Line 83... |
Line 83... |
EMPTY_HOWTO (0x28),
|
EMPTY_HOWTO (0x28),
|
EMPTY_HOWTO (0x29),
|
EMPTY_HOWTO (0x29),
|
EMPTY_HOWTO (0x2a),
|
EMPTY_HOWTO (0x2a),
|
EMPTY_HOWTO (0x2b),
|
EMPTY_HOWTO (0x2b),
|
EMPTY_HOWTO (0x2c),
|
EMPTY_HOWTO (0x2c),
|
EMPTY_HOWTO (0x2d),
|
RL78REL (RH_RELAX, 0, 0, 0, dont, FALSE),
|
|
|
EMPTY_HOWTO (0x2e),
|
EMPTY_HOWTO (0x2e),
|
EMPTY_HOWTO (0x2f),
|
EMPTY_HOWTO (0x2f),
|
EMPTY_HOWTO (0x30),
|
EMPTY_HOWTO (0x30),
|
EMPTY_HOWTO (0x31),
|
EMPTY_HOWTO (0x31),
|
Line 232... |
Line 232... |
{ BFD_RELOC_RL78_ABS16_REV, R_RL78_ABS16_REV },
|
{ BFD_RELOC_RL78_ABS16_REV, R_RL78_ABS16_REV },
|
{ BFD_RELOC_RL78_ABS32, R_RL78_ABS32 },
|
{ BFD_RELOC_RL78_ABS32, R_RL78_ABS32 },
|
{ BFD_RELOC_RL78_ABS32_REV, R_RL78_ABS32_REV },
|
{ BFD_RELOC_RL78_ABS32_REV, R_RL78_ABS32_REV },
|
{ BFD_RELOC_RL78_ABS16UL, R_RL78_ABS16UL },
|
{ BFD_RELOC_RL78_ABS16UL, R_RL78_ABS16UL },
|
{ BFD_RELOC_RL78_ABS16UW, R_RL78_ABS16UW },
|
{ BFD_RELOC_RL78_ABS16UW, R_RL78_ABS16UW },
|
{ BFD_RELOC_RL78_ABS16U, R_RL78_ABS16U }
|
{ BFD_RELOC_RL78_ABS16U, R_RL78_ABS16U },
|
|
{ BFD_RELOC_RL78_RELAX, R_RL78_RH_RELAX }
|
};
|
};
|
|
|
static reloc_howto_type *
|
static reloc_howto_type *
|
rl78_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
rl78_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
|
bfd_reloc_code_real_type code)
|
bfd_reloc_code_real_type code)
|
Line 494... |
Line 495... |
if (h != NULL)
|
if (h != NULL)
|
plt_offset = &h->plt.offset;
|
plt_offset = &h->plt.offset;
|
else
|
else
|
plt_offset = elf_local_got_offsets (input_bfd) + r_symndx;
|
plt_offset = elf_local_got_offsets (input_bfd) + r_symndx;
|
|
|
/* printf("%s: rel %x plt %d\n", h ? h->root.root.string : "(none)",
|
if (! valid_16bit_address (relocation))
|
relocation, *plt_offset);*/
|
|
if (valid_16bit_address (relocation))
|
|
{
|
|
/* If the symbol is in range for a 16-bit address, we should
|
|
have deallocated the plt entry in relax_section. */
|
|
BFD_ASSERT (*plt_offset == (bfd_vma) -1);
|
|
}
|
|
else
|
|
{
|
{
|
/* If the symbol is out of range for a 16-bit address,
|
|
we must have allocated a plt entry. */
|
|
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
|
|
|
|
/* If this is the first time we've processed this symbol,
|
/* If this is the first time we've processed this symbol,
|
fill in the plt entry with the correct symbol address. */
|
fill in the plt entry with the correct symbol address. */
|
if ((*plt_offset & 1) == 0)
|
if ((*plt_offset & 1) == 0)
|
{
|
{
|
unsigned int x;
|
unsigned int x;
|
Line 573... |
Line 562... |
switch (r_type)
|
switch (r_type)
|
{
|
{
|
case R_RL78_NONE:
|
case R_RL78_NONE:
|
break;
|
break;
|
|
|
|
case R_RL78_RH_RELAX:
|
|
break;
|
|
|
case R_RL78_DIR8S_PCREL:
|
case R_RL78_DIR8S_PCREL:
|
RANGE (-128, 127);
|
RANGE (-128, 127);
|
OP (0) = relocation;
|
OP (0) = relocation;
|
break;
|
break;
|
|
|
Line 654... |
Line 646... |
OP (2) = relocation >> 8;
|
OP (2) = relocation >> 8;
|
OP (1) = relocation >> 16;
|
OP (1) = relocation >> 16;
|
OP (0) = relocation >> 24;
|
OP (0) = relocation >> 24;
|
break;
|
break;
|
|
|
|
case R_RL78_RH_SFR:
|
|
RANGE (0xfff00, 0xfffff);
|
|
OP (0) = relocation & 0xff;
|
|
break;
|
|
|
|
case R_RL78_RH_SADDR:
|
|
RANGE (0xffe20, 0xfff1f);
|
|
OP (0) = relocation & 0xff;
|
|
break;
|
|
|
/* Complex reloc handling: */
|
/* Complex reloc handling: */
|
|
|
case R_RL78_ABS32:
|
case R_RL78_ABS32:
|
RL78_STACK_POP (relocation);
|
RL78_STACK_POP (relocation);
|
OP (0) = relocation;
|
OP (0) = relocation;
|
Line 1130... |
Line 1132... |
case SHN_ABS: st_shndx_str = "SHN_ABS";
|
case SHN_ABS: st_shndx_str = "SHN_ABS";
|
case SHN_COMMON: st_shndx_str = "SHN_COMMON";
|
case SHN_COMMON: st_shndx_str = "SHN_COMMON";
|
case SHN_UNDEF: st_shndx_str = "SHN_UNDEF";
|
case SHN_UNDEF: st_shndx_str = "SHN_UNDEF";
|
default: st_shndx_str = "";
|
default: st_shndx_str = "";
|
}
|
}
|
|
|
printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
|
|
"st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
|
|
isym,
|
|
(unsigned long) isym->st_value,
|
|
(unsigned long) isym->st_size,
