OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [x86_64.cc] - Diff between revs 148 and 159

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 148 Rev 159
Line 1... Line 1...
// x86_64.cc -- x86_64 target support for gold.
// x86_64.cc -- x86_64 target support for gold.
 
 
// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// Written by Ian Lance Taylor <iant@google.com>.
 
 
// This file is part of gold.
// This file is part of gold.
 
 
// This program is free software; you can redistribute it and/or modify
// This program is free software; you can redistribute it and/or modify
Line 23... Line 23...
#include "gold.h"
#include "gold.h"
 
 
#include <cstring>
#include <cstring>
 
 
#include "elfcpp.h"
#include "elfcpp.h"
 
#include "dwarf.h"
#include "parameters.h"
#include "parameters.h"
#include "reloc.h"
#include "reloc.h"
#include "x86_64.h"
#include "x86_64.h"
#include "object.h"
#include "object.h"
#include "symtab.h"
#include "symtab.h"
Line 51... Line 52...
class Output_data_plt_x86_64 : public Output_section_data
class Output_data_plt_x86_64 : public Output_section_data
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
 
 
  Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
                         Output_data_got<64, false>* got,
                         Output_data_space* got_plt,
                         Output_data_space* got_plt)
                         Output_data_space* got_irelative)
    : Output_section_data(8), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
    : Output_section_data(16), layout_(layout), tlsdesc_rel_(NULL),
      count_(0), tlsdesc_got_offset_(-1U), free_list_()
      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
  { this->init(symtab, layout); }
      got_irelative_(got_irelative), count_(0), irelative_count_(0),
 
      tlsdesc_got_offset_(-1U), free_list_()
 
  { this->init(layout); }
 
 
  Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
                         Output_data_got<64, false>* got,
 
                         Output_data_space* got_plt,
                         Output_data_space* got_plt,
 
                         Output_data_space* got_irelative,
                         unsigned int plt_count)
                         unsigned int plt_count)
    : Output_section_data((plt_count + 1) * plt_entry_size, 8, false),
    : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
      tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
      layout_(layout), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
      count_(plt_count), tlsdesc_got_offset_(-1U), free_list_()
      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
 
      irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
  {
  {
    this->init(symtab, layout);
    this->init(layout);
 
 
    // Initialize the free list and reserve the first entry.
    // Initialize the free list and reserve the first entry.
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
    this->free_list_.remove(0, plt_entry_size);
    this->free_list_.remove(0, plt_entry_size);
  }
  }
 
 
  // Initialize the PLT section.
  // Initialize the PLT section.
  void
  void
  init(Symbol_table* symtab, Layout* layout);
  init(Layout* layout);
 
 
  // Add an entry to the PLT.
  // Add an entry to the PLT.
  void
  void
  add_entry(Symbol* gsym);
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
 
 
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  unsigned int
  unsigned int
  add_local_ifunc_entry(Sized_relobj_file<64, false>* relobj,
  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
 
                        Sized_relobj_file<64, false>* relobj,
                        unsigned int local_sym_index);
                        unsigned int local_sym_index);
 
 
  // Add the relocation for a PLT entry.
  // Add the relocation for a PLT entry.
  void
  void
  add_relocation(Symbol* gsym, unsigned int got_offset);
  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
 
                 unsigned int got_offset);
 
 
  // Add the reserved TLSDESC_PLT entry to the PLT.
  // Add the reserved TLSDESC_PLT entry to the PLT.
  void
  void
  reserve_tlsdesc_entry(unsigned int got_offset)
  reserve_tlsdesc_entry(unsigned int got_offset)
  { this->tlsdesc_got_offset_ = got_offset; }
  { this->tlsdesc_got_offset_ = got_offset; }
Line 108... Line 114...
  { return this->tlsdesc_got_offset_; }
  { return this->tlsdesc_got_offset_; }
 
 
  // Return the offset of the reserved TLSDESC_PLT entry.
  // Return the offset of the reserved TLSDESC_PLT entry.
  unsigned int
  unsigned int
  get_tlsdesc_plt_offset() const
  get_tlsdesc_plt_offset() const
  { return (this->count_ + 1) * plt_entry_size; }
  { return (this->count_ + this->irelative_count_ + 1) * plt_entry_size; }
 
 
  // Return the .rela.plt section data.
  // Return the .rela.plt section data.
  Reloc_section*
  Reloc_section*
  rela_plt()
  rela_plt()
  { return this->rel_; }
  { return this->rel_; }
 
 
  // Return where the TLSDESC relocations should go.
  // Return where the TLSDESC relocations should go.
  Reloc_section*
  Reloc_section*
  rela_tlsdesc(Layout*);
  rela_tlsdesc(Layout*);
 
 
 
  // Return where the IRELATIVE relocations should go in the PLT
 
  // relocations.
 
