
|
SP_Ctrl.Oper <= SP_POP;
|
|
|
|
when SOP_BRK =>
|
|
CPU_Next_State <= BRK_C1;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
|
|
when SOP_JMP =>
|
|
CPU_Next_State <= JMP_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
|
|
when SOP_SMSK =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
INT_Ctrl.Mask_Set <= '1';
|
|
|
|
when SOP_GMSK =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper<= ALU_LDI;
|
|
ALU_Ctrl.Reg <= ACCUM;
|
|
ALU_Ctrl.Data<= Int_Mask;
|
|
|
|
when SOP_JSR =>
|
|
CPU_Next_State <= JSR_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
DP_Ctrl.Src <= DATA_PC;
|
|
DP_Ctrl.Reg <= ACCUM+1;
|
|
|
|
when others => null;
|
|
end case;
|
|
|
|
when OP_MUL =>
|
|
CPU_Next_State <= MUL_C1;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
|
|
-- We need to back the PC up by 1, and all it to refill. An
|
|
-- unfortunate consequence of the pipelining. We can get away with
|
|
-- only 1 extra clock by pre-fetching the next instruction, though
|
|
PC_Ctrl.Oper <= PC_REV1;
|
|
-- Multiplication is automatic, but requires a single clock cycle.
|
|
-- We need to specify the register for Rn (R1:R0 = R0 * Rn) now,
|
|
-- but will issue the multiply command on the next clock to copy
|
|
-- the results to the specified register.
|
|
ALU_Ctrl.Oper <= ALU_IDLE;
|
|
ALU_Ctrl.Reg <= SubOp; -- Rn
|
|
|
|
when OP_UPP =>
|
|
CPU_Next_State <= UPP_C1;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_REV1;
|
|
ALU_Ctrl.Oper <= Opcode;
|
|
ALU_Ctrl.Reg <= SubOp;
|
|
|
|
when OP_LDA =>
|
|
CPU_Next_State <= LDA_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
|
|
when OP_LDI =>
|
|
CPU_Next_State <= LDI_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when OP_LDO =>
|
|
CPU_Next_State <= LDO_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
|
|
when OP_LDX =>
|
|
CPU_Next_State <= LDX_C1;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
-- If auto-increment is disabled, use the specified register pair,
|
|
-- otherwise, for an odd:even pair, and issue the first half of
|
|
-- a UPP instruction to the ALU
|
|
if( Enable_Auto_Increment = '0' )then
|
|
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
|
|
else
|
|
Reg := conv_integer(SubOp(2 downto 1) & '0');
|
|
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
|
|
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
|
|
if( SubOp(0) = '1' )then
|
|
ALU_Ctrl.Oper<= ALU_UPP;
|
|
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
|
|
end if;
|
|
end if;
|
|
|
|
when OP_STA =>
|
|
CPU_Next_State <= STA_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
|
|
when OP_STO =>
|
|
CPU_Next_State <= STO_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
DP_Ctrl.Src <= DATA_REG;
|
|
DP_Ctrl.Reg <= ACCUM;
|
|
|
|
when OP_STX =>
|
|
CPU_Next_State <= STX_C1;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_REV2;
|
|
DP_Ctrl.Src <= DATA_REG;
|
|
DP_Ctrl.Reg <= ACCUM;
|
|
|
|
when others =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= Opcode;
|
|
ALU_Ctrl.Reg <= SubOp;
|
|
|
|
end case;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP )
|
|
-------------------------------------------------------------------------------
|
|
|
|
when BRN_C1 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
if( ALU_Flags(Reg) = Opcode(0) )then
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