|
|
isym->st_name,
|
|
bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link,
|
|
isym->st_name),
|
|
isym->st_info, st_info_str, st_info_stb_str,
|
|
isym->st_other, st_other_str,
|
|
isym->st_shndx, st_shndx_str);
|
|
}
|
}
|
if (free_internal)
|
if (free_internal)
|
free (internal_syms);
|
free (internal_syms);
|
if (free_external)
|
if (free_external)
|
free (external_syms);
|
free (external_syms);
|
Line 1271... |
Line 1261... |
struct bfd_link_info *info)
|
struct bfd_link_info *info)
|
{
|
{
|
bfd *dynobj;
|
bfd *dynobj;
|
asection *splt;
|
asection *splt;
|
|
|
/* As an extra sanity check, verify that all plt entries have
|
/* As an extra sanity check, verify that all plt entries have been
|
been filled in. */
|
filled in. However, relaxing might have changed the relocs so
|
|
that some plt entries don't get filled in, so we have to skip
|
|
this check if we're relaxing. Unfortunately, check_relocs is
|
|
called before relaxation. */
|
|
|
|
if (info->relax_trip > 0)
|
|
{
|
if ((dynobj = elf_hash_table (info)->dynobj) != NULL
|
if ((dynobj = elf_hash_table (info)->dynobj) != NULL
|
&& (splt = bfd_get_section_by_name (dynobj, ".plt")) != NULL)
|
&& (splt = bfd_get_section_by_name (dynobj, ".plt")) != NULL)
|
{
|
{
|
bfd_byte *contents = splt->contents;
|
bfd_byte *contents = splt->contents;
|
unsigned int i, size = splt->size;
|
unsigned int i, size = splt->size;
|
Line 1285... |
Line 1280... |
{
|
{
|
unsigned int x = bfd_get_32 (dynobj, contents + i);
|
unsigned int x = bfd_get_32 (dynobj, contents + i);
|
BFD_ASSERT (x != 0);
|
BFD_ASSERT (x != 0);
|
}
|
}
|
}
|
}
|
|
}
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
static bfd_boolean
|
static bfd_boolean
|
Line 1501... |
Line 1497... |
}
|
}
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
|
/* Delete some bytes from a section while relaxing. */
|
|
|
|
static bfd_boolean
|
|
elf32_rl78_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count,
|
|
Elf_Internal_Rela *alignment_rel, int force_snip)
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
unsigned int sec_shndx;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Rela * irel;
|
|
Elf_Internal_Rela * irelend;
|
|
Elf_Internal_Sym * isym;
|
|
Elf_Internal_Sym * isymend;
|
|
bfd_vma toaddr;
|
|
unsigned int symcount;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
struct elf_link_hash_entry ** end_hashes;
|
|
|
|
if (!alignment_rel)
|
|
force_snip = 1;
|
|
|
|
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
|
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
|
|
/* The deletion must stop at the next alignment boundary, if
|
|
ALIGNMENT_REL is non-NULL. */
|
|
toaddr = sec->size;
|
|
if (alignment_rel)
|
|
toaddr = alignment_rel->r_offset;
|
|
|
|
irel = elf_section_data (sec)->relocs;
|
|
irelend = irel + sec->reloc_count;
|
|
|
|
/* Actually delete the bytes. */
|
|
memmove (contents + addr, contents + addr + count,
|
|
(size_t) (toaddr - addr - count));
|
|
|
|
/* If we don't have an alignment marker to worry about, we can just
|
|
shrink the section. Otherwise, we have to fill in the newly
|
|
created gap with NOP insns (0x03). */
|
|
if (force_snip)
|
|
sec->size -= count;
|
|
else
|
|
memset (contents + toaddr - count, 0x03, count);
|
|
|
|
/* Adjust all the relocs. */
|
|
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
|
{
|
|
/* Get the new reloc address. */
|
|
if (irel->r_offset > addr
|
|
&& (irel->r_offset < toaddr
|
|
|| (force_snip && irel->r_offset == toaddr)))
|
|
irel->r_offset -= count;
|
|
|
|
/* If we see an ALIGN marker at the end of the gap, we move it
|
|
to the beginning of the gap, since marking these gaps is what
|
|
they're for. */
|
|
if (irel->r_offset == toaddr
|
|
&& ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
|
|
&& irel->r_addend & RL78_RELAXA_ALIGN)
|
|
irel->r_offset -= count;
|
|
}
|
|
|
|
/* Adjust the local symbols defined in this section. */
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
isym = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
isymend = isym + symtab_hdr->sh_info;
|
|