  Reloc_section*
 
  rela_irelative(Symbol_table*, Layout*);
 
 
 
  // Return whether we created a section for IRELATIVE relocations.
 
  bool
 
  has_irelative_section() const
 
  { return this->irelative_rel_ != NULL; }
 
 
  // Return the number of PLT entries.
  // Return the number of PLT entries.
  unsigned int
  unsigned int
  entry_count() const
  entry_count() const
  { return this->count_; }
  { return this->count_ + this->irelative_count_; }
 
 
  // Return the offset of the first non-reserved PLT entry.
  // Return the offset of the first non-reserved PLT entry.
  static unsigned int
  static unsigned int
  first_plt_entry_offset()
  first_plt_entry_offset()
  { return plt_entry_size; }
  { return plt_entry_size; }
Line 142... Line 158...
  {
  {
    this->free_list_.remove((plt_index + 1) * plt_entry_size,
    this->free_list_.remove((plt_index + 1) * plt_entry_size,
                            (plt_index + 2) * plt_entry_size);
                            (plt_index + 2) * plt_entry_size);
  }
  }
 
 
 
  // Return the PLT address to use for a global symbol.
 
  uint64_t
 
  address_for_global(const Symbol*);
 
 
 
  // Return the PLT address to use for a local symbol.
 
  uint64_t
 
  address_for_local(const Relobj*, unsigned int symndx);
 
 
 protected:
 protected:
  void
  void
  do_adjust_output_section(Output_section* os);
  do_adjust_output_section(Output_section* os);
 
 
  // Write to a map file.
  // Write to a map file.
Line 158... Line 182...
  static const int plt_entry_size = 16;
  static const int plt_entry_size = 16;
 
 
  // The first entry in the PLT.
  // The first entry in the PLT.
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // procedure linkage table for both programs and shared objects."
  // procedure linkage table for both programs and shared objects."
  static unsigned char first_plt_entry[plt_entry_size];
  static const unsigned char first_plt_entry[plt_entry_size];
 
 
  // Other entries in the PLT for an executable.
  // Other entries in the PLT for an executable.
  static unsigned char plt_entry[plt_entry_size];
  static const unsigned char plt_entry[plt_entry_size];
 
 
  // The reserved TLSDESC entry in the PLT for an executable.
  // The reserved TLSDESC entry in the PLT for an executable.
  static unsigned char tlsdesc_plt_entry[plt_entry_size];
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
 
 
 
  // The .eh_frame unwind information for the PLT.
 
  static const int plt_eh_frame_cie_size = 16;
 
  static const int plt_eh_frame_fde_size = 32;
 
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
 
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
 
 
  // Set the final size.
  // Set the final size.
  void
  void
  set_final_data_size();
  set_final_data_size();
 
 
  // Write out the PLT data.
  // Write out the PLT data.
  void
  void
  do_write(Output_file*);
  do_write(Output_file*);
 
 
 
  // A pointer to the Layout class, so that we can find the .dynamic
 
  // section when we write out the GOT PLT section.
 
  Layout* layout_;
  // The reloc section.
  // The reloc section.
  Reloc_section* rel_;
  Reloc_section* rel_;
  // The TLSDESC relocs, if necessary.  These must follow the regular
  // The TLSDESC relocs, if necessary.  These must follow the regular
  // PLT relocs.
  // PLT relocs.
  Reloc_section* tlsdesc_rel_;
  Reloc_section* tlsdesc_rel_;
 
  // The IRELATIVE relocs, if necessary.  These must follow the
 
  // regular PLT relocations and the TLSDESC relocations.
 
  Reloc_section* irelative_rel_;
  // The .got section.
  // The .got section.
  Output_data_got<64, false>* got_;
  Output_data_got<64, false>* got_;
  // The .got.plt section.
  // The .got.plt section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
 
  // The part of the .got.plt section used for IRELATIVE relocs.
 