Cache_Ctrl <= CACHE_IDLE;
|
|
PC_Ctrl.Offset <= Operand1;
|
|
end if;
|
|
|
|
when DBNZ_C1 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
if( ALU_Flags(FL_ZERO) = '0' )then
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
Cache_Ctrl <= CACHE_IDLE;
|
|
PC_Ctrl.Offset <= Operand1;
|
|
end if;
|
|
|
|
when JMP_C1 =>
|
|
CPU_Next_State <= JMP_C2;
|
|
Cache_Ctrl <= CACHE_OPER2;
|
|
|
|
when JMP_C2 =>
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
PC_Ctrl.Oper <= PC_LOAD;
|
|
PC_Ctrl.Addr <= Operand2 & Operand1;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Data Storage - Load from memory (LDA, LDI, LDO, LDX)
|
|
-------------------------------------------------------------------------------
|
|
|
|
when LDA_C1 =>
|
|
CPU_Next_State <= LDA_C2;
|
|
Cache_Ctrl <= CACHE_OPER2;
|
|
|
|
when LDA_C2 =>
|
|
CPU_Next_State <= LDA_C3;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
IMM <= Operand2 & Operand1;
|
|
|
|
when LDA_C3 =>
|
|
CPU_Next_State <= LDA_C4;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when LDA_C4 =>
|
|
CPU_Next_State <= LDI_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when LDI_C1 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_LDI;
|
|
ALU_Ctrl.Reg <= SubOp;
|
|
ALU_Ctrl.Data <= Operand1;
|
|
|
|
when LDO_C1 =>
|
|
CPU_Next_State <= LDX_C1;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
if( Enable_Auto_Increment = '1' )then
|
|
Reg := conv_integer(SubOp(2 downto 1) & '0');
|
|
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
|
|
if( SubOp(0) = '1' )then
|
|
ALU_Ctrl.Oper<= ALU_UPP;
|
|
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
|
|
end if;
|
|
else
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
|
|
end if;
|
|
|
|
when LDX_C1 =>
|
|
CPU_Next_State <= LDX_C2;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when LDX_C2 =>
|
|
CPU_Next_State <= LDX_C3;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
|
|
when LDX_C3 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_LDX;
|
|
ALU_Ctrl.Reg <= ACCUM;
|
|
ALU_Ctrl.Data <= Operand1;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Data Storage - Load from memory (STA, STO, STX)
|
|
-------------------------------------------------------------------------------
|
|
when STA_C1 =>
|
|
CPU_Next_State <= STA_C2;
|
|
Cache_Ctrl <= CACHE_OPER2;
|
|
DP_Ctrl.Src <= DATA_REG;
|
|
DP_Ctrl.Reg <= SubOp;
|
|
|
|
when STA_C2 =>
|
|
CPU_Next_State <= STA_C3;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
IMM <= Operand2 & Operand1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when STA_C3 =>
|
|
CPU_Next_State <= PIPE_FILL_2;
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when STO_C1 =>
|
|
Cache_Ctrl <= CACHE_PREFETCH;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
-- If auto-increment is disabled, just load the registers normally
|
|
if( Enable_Auto_Increment = '0' )then
|
|
CPU_Next_State <= PIPE_FILL_1;
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
|
|
-- Otherwise, enforce the even register rule, and check the LSB to see
|
|
-- if we should perform the auto-increment on the register pair
|
|
else
|
|
CPU_Next_State <= STX_C2;
|
|
Reg := conv_integer(SubOp(2 downto 1) & '0');
|
|
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
|
|
if( SubOp(0) = '1' )then
|
|
ALU_Ctrl.Oper <= ALU_UPP;