|
|
for (; isym < isymend; isym++)
|
|
{
|
|
/* If the symbol is in the range of memory we just moved, we
|
|
have to adjust its value. */
|
|
if (isym->st_shndx == sec_shndx
|
|
&& isym->st_value > addr
|
|
&& isym->st_value < toaddr)
|
|
isym->st_value -= count;
|
|
|
|
/* If the symbol *spans* the bytes we just deleted (i.e. it's
|
|
*end* is in the moved bytes but it's *start* isn't), then we
|
|
must adjust its size. */
|
|
if (isym->st_shndx == sec_shndx
|
|
&& isym->st_value < addr
|
|
&& isym->st_value + isym->st_size > addr
|
|
&& isym->st_value + isym->st_size < toaddr)
|
|
isym->st_size -= count;
|
|
}
|
|
|
|
/* Now adjust the global symbols defined in this section. */
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
|
- symtab_hdr->sh_info);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
end_hashes = sym_hashes + symcount;
|
|
|
|
for (; sym_hashes < end_hashes; sym_hashes++)
|
|
{
|
|
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
|
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
|
|| sym_hash->root.type == bfd_link_hash_defweak)
|
|
&& sym_hash->root.u.def.section == sec)
|
|
{
|
|
/* As above, adjust the value if needed. */
|
|
if (sym_hash->root.u.def.value > addr
|
|
&& sym_hash->root.u.def.value < toaddr)
|
|
sym_hash->root.u.def.value -= count;
|
|
|
|
/* As above, adjust the size if needed. */
|
|
if (sym_hash->root.u.def.value < addr
|
|
&& sym_hash->root.u.def.value + sym_hash->size > addr
|
|
&& sym_hash->root.u.def.value + sym_hash->size < toaddr)
|
|
sym_hash->size -= count;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Used to sort relocs by address. If relocs have the same address,
|
|
we maintain their relative order, except that R_RL78_RH_RELAX
|
|
alignment relocs must be the first reloc for any given address. */
|
|
|
|
static void
|
|
reloc_bubblesort (Elf_Internal_Rela * r, int count)
|
|
{
|
|
int i;
|
|
bfd_boolean again;
|
|
bfd_boolean swappit;
|
|
|
|
/* This is almost a classic bubblesort. It's the slowest sort, but
|
|
we're taking advantage of the fact that the relocations are
|
|
mostly in order already (the assembler emits them that way) and
|
|
we need relocs with the same address to remain in the same
|
|
relative order. */
|
|
again = TRUE;
|
|
while (again)
|
|
{
|
|
again = FALSE;
|
|
for (i = 0; i < count - 1; i ++)
|
|
{
|
|
if (r[i].r_offset > r[i + 1].r_offset)
|
|
swappit = TRUE;
|
|
else if (r[i].r_offset < r[i + 1].r_offset)
|
|
swappit = FALSE;
|
|
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
|
|
&& (r[i + 1].r_addend & RL78_RELAXA_ALIGN))
|
|
swappit = TRUE;
|
|
else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
|
|
&& (r[i + 1].r_addend & RL78_RELAXA_ELIGN)
|
|
&& !(ELF32_R_TYPE (r[i].r_info) == R_RL78_RH_RELAX
|
|
&& (r[i].r_addend & RL78_RELAXA_ALIGN)))
|
|
swappit = TRUE;
|
|
else
|
|
swappit = FALSE;
|
|
|
|
if (swappit)
|
|
{
|
|
Elf_Internal_Rela tmp;
|
|
|
|
tmp = r[i];
|
|
r[i] = r[i + 1];
|
|
r[i + 1] = tmp;
|
|
/* If we do move a reloc back, re-scan to see if it
|
|
needs to be moved even further back. This avoids
|
|
most of the O(n^2) behavior for our cases. */
|
|
if (i > 0)
|
|
i -= 2;
|
|
again = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#define OFFSET_FOR_RELOC(rel, lrel, scale) \
|
|
rl78_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
|
|
lrel, abfd, sec, link_info, scale)
|
|
|
|
static bfd_vma
|
|
rl78_offset_for_reloc (bfd * abfd,
|
|
Elf_Internal_Rela * rel,
|
|
Elf_Internal_Shdr * symtab_hdr,
|
|
Elf_External_Sym_Shndx * shndx_buf ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Sym * intsyms,
|
|
Elf_Internal_Rela ** lrel,
|
|
bfd * input_bfd,
|
|
asection * input_section,
|
|
struct bfd_link_info * info,
|
|
int * scale)
|
|
{
|
|
bfd_vma symval;
|
|
bfd_reloc_status_type r;
|
|
|
|
*scale = 1;
|
|
|
|
/* REL is the first of 1..N relocations. We compute the symbol
|
|
value for each relocation, then combine them if needed. LREL
|
|
gets a pointer to the last relocation used. */
|
|
while (1)
|
|
{
|
|
int32_t tmp1, tmp2;
|
|
|
|
/* Get the value of the symbol referred to by the reloc. */