  Output_data_space* got_irelative_;
  // The number of PLT entries.
  // The number of PLT entries.
  unsigned int count_;
  unsigned int count_;
 
  // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
 
  // follow the regular PLT entries.
 
  unsigned int irelative_count_;
  // Offset of the reserved TLSDESC_GOT entry when needed.
  // Offset of the reserved TLSDESC_GOT entry when needed.
  unsigned int tlsdesc_got_offset_;
  unsigned int tlsdesc_got_offset_;
  // List of available regions within the section, for incremental
  // List of available regions within the section, for incremental
  // update links.
  // update links.
  Free_list free_list_;
  Free_list free_list_;
Line 199... Line 240...
//   http://www.x86-64.org/documentation/abi.pdf
//   http://www.x86-64.org/documentation/abi.pdf
// TLS info comes from
// TLS info comes from
//   http://people.redhat.com/drepper/tls.pdf
//   http://people.redhat.com/drepper/tls.pdf
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
 
 
class Target_x86_64 : public Target_freebsd<64, false>
class Target_x86_64 : public Sized_target<64, false>
{
{
 public:
 public:
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
  // uses only Elf64_Rela relocation entries with explicit addends."
  // uses only Elf64_Rela relocation entries with explicit addends."
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
 
 
  Target_x86_64()
  Target_x86_64()
    : Target_freebsd<64, false>(&x86_64_info),
    : Sized_target<64, false>(&x86_64_info),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_tlsdesc_(NULL),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      global_offset_table_(NULL), rela_dyn_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
      copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
      rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
      got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
      dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
      tls_base_symbol_defined_(false)
      tls_base_symbol_defined_(false)
  { }
  { }
 
 
  // This function should be defined in targets that can use relocation
 
  // types to determine (implemented in local_reloc_may_be_function_pointer
 
  // and global_reloc_may_be_function_pointer)
 
  // if a function's pointer is taken.  ICF uses this in safe mode to only
 
  // fold those functions whose pointer is defintely not taken.  For x86_64
 
  // pie binaries, safe ICF cannot be done by looking at relocation types.
 
  inline bool
 
  can_check_for_function_pointers() const
 
  { return !parameters->options().pie(); }
 
 
 
  virtual bool
 
  can_icf_inline_merge_sections () const
 
  { return true; }
 
 
 
  // Hook for a new output section.
  // Hook for a new output section.
  void
  void
  do_new_output_section(Output_section*) const;
  do_new_output_section(Output_section*) const;
 
 
  // Scan the relocations to look for symbol adjustments.
  // Scan the relocations to look for symbol adjustments.
Line 337... Line 364...
  // Return the addend to use for a target specific relocation.
  // Return the addend to use for a target specific relocation.
  uint64_t
  uint64_t
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
 
 
  // Return the PLT section.
  // Return the PLT section.
  Output_data*
  uint64_t
  do_plt_section_for_global(const Symbol*) const
  do_plt_address_for_global(const Symbol* gsym) const
  { return this->plt_section(); }
  { return this->plt_section()->address_for_global(gsym); }
 
 
  Output_data*
  uint64_t
  do_plt_section_for_local(const Relobj*, unsigned int) const
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  { return this->plt_section(); }
  { return this->plt_section()->address_for_local(relobj, symndx); }
 
 
 
  // This function should be defined in targets that can use relocation
 
  // types to determine (implemented in local_reloc_may_be_function_pointer
 
  // and global_reloc_may_be_function_pointer)
 
  // if a function's pointer is taken.  ICF uses this in safe mode to only
 
  // fold those functions whose pointer is defintely not taken.  For x86_64
 
  // pie binaries, safe ICF cannot be done by looking at relocation types.
 
  bool
 
  do_can_check_for_function_pointers() const
 
  { return !parameters->options().pie(); }
 
 
 
  // Return the base for a DW_EH_PE_datarel encoding.
 
  uint64_t
 
  do_ehframe_datarel_base() const;
 
 
  // Adjust -fsplit-stack code which calls non-split-stack code.
  // Adjust -fsplit-stack code which calls non-split-stack code.
  void
  void
  do_calls_non_split(Relobj* object, unsigned int shndx,
  do_calls_non_split(Relobj* object, unsigned int shndx,
                     section_offset_type fnoffset, section_size_type fnsize,
                     section_offset_type fnoffset, section_size_type fnsize,
Line 404... Line 445...
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
                           unsigned int got_type);
                           unsigned int got_type);
 
 
  // Register an existing PLT entry for a global symbol.
  // Register an existing PLT entry for a global symbol.
  void
  void
  register_global_plt_entry(unsigned int plt_index, Symbol* gsym);
  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
 
                            Symbol* gsym);
 
 
  // Force a COPY relocation for a given symbol.
  // Force a COPY relocation for a given symbol.
  void
  void
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
 
 
Line 486... Line 528...
    static void
    static void
    unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
    unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
                             Symbol*);
                             Symbol*);
 
 
    void
    void
    check_non_pic(Relobj*, unsigned int r_type);
    check_non_pic(Relobj*, unsigned int r_type, Symbol*);
 
 
    inline bool
    inline bool
    possible_function_pointer_reloc(unsigned int r_type);
    possible_function_pointer_reloc(unsigned int r_type);
 
 
    bool
    bool
Line 674... Line 716...
 