|
|
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
|
|
end if;
|
|
end if;
|
|
|
|
when STX_C1 =>
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
AS_Ctrl.Src <= ADDR_IMM;
|
|
-- If auto-increment is disabled, just load the registers normally
|
|
if( Enable_Auto_Increment = '0' )then
|
|
CPU_Next_State <= PIPE_FILL_1;
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
|
|
-- Otherwise, enforce the even register rule, and check the LSB to see
|
|
-- if we should perform the auto-increment on the register pair
|
|
else
|
|
CPU_Next_State <= STX_C2;
|
|
Reg := conv_integer(SubOp(2 downto 1) & '0');
|
|
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
|
|
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
|
|
if( SubOp(0) = '1' )then
|
|
ALU_Ctrl.Oper <= ALU_UPP;
|
|
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
|
|
end if;
|
|
end if;
|
|
|
|
when STX_C2 =>
|
|
CPU_Next_State <= PIPE_FILL_2;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_UPP2;
|
|
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1';
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Multi-Cycle Math Operations (UPP, MUL)
|
|
-------------------------------------------------------------------------------
|
|
-- Because we have to backup the pipeline by 1 to refetch the 2nd
|
|
-- instruction/first operand, we have to return through PF2
|
|
|
|
when MUL_C1 =>
|
|
CPU_Next_State <= PIPE_FILL_2;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_MUL;
|
|
|
|
when UPP_C1 =>
|
|
CPU_Next_State <= PIPE_FILL_2;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_UPP2;
|
|
ALU_Ctrl.Reg <= SubOp_p1;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Basic Stack Manipulation (PSH, POP, RSP)
|
|
-------------------------------------------------------------------------------
|
|
when PSH_C1 =>
|
|
CPU_Next_State <= PIPE_FILL_1;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
SP_Ctrl.Oper <= SP_PUSH;
|
|
|
|
when POP_C1 =>
|
|
CPU_Next_State <= POP_C2;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
|
|
when POP_C2 =>
|
|
CPU_Next_State <= POP_C3;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when POP_C3 =>
|
|
CPU_Next_State <= POP_C4;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
|
|
when POP_C4 =>
|
|
CPU_Next_State <= INSTR_DECODE;
|
|
Cache_Ctrl <= CACHE_INSTR;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_POP;
|
|
ALU_Ctrl.Reg <= SubOp;
|
|
ALU_Ctrl.Data <= Operand1;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Subroutines & Interrupts (RTS, JSR)
|
|
-------------------------------------------------------------------------------
|
|
when WAIT_FOR_INT => -- For soft interrupts only, halt the PC
|
|
CPU_Next_State <= WAIT_FOR_INT;
|
|
|
|
when ISR_C1 =>
|
|
CPU_Next_State <= ISR_C2;
|
|
AS_Ctrl.Src <= ADDR_ISR;
|
|
INT_Ctrl.Incr_ISR <= '1';
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
-- Rewind the PC by 3 to compensate for the pipeline registers
|
|
PC_Ctrl.Offset <= x"FF";
|
|
|
|
when ISR_C2 =>
|
|
CPU_Next_State <= ISR_C3;
|
|
AS_Ctrl.Src <= ADDR_ISR;
|
|
DP_Ctrl.Src <= DATA_FLAG;
|
|
|
|
when ISR_C3 =>
|
|
CPU_Next_State <= JSR_C1;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
SP_Ctrl.Oper <= SP_PUSH;
|
|
DP_Ctrl.Src <= DATA_PC;
|
|
DP_Ctrl.Reg <= ACCUM+1;
|
|
ALU_Ctrl.Oper <= ALU_STP;
|
|
ALU_Ctrl.Reg <= INT_FLAG;