|
|
if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
Elf_Internal_Sym *isym;
|
|
asection *ssec;
|
|
|
|
isym = intsyms + ELF32_R_SYM (rel->r_info);
|
|
|
|
if (isym->st_shndx == SHN_UNDEF)
|
|
ssec = bfd_und_section_ptr;
|
|
else if (isym->st_shndx == SHN_ABS)
|
|
ssec = bfd_abs_section_ptr;
|
|
else if (isym->st_shndx == SHN_COMMON)
|
|
ssec = bfd_com_section_ptr;
|
|
else
|
|
ssec = bfd_section_from_elf_index (abfd,
|
|
isym->st_shndx);
|
|
|
|
/* Initial symbol value. */
|
|
symval = isym->st_value;
|
|
|
|
/* GAS may have made this symbol relative to a section, in
|
|
which case, we have to add the addend to find the
|
|
symbol. */
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
|
symval += rel->r_addend;
|
|
|
|
if (ssec)
|
|
{
|
|
if ((ssec->flags & SEC_MERGE)
|
|
&& ssec->sec_info_type == ELF_INFO_TYPE_MERGE)
|
|
symval = _bfd_merged_section_offset (abfd, & ssec,
|
|
elf_section_data (ssec)->sec_info,
|
|
symval);
|
|
}
|
|
|
|
/* Now make the offset relative to where the linker is putting it. */
|
|
if (ssec)
|
|
symval +=
|
|
ssec->output_section->vma + ssec->output_offset;
|
|
|
|
symval += rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
unsigned long indx;
|
|
struct elf_link_hash_entry * h;
|
|
|
|
/* An external symbol. */
|
|
indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (abfd)[indx];
|
|
BFD_ASSERT (h != NULL);
|
|
|
|
if (h->root.type != bfd_link_hash_defined
|
|
&& h->root.type != bfd_link_hash_defweak)
|
|
{
|
|
/* This appears to be a reference to an undefined
|
|
symbol. Just ignore it--it will be caught by the
|
|
regular reloc processing. */
|
|
if (lrel)
|
|
*lrel = rel;
|
|
return 0;
|
|
}
|
|
|
|
symval = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
|
|
symval += rel->r_addend;
|
|
}
|
|
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RL78_SYM:
|
|
RL78_STACK_PUSH (symval);
|
|
break;
|
|
|
|
case R_RL78_OPneg:
|
|
RL78_STACK_POP (tmp1);
|
|
tmp1 = - tmp1;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPadd:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 += tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPsub:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp2 -= tmp1;
|
|
RL78_STACK_PUSH (tmp2);
|
|
break;
|
|
|
|
case R_RL78_OPmul:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 *= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPdiv:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 /= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPshla:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 <<= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPshra:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 >>= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPsctsize:
|
|
RL78_STACK_PUSH (input_section->size);
|
|
break;
|
|
|
|
case R_RL78_OPscttop:
|
|
RL78_STACK_PUSH (input_section->output_section->vma);
|
|
break;
|
|
|
|
case R_RL78_OPand:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 &= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPor:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 |= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPxor:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 ^= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPnot:
|
|
RL78_STACK_POP (tmp1);
|
|
tmp1 = ~ tmp1;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPmod:
|
|
RL78_STACK_POP (tmp1);
|
|
RL78_STACK_POP (tmp2);
|
|
tmp1 %= tmp2;
|
|
RL78_STACK_PUSH (tmp1);
|
|
break;
|
|
|
|
case R_RL78_OPromtop:
|
|
RL78_STACK_PUSH (get_romstart (&r, info, input_bfd, input_section, rel->r_offset));
|
|
break;
|
|
|
|
case R_RL78_OPramtop:
|
|
RL78_STACK_PUSH (get_ramstart (&r, info, input_bfd, input_section, rel->r_offset));
|
|
break;
|
|
|
|
case R_RL78_DIR16UL:
|
|
case R_RL78_DIR8UL:
|
|
case R_RL78_ABS16UL:
|
|
case R_RL78_ABS8UL:
|
|
if (rl78_stack_top)
|
|
RL78_STACK_POP (symval);
|
|
if (lrel)
|
|
*lrel = rel;
|
|
*scale = 4;
|
|
return symval;
|
|
|
|
case R_RL78_DIR16UW:
|
|
case R_RL78_DIR8UW:
|
|
case R_RL78_ABS16UW:
|
|
case R_RL78_ABS8UW:
|
|