 
  // Get the section to use for TLSDESC relocations.
  // Get the section to use for TLSDESC relocations.
  Reloc_section*
  Reloc_section*
  rela_tlsdesc_section(Layout*) const;
  rela_tlsdesc_section(Layout*) const;
 
 
 
  // Get the section to use for IRELATIVE relocations.
 
  Reloc_section*
 
  rela_irelative_section(Layout*);
 
 
  // Add a potential copy relocation.
  // Add a potential copy relocation.
  void
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj_file<64, false>* object,
             Sized_relobj_file<64, false>* object,
             unsigned int shndx, Output_section* output_section,
             unsigned int shndx, Output_section* output_section,
Line 724... Line 770...
  Output_data_got<64, false>* got_;
  Output_data_got<64, false>* got_;
  // The PLT section.
  // The PLT section.
  Output_data_plt_x86_64* plt_;
  Output_data_plt_x86_64* plt_;
  // The GOT PLT section.
  // The GOT PLT section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
 
  // The GOT section for IRELATIVE relocations.
 
  Output_data_space* got_irelative_;
  // The GOT section for TLSDESC relocations.
  // The GOT section for TLSDESC relocations.
  Output_data_got<64, false>* got_tlsdesc_;
  Output_data_got<64, false>* got_tlsdesc_;
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  Symbol* global_offset_table_;
  Symbol* global_offset_table_;
  // The dynamic reloc section.
  // The dynamic reloc section.
  Reloc_section* rela_dyn_;
  Reloc_section* rela_dyn_;
 
  // The section to use for IRELATIVE relocs.
 
  Reloc_section* rela_irelative_;
  // Relocs saved to avoid a COPY reloc.
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
  Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  Output_data_space* dynbss_;
  // Offset of the GOT entry for the TLS module index.
  // Offset of the GOT entry for the TLS module index.
Line 753... Line 803...
  elfcpp::EM_X86_64,    // machine_code
  elfcpp::EM_X86_64,    // machine_code
  false,                // has_make_symbol
  false,                // has_make_symbol
  false,                // has_resolve
  false,                // has_resolve
  true,                 // has_code_fill
  true,                 // has_code_fill
  true,                 // is_default_stack_executable
  true,                 // is_default_stack_executable
 
  true,                 // can_icf_inline_merge_sections
  '\0',                 // wrap_char
  '\0',                 // wrap_char
  "/lib/ld64.so.1",     // program interpreter
  "/lib/ld64.so.1",     // program interpreter
  0x400000,             // default_text_segment_address
  0x400000,             // default_text_segment_address
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
Line 785... Line 836...
{
{
  if (this->got_ == NULL)
  if (this->got_ == NULL)
    {
    {
      gold_assert(symtab != NULL && layout != NULL);
      gold_assert(symtab != NULL && layout != NULL);
 
 
 
      // When using -z now, we can treat .got.plt as a relro section.
 
      // Without -z now, it is modified after program startup by lazy
 
      // PLT relocations.
 
      bool is_got_plt_relro = parameters->options().now();
 
      Output_section_order got_order = (is_got_plt_relro
 
                                        ? ORDER_RELRO
 
                                        : ORDER_RELRO_LAST);
 
      Output_section_order got_plt_order = (is_got_plt_relro
 
                                            ? ORDER_RELRO
 
                                            : ORDER_NON_RELRO_FIRST);
 
 
      this->got_ = new Output_data_got<64, false>();
      this->got_ = new Output_data_got<64, false>();
 
 
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_, ORDER_RELRO_LAST,
                                      this->got_, got_order, true);
                                      true);
 
 
 
      this->got_plt_ = new Output_data_space(8, "** GOT PLT");
      this->got_plt_ = new Output_data_space(8, "** GOT PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_plt_, ORDER_NON_RELRO_FIRST,
                                      this->got_plt_, got_plt_order,
                                      false);
                                      is_got_plt_relro);
 