|
|
Ack_D <= '1';
|
|
|
|
when JSR_C1 =>
|
|
CPU_Next_State <= JSR_C2;
|
|
Cache_Ctrl <= CACHE_OPER2;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
SP_Ctrl.Oper <= SP_PUSH;
|
|
DP_Ctrl.Src <= DATA_PC;
|
|
DP_Ctrl.Reg <= ACCUM;
|
|
|
|
when JSR_C2 =>
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
SP_Ctrl.Oper <= SP_PUSH;
|
|
PC_Ctrl.Oper <= PC_LOAD;
|
|
PC_Ctrl.Addr <= Operand2 & Operand1;
|
|
|
|
when RTS_C1 =>
|
|
CPU_Next_State <= RTS_C2;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
SP_Ctrl.Oper <= SP_POP;
|
|
|
|
when RTS_C2 =>
|
|
CPU_Next_State <= RTS_C3;
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
-- if this is an RTI, then we need to POP the flags
|
|
if( SubOp = SOP_RTI )then
|
|
SP_Ctrl.Oper <= SP_POP;
|
|
end if;
|
|
|
|
when RTS_C3 =>
|
|
CPU_Next_State <= RTS_C4;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
-- It doesn't really matter what is on the address bus for RTS, while
|
|
-- it does for RTI, so we make this the default
|
|
AS_Ctrl.Src <= ADDR_SP;
|
|
|
|
when RTS_C4 =>
|
|
CPU_Next_State <= RTS_C5;
|
|
Cache_Ctrl <= CACHE_OPER2;
|
|
|
|
when RTS_C5 =>
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
PC_Ctrl.Oper <= PC_LOAD;
|
|
PC_Ctrl.Addr <= Operand2 & Operand1;
|
|
if( SubOp = SOP_RTI )then
|
|
CPU_Next_State <= RTI_C6;
|
|
Cache_Ctrl <= CACHE_OPER1;
|
|
end if;
|
|
|
|
when RTI_C6 =>
|
|
CPU_Next_State <= PIPE_FILL_1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
ALU_Ctrl.Oper <= ALU_RFLG;
|
|
ALU_Ctrl.Data <= Operand1;
|
|
PC_Ctrl.Oper <= PC_INCR;
|
|
Int_RTI_D <= '1';
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Debugging (BRK) Performs a 5-clock NOP
|
|
-------------------------------------------------------------------------------
|
|
when BRK_C1 =>
|
|
CPU_Next_State <= PIPE_FILL_0;
|
|
|
|
when others => null;
|
|
end case;
|
|
|
|
-- Interrupt service routines can only begin during the decode and wait
|
|
-- states to avoid corruption due to incomplete instruction execution
|
|
if( Int_Req = '1' )then
|
|
if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then
|
|
CPU_Next_State <= ISR_C1;
|
|
end if;
|
|
end if;
|
|
|
|
end process;
|
|
|
|
S_Regs: process( Reset_n, Clock )
|
|
begin
|
|
if( Reset_n = '0' )then
|
|
CPU_State <= PIPE_FILL_0;
|
|
Opcode <= OP_INC;
|
|
SubOp <= ACCUM;
|
|
SubOp_p1 <= ACCUM;
|
|
Operand1 <= x"00";
|
|
Operand2 <= x"00";
|
|
Instr_Prefetch <= '0';
|
|
Prefetch <= x"00";
|
|
|
|
Ack_Q <= '0';
|
|
Ack_Q1 <= '0';
|
|
Int_Ack <= '0';
|
|
Int_RTI <= '0';
|
|
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
CPU_State <= CPU_Next_State;
|
|
case Cache_Ctrl is
|
|
when CACHE_INSTR =>
|
|
Opcode <= Rd_Data(7 downto 3);
|
|
SubOp <= Rd_Data(2 downto 0);
|
|
SubOp_p1 <= Rd_Data(2 downto 0) + 1;
|
|
if( Instr_Prefetch = '1' )then
|
|
Opcode <= Prefetch(7 downto 3);
|
|
SubOp <= Prefetch(2 downto 0);
|
|
SubOp_p1 <= Prefetch(2 downto 0) + 1;
|
|
Instr_Prefetch <= '0';
|
|
end if;
|
|
when CACHE_OPER1 =>
|
|
Operand1 <= Rd_Data;
|
|
when CACHE_OPER2 =>
|
|
Operand2 <= Rd_Data;
|
|
when CACHE_PREFETCH =>
|
|
Prefetch <= Rd_Data;
|
|
Instr_Prefetch <= '1';
|
|
when CACHE_IDLE =>
|
|
null;
|
|
end case;
|
|
|
|
-- Interrupt signalling registers
|
|
Ack_Q <= Ack_D;
|
|
Ack_Q1 <= Ack_Q;
|
|
Int_Ack <= Ack_Q1;
|
|