if (rl78_stack_top)
|
|
RL78_STACK_POP (symval);
|
|
if (lrel)
|
|
*lrel = rel;
|
|
*scale = 2;
|
|
return symval;
|
|
|
|
default:
|
|
if (rl78_stack_top)
|
|
RL78_STACK_POP (symval);
|
|
if (lrel)
|
|
*lrel = rel;
|
|
return symval;
|
|
}
|
|
|
|
rel ++;
|
|
}
|
|
}
|
|
|
|
struct {
|
|
int prefix; /* or -1 for "no prefix" */
|
|
int insn; /* or -1 for "end of list" */
|
|
int insn_for_saddr; /* or -1 for "no alternative" */
|
|
int insn_for_sfr; /* or -1 for "no alternative" */
|
|
} relax_addr16[] = {
|
|
{ -1, 0x02, 0x06, -1 }, /* ADDW AX, !addr16 */
|
|
{ -1, 0x22, 0x26, -1 }, /* SUBW AX, !addr16 */
|
|
{ -1, 0x42, 0x46, -1 }, /* CMPW AX, !addr16 */
|
|
{ -1, 0x40, 0x4a, -1 }, /* CMP !addr16, #byte */
|
|
|
|
{ -1, 0x0f, 0x0b, -1 }, /* ADD A, !addr16 */
|
|
{ -1, 0x1f, 0x1b, -1 }, /* ADDC A, !addr16 */
|
|
{ -1, 0x2f, 0x2b, -1 }, /* SUB A, !addr16 */
|
|
{ -1, 0x3f, 0x3b, -1 }, /* SUBC A, !addr16 */
|
|
{ -1, 0x4f, 0x4b, -1 }, /* CMP A, !addr16 */
|
|
{ -1, 0x5f, 0x5b, -1 }, /* AND A, !addr16 */
|
|
{ -1, 0x6f, 0x6b, -1 }, /* OR A, !addr16 */
|
|
{ -1, 0x7f, 0x7b, -1 }, /* XOR A, !addr16 */
|
|
|
|
{ -1, 0x8f, 0x8d, 0x8e }, /* MOV A, !addr16 */
|
|
{ -1, 0x9f, 0x9d, 0x9e }, /* MOV !addr16, A */
|
|
{ -1, 0xaf, 0xad, 0xae }, /* MOVW AX, !addr16 */
|
|
{ -1, 0xbf, 0xbd, 0xbe }, /* MOVW !addr16, AX */
|
|
{ -1, 0xcf, 0xcd, 0xce }, /* MOVW !addr16, #word */
|
|
|
|
{ -1, 0xa0, 0xa4, -1 }, /* INC !addr16 */
|
|
{ -1, 0xa2, 0xa6, -1 }, /* INCW !addr16 */
|
|
{ -1, 0xb0, 0xb4, -1 }, /* DEC !addr16 */
|
|
{ -1, 0xb2, 0xb6, -1 }, /* DECW !addr16 */
|
|
|
|
{ -1, 0xd5, 0xd4, -1 }, /* CMP0 !addr16 */
|
|
{ -1, 0xe5, 0xe4, -1 }, /* ONEB !addr16 */
|
|
{ -1, 0xf5, 0xf4, -1 }, /* CLRB !addr16 */
|
|
|
|
{ -1, 0xd9, 0xd8, -1 }, /* MOV X, !addr16 */
|
|
{ -1, 0xe9, 0xe8, -1 }, /* MOV B, !addr16 */
|
|
{ -1, 0xf9, 0xf8, -1 }, /* MOV C, !addr16 */
|
|
{ -1, 0xdb, 0xda, -1 }, /* MOVW BC, !addr16 */
|
|
{ -1, 0xeb, 0xea, -1 }, /* MOVW DE, !addr16 */
|
|
{ -1, 0xfb, 0xfa, -1 }, /* MOVW HL, !addr16 */
|
|
|
|
{ 0x61, 0xaa, 0xa8, -1 }, /* XCH A, !addr16 */
|
|
|
|
{ 0x71, 0x00, 0x02, 0x0a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x10, 0x12, 0x1a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x20, 0x22, 0x2a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x30, 0x32, 0x3a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x40, 0x42, 0x4a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x50, 0x52, 0x5a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x60, 0x62, 0x6a }, /* SET1 !addr16.0 */
|
|
{ 0x71, 0x70, 0x72, 0x7a }, /* SET1 !addr16.0 */
|
|
|
|
{ 0x71, 0x08, 0x03, 0x0b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x18, 0x13, 0x1b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x28, 0x23, 0x2b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x38, 0x33, 0x3b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x48, 0x43, 0x4b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x58, 0x53, 0x5b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x68, 0x63, 0x6b }, /* CLR1 !addr16.0 */
|
|
{ 0x71, 0x78, 0x73, 0x7b }, /* CLR1 !addr16.0 */
|
|
|
|
{ -1, -1, -1, -1 }
|
|
};
|
|
|
|
/* Relax one section. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
rl78_elf_relax_section
|
rl78_elf_relax_section
|
(bfd * abfd,
|
(bfd * abfd,
|
asection * sec,
|
asection * sec,
|
struct bfd_link_info * link_info,
|
struct bfd_link_info * link_info,
|
bfd_boolean * again)
|
bfd_boolean * again)
|
{
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
Elf_Internal_Shdr * shndx_hdr;
|
|
Elf_Internal_Rela * internal_relocs;
|
|
Elf_Internal_Rela * free_relocs = NULL;
|
|
Elf_Internal_Rela * irel;
|
|
Elf_Internal_Rela * srel;
|
|
Elf_Internal_Rela * irelend;
|
|
Elf_Internal_Rela * next_alignment;
|
|
bfd_byte * contents = NULL;
|
|
bfd_byte * free_contents = NULL;
|
|
Elf_Internal_Sym * intsyms = NULL;
|
|
Elf_Internal_Sym * free_intsyms = NULL;
|
|
Elf_External_Sym_Shndx * shndx_buf = NULL;
|
|
bfd_vma pc;
|
|
bfd_vma symval ATTRIBUTE_UNUSED = 0;
|
|
int pcrel ATTRIBUTE_UNUSED = 0;
|
|
int code ATTRIBUTE_UNUSED = 0;