 
      // The first three entries are reserved.
      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 8);
      this->got_plt_->set_current_data_size(3 * 8);
 
 
 
      if (!is_got_plt_relro)
 
        {
      // Those bytes can go into the relro segment.
      // Those bytes can go into the relro segment.
      layout->increase_relro(3 * 8);
      layout->increase_relro(3 * 8);
 
        }
 
 
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      this->global_offset_table_ =
      this->global_offset_table_ =
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                      Symbol_table::PREDEFINED,
                                      Symbol_table::PREDEFINED,
Line 816... Line 880...
                                      0, 0, elfcpp::STT_OBJECT,
                                      0, 0, elfcpp::STT_OBJECT,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_HIDDEN, 0,
                                      elfcpp::STV_HIDDEN, 0,
                                      false, false);
                                      false, false);
 
 
 
      // If there are any IRELATIVE relocations, they get GOT entries
 
      // in .got.plt after the jump slot entries.
 
      this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
 
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
 
                                      (elfcpp::SHF_ALLOC
 
                                       | elfcpp::SHF_WRITE),
 
                                      this->got_irelative_,
 
                                      got_plt_order, is_got_plt_relro);
 
 
      // If there are any TLSDESC relocations, they get GOT entries in
      // If there are any TLSDESC relocations, they get GOT entries in
      // .got.plt after the jump slot entries.
      // .got.plt after the jump slot and IRELATIVE entries.
      this->got_tlsdesc_ = new Output_data_got<64, false>();
      this->got_tlsdesc_ = new Output_data_got<64, false>();
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_tlsdesc_,
                                      this->got_tlsdesc_,
                                      ORDER_NON_RELRO_FIRST, false);
                                      got_plt_order, is_got_plt_relro);
    }
    }
 
 
  return this->got_;
  return this->got_;
}
}
 
 
Line 845... Line 918...
                                      ORDER_DYNAMIC_RELOCS, false);
                                      ORDER_DYNAMIC_RELOCS, false);
    }
    }
  return this->rela_dyn_;
  return this->rela_dyn_;
}
}
 
 
 
// Get the section to use for IRELATIVE relocs, creating it if
 
// necessary.  These go in .rela.dyn, but only after all other dynamic
 
// relocations.  They need to follow the other dynamic relocations so
 
// that they can refer to global variables initialized by those
 
// relocs.
 
 
 
Target_x86_64::Reloc_section*
 
Target_x86_64::rela_irelative_section(Layout* layout)
 
{
 
  if (this->rela_irelative_ == NULL)
 
    {
 
      // Make sure we have already created the dynamic reloc section.
 
      this->rela_dyn_section(layout);
 
      this->rela_irelative_ = new Reloc_section(false);
 
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
 
                                      elfcpp::SHF_ALLOC, this->rela_irelative_,
 
                                      ORDER_DYNAMIC_RELOCS, false);
 
      gold_assert(this->rela_dyn_->output_section()
 
                  == this->rela_irelative_->output_section());
 
    }
 
  return this->rela_irelative_;
 
}
 
 
// Initialize the PLT section.
// Initialize the PLT section.
 
 
void
void
Output_data_plt_x86_64::init(Symbol_table* symtab, Layout* layout)
Output_data_plt_x86_64::init(Layout* layout)
{
{
  this->rel_ = new Reloc_section(false);
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
 
 
  if (parameters->doing_static_link())
  // Add unwind information if requested.
    {
  if (parameters->options().ld_generated_unwind_info())
      // A statically linked executable will only have a .rela.plt
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
      // section to hold R_X86_64_IRELATIVE relocs for STT_GNU_IFUNC
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
      // symbols.  The library will use these symbols to locate the
 
      // IRELATIVE relocs at program startup time.
 
      symtab->define_in_output_data("__rela_iplt_start", NULL,
 
                                    Symbol_table::PREDEFINED,
 
                                    this->rel_, 0, 0, elfcpp::STT_NOTYPE,
 
                                    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
 
                                    0, false, true);
 
      symtab->define_in_output_data("__rela_iplt_end", NULL,
 
                                    Symbol_table::PREDEFINED,
 
                                    this->rel_, 0, 0, elfcpp::STT_NOTYPE,
 
                                    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
 
                                    0, true, true);
 
    }
 
}
}
 
 
void
void
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
{
{
Line 883... Line 966...
}
}
 
 
// Add an entry to the PLT.
// Add an entry to the PLT.
 