Int_RTI <= Int_RTI_D;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Fixed in-line statements for the interrupt mask, and stack pointer address
|
|
-------------------------------------------------------------------------------
|
|
|
|
-- The interrupt control mask is always sourced out of R0
|
|
INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM));
|
|
|
|
-- The original RSP instruction simply reset the stack pointer to the preset
|
|
-- address set at compile time. However, with little extra effort, we can
|
|
-- modify the instruction to allow the stack pointer to be moved anywhere in
|
|
-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as
|
|
-- a fixed source
|
|
|
|
Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move = '1' )generate
|
|
SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0);
|
|
end generate;
|
|
|
|
Normal_Stack_Reset_fn: if( Allow_Stack_Address_Move = '0' )generate
|
|
SP_Ctrl.Addr <= Stack_Start_Addr;
|
|
end generate;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- Address Source Mux
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_AS : block is
|
|
begin
|
|
|
|
Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR )
|
|
variable PC_Mux, SP_Mux : ADDRESS_TYPE;
|
|
variable IMM_Mux, ISR_Mux: ADDRESS_TYPE;
|
|
begin
|
|
PC_Mux := (others => '0');
|
|
SP_Mux := (others => '0');
|
|
IMM_Mux := (others => '0');
|
|
ISR_Mux := (others => '0');
|
|
|
|
case AS_Ctrl.Src is
|
|
when ADDR_PC =>
|
|
PC_Mux := PC;
|
|
when ADDR_SP =>
|
|
SP_Mux := SP;
|
|
when ADDR_IMM =>
|
|
IMM_Mux := IMM;
|
|
when ADDR_ISR =>
|
|
ISR_Mux := ISR;
|
|
end case;
|
|
|
|
for i in 0 to 15 loop
|
|
Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or
|
|
ISR_Mux(i);
|
|
end loop;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
-------------------------------------------------------------------------------
|
|
-- (Write) Data Path
|
|
-------------------------------------------------------------------------------
|
|
|
|
Open8_DP : block is
|
|
signal Wr_Data_D : DATA_TYPE := (others => '0');
|
|
signal Wr_Enable_D : std_logic := '0';
|
|
begin
|
|
|
|
Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC )
|
|
variable Reg_Mux, PC_Mux : DATA_TYPE;
|
|
variable Flag_Mux : DATA_TYPE;
|
|
begin
|
|
Reg_Mux := (others => '0');
|
|
Flag_Mux := (others => '0');
|
|
PC_Mux := (others => '0');
|
|
Wr_Enable_D <= '0';
|
|
|
|
case DP_Ctrl.Src is
|
|
when DATA_IDLE =>
|
|
null;
|
|
when DATA_REG =>
|
|
Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg));
|
|
Wr_Enable_D <= '1';
|
|
when DATA_FLAG =>
|
|
Flag_Mux := ALU_Flags;
|
|
Wr_Enable_D <= '1';
|
|
when DATA_PC =>
|
|
Wr_Enable_D <= '1';
|
|
if( DP_Ctrl.Reg = ACCUM )then
|
|
PC_Mux := PC(7 downto 0);
|
|
else
|
|
PC_Mux := PC(15 downto 8);
|
|
end if;
|
|
end case;
|
|
|
|
for i in 0 to 7 loop
|
|
Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i);
|
|
end loop;
|
|
end process;
|
|
|
|
S_Regs: process( Reset_n, Clock )
|
|
begin
|
|
if( Reset_n = '0' )then
|
|
Wr_Data <= (others => '0');
|
|
Wr_Enable <= '0';
|
|
Rd_Enable <= '1';
|
|
elsif( rising_edge(Clock) )then
|
|
if( Halt = '0' )then
|
|
Wr_Data <= Wr_Data_D;
|
|
Wr_Enable <= Wr_Enable_D;
|
|
Rd_Enable <= not Wr_Enable_D;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
end block;
|
|
|
|
end rtl;
|
|
|
No newline at end of file
|
No newline at end of file
|