|
|
int section_alignment_glue;
|
|
int scale;
|
|
|
if (abfd == elf_hash_table (link_info)->dynobj
|
if (abfd == elf_hash_table (link_info)->dynobj
|
&& strcmp (sec->name, ".plt") == 0)
|
&& strcmp (sec->name, ".plt") == 0)
|
return rl78_elf_relax_plt_section (abfd, sec, link_info, again);
|
return rl78_elf_relax_plt_section (abfd, sec, link_info, again);
|
|
|
/* Assume nothing changes. */
|
/* Assume nothing changes. */
|
*again = FALSE;
|
*again = FALSE;
|
|
|
|
/* We don't have to do anything for a relocatable link, if
|
|
this section does not have relocs, or if this is not a
|
|
code section. */
|
|
if (link_info->relocatable
|
|
|| (sec->flags & SEC_RELOC) == 0
|
|
|| sec->reloc_count == 0
|
|
|| (sec->flags & SEC_CODE) == 0)
|
|
return TRUE;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
|
|
|
/* Get the section contents. */
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
/* Go get them off disk. */
|
|
else
|
|
{
|
|
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
|
goto error_return;
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
|
}
|
|
|
|
/* Read this BFD's symbols. */
|
|
/* Get cached copy if it exists. */
|
|
if (symtab_hdr->contents != NULL)
|
|
intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
else
|
|
{
|
|
intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
|
|
symtab_hdr->contents = (bfd_byte *) intsyms;
|
|
}
|
|
|
|
if (shndx_hdr->sh_size != 0)
|
|
{
|
|
bfd_size_type amt;
|
|
|
|
amt = symtab_hdr->sh_info;
|
|
amt *= sizeof (Elf_External_Sym_Shndx);
|
|
shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
|
|
if (shndx_buf == NULL)
|
|
goto error_return;
|
|
if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
|
|
|| bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
|
|
goto error_return;
|
|
shndx_hdr->contents = (bfd_byte *) shndx_buf;
|
|
}
|
|
|
|
/* Get a copy of the native relocations. */
|
|
internal_relocs = (_bfd_elf_link_read_relocs
|
|
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
|
link_info->keep_memory));
|
|
if (internal_relocs == NULL)
|
|
goto error_return;
|
|
if (! link_info->keep_memory)
|
|
free_relocs = internal_relocs;
|
|
|
|
/* The RL_ relocs must be just before the operand relocs they go
|
|
with, so we must sort them to guarantee this. We use bubblesort
|
|
instead of qsort so we can guarantee that relocs with the same
|
|
address remain in the same relative order. */
|
|
reloc_bubblesort (internal_relocs, sec->reloc_count);
|
|
|
|
/* Walk through them looking for relaxing opportunities. */
|
|
irelend = internal_relocs + sec->reloc_count;
|
|
|
|
|
|
/* This will either be NULL or a pointer to the next alignment
|
|
relocation. */
|
|
next_alignment = internal_relocs;
|
|
|
|
/* We calculate worst case shrinkage caused by alignment directives.
|
|
No fool-proof, but better than either ignoring the problem or
|
|
doing heavy duty analysis of all the alignment markers in all
|
|
input sections. */
|
|
section_alignment_glue = 0;
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
|
if (ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
|
|
&& irel->r_addend & RL78_RELAXA_ALIGN)
|
|
{
|
|
int this_glue = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
|
|
|
|
if (section_alignment_glue < this_glue)
|
|
section_alignment_glue = this_glue;
|
|
}
|
|
/* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
|
|
shrinkage. */
|
|
section_alignment_glue *= 2;
|
|
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
|
{
|
|
unsigned char *insn;
|
|
int nrelocs;
|
|
|
|
/* The insns we care about are all marked with one of these. */
|
|
if (ELF32_R_TYPE (irel->r_info) != R_RL78_RH_RELAX)
|
|
continue;
|
|
|
|
if (irel->r_addend & RL78_RELAXA_ALIGN
|
|
|| next_alignment == internal_relocs)
|
|
{
|
|
/* When we delete bytes, we need to maintain all the alignments
|
|
indicated. In addition, we need to be careful about relaxing
|
|
jumps across alignment boundaries - these displacements
|
|
*grow* when we delete bytes. For now, don't shrink
|
|
displacements across an alignment boundary, just in case.