 
void
void
Output_data_plt_x86_64::add_entry(Symbol* gsym)
Output_data_plt_x86_64::add_entry(Symbol_table* symtab, Layout* layout,
 
                                  Symbol* gsym)
{
{
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  unsigned int plt_index;
  unsigned int plt_index;
  off_t plt_offset;
  off_t plt_offset;
  section_offset_type got_offset;
  section_offset_type got_offset;
 
 
 
  unsigned int* pcount;
 
  unsigned int offset;
 
  unsigned int reserved;
 
  Output_data_space* got;
 
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
 
      && gsym->can_use_relative_reloc(false))
 
    {
 
      pcount = &this->irelative_count_;
 
      offset = 0;
 
      reserved = 0;
 
      got = this->got_irelative_;
 
    }
 
  else
 
    {
 
      pcount = &this->count_;
 
      offset = 1;
 
      reserved = 3;
 
      got = this->got_plt_;
 
    }
 
 
  if (!this->is_data_size_valid())
  if (!this->is_data_size_valid())
    {
    {
      // Note that when setting the PLT offset we skip the initial
      // Note that when setting the PLT offset for a non-IRELATIVE
      // reserved PLT entry.
      // entry we skip the initial reserved PLT entry.
      plt_index = this->count_ + 1;
      plt_index = *pcount + offset;
      plt_offset = plt_index * plt_entry_size;
      plt_offset = plt_index * plt_entry_size;
 
 
      ++this->count_;
      ++*pcount;
 
 
      got_offset = (plt_index - 1 + 3) * 8;
      got_offset = (plt_index - offset + reserved) * 8;
      gold_assert(got_offset == this->got_plt_->current_data_size());
      gold_assert(got_offset == got->current_data_size());
 
 
      // Every PLT entry needs a GOT entry which points back to the PLT
      // Every PLT entry needs a GOT entry which points back to the PLT
      // entry (this will be changed by the dynamic linker, normally
      // entry (this will be changed by the dynamic linker, normally
      // lazily when the function is called).
      // lazily when the function is called).
      this->got_plt_->set_current_data_size(got_offset + 8);
      got->set_current_data_size(got_offset + 8);
    }
    }
  else
  else
    {
    {
 
      // FIXME: This is probably not correct for IRELATIVE relocs.
 
 
      // For incremental updates, find an available slot.
      // For incremental updates, find an available slot.
      plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
      plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
      if (plt_offset == -1)
      if (plt_offset == -1)
        gold_fallback(_("out of patch space (PLT);"
        gold_fallback(_("out of patch space (PLT);"
                        " relink with --incremental-full"));
                        " relink with --incremental-full"));
 
 
      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
      // can be calculated from the PLT index, adjusting for the three
      // can be calculated from the PLT index, adjusting for the three
      // reserved entries at the beginning of the GOT.
      // reserved entries at the beginning of the GOT.
      plt_index = plt_offset / plt_entry_size - 1;
      plt_index = plt_offset / plt_entry_size - 1;
      got_offset = (plt_index - 1 + 3) * 8;
      got_offset = (plt_index - offset + reserved) * 8;
    }
    }
 
 
  gsym->set_plt_offset(plt_offset);
  gsym->set_plt_offset(plt_offset);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  this->add_relocation(gsym, got_offset);
  this->add_relocation(symtab, layout, gsym, got_offset);
 
 
  // Note that we don't need to save the symbol.  The contents of the
  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
  // appear in the relocations.
}
}
Line 938... Line 1044...
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.
// the PLT offset.
 
 
unsigned int
unsigned int
Output_data_plt_x86_64::add_local_ifunc_entry(
Output_data_plt_x86_64::add_local_ifunc_entry(
 
    Symbol_table* symtab,
 
    Layout* layout,
    Sized_relobj_file<64, false>* relobj,
    Sized_relobj_file<64, false>* relobj,
    unsigned int local_sym_index)
    unsigned int local_sym_index)
{
{
  unsigned int plt_offset = (this->count_ + 1) * plt_entry_size;
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
  ++this->count_;
  ++this->irelative_count_;
 
 
  section_offset_type got_offset = this->got_plt_->current_data_size();
  section_offset_type got_offset = this->got_irelative_->current_data_size();
 
 
  // Every PLT entry needs a GOT entry which points back to the PLT
  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry.
  // entry.
  this->got_plt_->set_current_data_size(got_offset + 8);
  this->got_irelative_->set_current_data_size(got_offset + 8);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
  Reloc_section* rela = this->rela_irelative(symtab, layout);
 
  rela->add_symbolless_local_addend(relobj, local_sym_index,
                                          elfcpp::R_X86_64_IRELATIVE,
                                          elfcpp::R_X86_64_IRELATIVE,
                                          this->got_plt_, got_offset, 0);
                                    this->got_irelative_, got_offset, 0);
 
 
  return plt_offset;
  return plt_offset;
}
}
 
 
// Add the relocation for a PLT entry.
// Add the relocation for a PLT entry.
 
 
void
void
Output_data_plt_x86_64::add_relocation(Symbol* gsym, unsigned int got_offset)
Output_data_plt_x86_64::add_relocation(Symbol_table* symtab, Layout* layout,
 
                                       Symbol* gsym, unsigned int got_offset)
{
{
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    this->rel_->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
    {
                                             this->got_plt_, got_offset, 0);
      Reloc_section* rela = this->rela_irelative(symtab, layout);
 
      rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
 
                                         this->got_irelative_, got_offset, 0);
 
    }
  else
  else
    {
    {
      gsym->set_needs_dynsym_entry();
      gsym->set_needs_dynsym_entry();
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
                             got_offset, 0);
                             got_offset, 0);
Line 987... Line 1100...
    {
    {
      this->tlsdesc_rel_ = new Reloc_section(false);
      this->tlsdesc_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
                                      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->tlsdesc_rel_->output_section() ==
      gold_assert(this->tlsdesc_rel_->output_section()
                  this->rel_->output_section());
                  == this->rel_->output_section());
    }
    }
  return this->tlsdesc_rel_;
  return this->tlsdesc_rel_;
}
}
 
 
 
// Return where the IRELATIVE relocations should go in the PLT.  These
 
// follow the JUMP_SLOT and the TLSDESC relocations.
 
 
 
Output_data_plt_x86_64::Reloc_section*
 
Output_data_plt_x86_64::rela_irelative(Symbol_table* symtab, Layout* layout)
 
{
 
  if (this->irelative_rel_ == NULL)
 
    {
 
      // Make sure we have a place for the TLSDESC relocations, in
 
      // case we see any later on.
 
      this->rela_tlsdesc(layout);
 
      this->irelative_rel_ = new Reloc_section(false);
 
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
 
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
 
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
 
      gold_assert(this->irelative_rel_->output_section()
 
                  == this->rel_->output_section());
 
 
 
      if (parameters->doing_static_link())
 
        {
 
          // A statically linked executable will only have a .rela.plt
 
          // section to hold R_X86_64_IRELATIVE relocs for
 
          // STT_GNU_IFUNC symbols.  The library will use these
 
          // symbols to locate the IRELATIVE relocs at program startup
 
          // time.
 
          symtab->define_in_output_data("__rela_iplt_start", NULL,
 
                                        Symbol_table::PREDEFINED,
 
                                        this->irelative_rel_, 0, 0,
 
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
 
                                        elfcpp::STV_HIDDEN, 0, false, true);
 
          symtab->define_in_output_data("__rela_iplt_end", NULL,
 
                                        Symbol_table::PREDEFINED,
 
                                        this->irelative_rel_, 0, 0,
 
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
 
                                        elfcpp::STV_HIDDEN, 0, true, true);
 
        }
 
    }
 
  return this->irelative_rel_;
 
}
 
 
 
// Return the PLT address to use for a global symbol.
 
 
 
uint64_t
 
Output_data_plt_x86_64::address_for_global(const Symbol* gsym)
 
{
 
  uint64_t offset = 0;
 
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
 
      && gsym->can_use_relative_reloc(false))
 
    offset = (this->count_ + 1) * plt_entry_size;
 
  return this->address() + offset;
 
}
 
 
 
// Return the PLT address to use for a local symbol.  These are always
 
// IRELATIVE relocs.
 
 
 
uint64_t
 
Output_data_plt_x86_64::address_for_local(const Relobj*, unsigned int)
 
{
 
  return this->address() + (this->count_ + 1) * plt_entry_size;
 
}
 
 
// Set the final size.
// Set the final size.
void
void
Output_data_plt_x86_64::set_final_data_size()
Output_data_plt_x86_64::set_final_data_size()
{
{
  unsigned int count = this->count_;
  unsigned int count = this->count_ + this->irelative_count_;
  if (this->has_tlsdesc_entry())
  if (this->has_tlsdesc_entry())
    ++count;
    ++count;
  this->set_data_size((count + 1) * plt_entry_size);
  this->set_data_size((count + 1) * plt_entry_size);
}
}
 