|
|
Note that this only affects relocations to the same
|
|
section. */
|
|
next_alignment += 2;
|
|
while (next_alignment < irelend
|
|
&& (ELF32_R_TYPE (next_alignment->r_info) != R_RL78_RH_RELAX
|
|
|| !(next_alignment->r_addend & RL78_RELAXA_ELIGN)))
|
|
next_alignment ++;
|
|
if (next_alignment >= irelend || next_alignment->r_offset == 0)
|
|
next_alignment = NULL;
|
|
}
|
|
|
|
/* When we hit alignment markers, see if we've shrunk enough
|
|
before them to reduce the gap without violating the alignment
|
|
requirements. */
|
|
if (irel->r_addend & RL78_RELAXA_ALIGN)
|
|
{
|
|
/* At this point, the next relocation *should* be the ELIGN
|
|
end marker. */
|
|
Elf_Internal_Rela *erel = irel + 1;
|
|
unsigned int alignment, nbytes;
|
|
|
|
if (ELF32_R_TYPE (erel->r_info) != R_RL78_RH_RELAX)
|
|
continue;
|
|
if (!(erel->r_addend & RL78_RELAXA_ELIGN))
|
|
continue;
|
|
|
|
alignment = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
|
|
|
|
if (erel->r_offset - irel->r_offset < alignment)
|
|
continue;
|
|
|
|
nbytes = erel->r_offset - irel->r_offset;
|
|
nbytes /= alignment;
|
|
nbytes *= alignment;
|
|
|
|
elf32_rl78_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment,
|
|
erel->r_offset == sec->size);
|
|
*again = TRUE;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (irel->r_addend & RL78_RELAXA_ELIGN)
|
|
continue;
|
|
|
|
insn = contents + irel->r_offset;
|
|
|
|
nrelocs = irel->r_addend & RL78_RELAXA_RNUM;
|
|
|
|
/* At this point, we have an insn that is a candidate for linker
|
|
relaxation. There are NRELOCS relocs following that may be
|
|
relaxed, although each reloc may be made of more than one
|
|
reloc entry (such as gp-rel symbols). */
|
|
|
|
/* Get the value of the symbol referred to by the reloc. Just
|
|
in case this is the last reloc in the list, use the RL's
|
|
addend to choose between this reloc (no addend) or the next
|
|
(yes addend, which means at least one following reloc). */
|
|
|
|
/* srel points to the "current" reloction for this insn -
|
|
actually the last reloc for a given operand, which is the one
|
|
we need to update. We check the relaxations in the same
|
|
order that the relocations happen, so we'll just push it
|
|
along as we go. */
|
|
srel = irel;
|
|
|
|
pc = sec->output_section->vma + sec->output_offset
|
|
+ srel->r_offset;
|
|
|
|
#define GET_RELOC \
|
|
symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
|
|
pcrel = symval - pc + srel->r_addend; \
|
|
nrelocs --;
|
|
|
|
#define SNIPNR(offset, nbytes) \
|
|
elf32_rl78_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0);
|
|
#define SNIP(offset, nbytes, newtype) \
|
|
SNIPNR (offset, nbytes); \
|
|
srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
|
|
|
|
/* The order of these bit tests must match the order that the
|
|
relocs appear in. Since we sorted those by offset, we can
|
|
predict them. */
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
/* EF ad BR $rel8 pcrel
|
|
ED al ah BR !abs16 abs
|
|
EE al ah BR $!rel16 pcrel
|
|
EC al ah as BR !!abs20 abs
|
|
|
|
FD al ah CALL !abs16 abs
|
|
FE al ah CALL $!rel16 pcrel
|
|
FC al ah as CALL !!abs20 abs
|
|
|
|
DC ad BC $rel8
|
|
DE ad BNC $rel8
|
|
DD ad BZ $rel8
|
|
DF ad BNZ $rel8
|
|
61 C3 ad BH $rel8
|
|
61 D3 ad BNH $rel8
|
|
61 C8 EF ad SKC ; BR $rel8
|
|
61 D8 EF ad SKNC ; BR $rel8
|
|
61 E8 EF ad SKZ ; BR $rel8
|
|
61 F8 EF ad SKNZ ; BR $rel8
|
|
61 E3 EF ad SKH ; BR $rel8
|
|
61 F3 EF ad SKNH ; BR $rel8
|
|
*/
|
|
|
|
if (irel->r_addend & RL78_RELAXA_BRA)
|
|
{
|
|
GET_RELOC;
|
|
|
|
switch (insn[0])
|
|
{
|
|
case 0xec: /* BR !!abs20 */
|
|
|
|
if (pcrel < 127
|
|
&& pcrel > -127)
|
|
{
|
|
insn[0] = 0xef;
|
|
insn[1] = pcrel;
|
|
SNIP (2, 2, R_RL78_DIR8S_PCREL);
|
|
*again = TRUE;
|
|
}
|
|
else if (symval < 65536)
|
|
{
|
|
insn[0] = 0xed;
|
|
insn[1] = symval & 0xff;
|
|
insn[2] = symval >> 8;
|
|
SNIP (2, 1, R_RL78_DIR16S);
|
|
*again = TRUE;
|
|
}
|
|
else if (pcrel < 32767
|
|
&& pcrel > -32767)
|
|
{
|
|
insn[0] = 0xee;
|
|
insn[1] = pcrel & 0xff;
|
|
insn[2] = pcrel >> 8;
|
|
SNIP (2, 1, R_RL78_DIR16S_PCREL);
|
|
*again = TRUE;
|
|
}
|
|
break;
|
|
|
|
case 0xee: /* BR $!pcrel16 */
|
|
case 0xed: /* BR $!abs16 */
|
|
if (pcrel < 127
|
|
&& pcrel > -127)
|
|
{
|
|
insn[0] = 0xef;
|
|
insn[1] = pcrel;
|
|
SNIP (2, 1, R_RL78_DIR8S_PCREL);
|
|
*again = TRUE;
|
|
}
|
|
break;
|
|
|
|
case 0xfc: /* CALL !!abs20 */
|
|
if (symval < 65536)
|
|
{
|
|
insn[0] = 0xfd;
|
|
insn[1] = symval & 0xff;
|
|
insn[2] = symval >> 8;
|
|
SNIP (2, 1, R_RL78_DIR16S);
|
|
*again = TRUE;
|
|
}
|
|
else if (pcrel < 32767
|
|
&& pcrel > -32767)
|
|
{
|
|
insn[0] = 0xfe;
|
|
insn[1] = pcrel & 0xff;
|
|
insn[2] = pcrel >> 8;
|
|
SNIP (2, 1, R_RL78_DIR16S_PCREL);
|
|
*again = TRUE;
|
|
}
|
|
break;
|
|
|
|
case 0x61: /* PREFIX */
|
|
/* For SKIP/BR, we change the BR opcode and delete the
|
|
SKIP. That way, we don't have to find and change the
|
|
relocation for the BR. */
|
|
switch (insn[1])
|
|
{
|
|
case 0xc8: /* SKC */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xde; /* BNC */
|
|
SNIPNR (0, 2);
|
|
}
|
|
break;
|
|
|
|
case 0xd8: /* SKNC */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xdc; /* BC */
|
|
SNIPNR (0, 2);
|
|
}
|
|
break;
|
|
|
|
case 0xe8: /* SKZ */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xdf; /* BNZ */
|
|
SNIPNR (0, 2);
|
|
}
|
|
break;
|
|
|
|
case 0xf8: /* SKNZ */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xdd; /* BZ */
|
|
SNIPNR (0, 2);
|
|
}
|
|
break;
|
|
|
|
case 0xe3: /* SKH */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xd3; /* BNH */
|
|
SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
|
|
}
|
|
break;
|
|
|
|
case 0xf3: /* SKNH */
|
|
if (insn[2] == 0xef)
|
|
{
|
|
insn[2] = 0xc3; /* BH */
|
|
SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
if (irel->r_addend & RL78_RELAXA_ADDR16)
|
|
{
|
|
/*----------------------------------------------------------------------*/
|
|
/* Some insns have both a 16-bit address operand and an 8-bit
|
|
variant if the address is within a special range:
|
|
|
|
Address 16-bit operand SADDR range SFR range
|
|
FFF00-FFFFF 0xff00-0xffff 0x00-0xff
|
|
FFE20-FFF1F 0xfe20-0xff1f 0x00-0xff
|
|
|
|
The RELAX_ADDR16[] array has the insn encodings for the
|
|
16-bit operand version, as well as the SFR and SADDR
|
|
variants. We only need to replace the encodings and
|
|
adjust the operand.
|
|
|
|
Note: we intentionally do not attempt to decode and skip
|
|
any ES: prefix, as adding ES: means the addr16 (likely)
|
|
no longer points to saddr/sfr space.
|
|
*/
|
|
|
|
int is_sfr;
|
|
int is_saddr;
|
|
int idx;
|
|
int poff;
|
|
|
|
GET_RELOC;
|
|
|
|
if (0xffe20 <= symval && symval <= 0xfffff)
|
|
{
|
|
|
|
is_saddr = (0xffe20 <= symval && symval <= 0xfff1f);
|
|
is_sfr = (0xfff00 <= symval && symval <= 0xfffff);
|
|
|
|
for (idx = 0; relax_addr16[idx].insn != -1; idx ++)
|
|
{
|
|
if (relax_addr16[idx].prefix != -1
|
|
&& insn[0] == relax_addr16[idx].prefix
|
|
&& insn[1] == relax_addr16[idx].insn)
|
|
{
|
|
poff = 1;
|
|
}
|
|
else if (relax_addr16[idx].prefix == -1
|
|
&& insn[0] == relax_addr16[idx].insn)
|
|
{
|
|
poff = 0;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
/* We have a matched insn, and poff is 0 or 1 depending
|
|
on the base pattern size. */
|
|
|
|
if (is_sfr && relax_addr16[idx].insn_for_sfr != -1)
|
|
{
|
|
insn[poff] = relax_addr16[idx].insn_for_sfr;
|
|
SNIP (poff+2, 1, R_RL78_RH_SFR);
|
|
}
|
|
|
|
else if (is_saddr && relax_addr16[idx].insn_for_saddr != -1)
|
|
{
|
|
insn[poff] = relax_addr16[idx].insn_for_saddr;
|
|
SNIP (poff+2, 1, R_RL78_RH_SADDR);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
error_return:
|
|
if (free_relocs != NULL)
|
|
free (free_relocs);
|
|
|
|
if (free_contents != NULL)
|
|
free (free_contents);
|
|
|
|
if (shndx_buf != NULL)
|
|
{
|
|
shndx_hdr->contents = NULL;
|
|
free (shndx_buf);
|
|
}
|
|
|
|
if (free_intsyms != NULL)
|
|
free (free_intsyms);
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
|
|
|
|