 
// The first entry in the PLT for an executable.
// The first entry in the PLT for an executable.
 
 
unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
{
{
  // From AMD64 ABI Draft 0.98, page 76
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x35,   // pushq contents of memory address
  0xff, 0x35,   // pushq contents of memory address
  0, 0, 0, 0,       // replaced with address of .got + 8
  0, 0, 0, 0,       // replaced with address of .got + 8
  0xff, 0x25,   // jmp indirect
  0xff, 0x25,   // jmp indirect
Line 1017... Line 1191...
  0x90, 0x90, 0x90, 0x90   // noop (x4)
  0x90, 0x90, 0x90, 0x90   // noop (x4)
};
};
 
 
// Subsequent entries in the PLT for an executable.
// Subsequent entries in the PLT for an executable.
 
 
unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
{
{
  // From AMD64 ABI Draft 0.98, page 76
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x25,   // jmpq indirect
  0xff, 0x25,   // jmpq indirect
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0x68,         // pushq immediate
  0x68,         // pushq immediate
Line 1030... Line 1204...
  0, 0, 0, 0        // replaced with offset to start of .plt
  0, 0, 0, 0        // replaced with offset to start of .plt
};
};
 
 
// The reserved TLSDESC entry in the PLT for an executable.
// The reserved TLSDESC entry in the PLT for an executable.
 
 
unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
{
{
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  0xff, 0x35,   // pushq x(%rip)
  0xff, 0x35,   // pushq x(%rip)
  0, 0, 0, 0,       // replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0, 0, 0, 0,       // replaced with address of linkmap GOT entry (at PLTGOT + 8)
Line 1042... Line 1216...
  0, 0, 0, 0,       // replaced with offset of reserved TLSDESC_GOT entry
  0, 0, 0, 0,       // replaced with offset of reserved TLSDESC_GOT entry
  0x0f, 0x1f,   // nop
  0x0f, 0x1f,   // nop
  0x40, 0
  0x40, 0
};
};
 
 
 
// The .eh_frame unwind information for the PLT.
 
 
 
const unsigned char
 
Output_data_plt_x86_64::plt_eh_frame_cie[plt_eh_frame_cie_size] =
 
{
 
  1,                            // CIE version.
 
  'z',                          // Augmentation: augmentation size included.
 
  'R',                          // Augmentation: FDE encoding included.
 
  '\0',                         // End of augmentation string.
 
  1,                            // Code alignment factor.
 
  0x78,                         // Data alignment factor.
 
  16,                           // Return address column.
 
  1,                            // Augmentation size.
 
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
 
   | elfcpp::DW_EH_PE_sdata4),
 
  elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
 
  elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
 
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
 
  elfcpp::DW_CFA_nop
 
};
 
 
 
const unsigned char
 
Output_data_plt_x86_64::plt_eh_frame_fde[plt_eh_frame_fde_size] =
 
{
 
  0, 0, 0, 0,                               // Replaced with offset to .plt.
 
  0, 0, 0, 0,                               // Replaced with size of .plt.
 
  0,                                     // Augmentation size.
 
  elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
 
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
 
  elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
 
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
 
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
 
  11,                                   // Block length.
 
  elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
 
  elfcpp::DW_OP_breg16, 0,               // Push %rip.
 
  elfcpp::DW_OP_lit15,                  // Push 0xf.
 
  elfcpp::DW_OP_and,                    // & (%rip & 0xf).
 
  elfcpp::DW_OP_lit11,                  // Push 0xb.
 
  elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
 
  elfcpp::DW_OP_lit3,                   // Push 3.
 
  elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
 
  elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
 
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
 
  elfcpp::DW_CFA_nop,
 
  elfcpp::DW_CFA_nop,
 
  elfcpp::DW_CFA_nop
 
};
 
 
// Write out the PLT.  This uses the hand-coded instructions above,
// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is specified by the AMD64 ABI.
// and adjusts them as needed.  This is specified by the AMD64 ABI.
 
 
void
void
Output_data_plt_x86_64::do_write(Output_file* of)
Output_data_plt_x86_64::do_write(Output_file* of)
Line 1054... Line 1276...
  const section_size_type oview_size =
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  unsigned char* const oview = of->get_output_view(offset, oview_size);
 
 
  const off_t got_file_offset = this->got_plt_->offset();
  const off_t got_file_offset = this->got_plt_->offset();
 
  gold_assert(parameters->incremental_update()
 
              || (got_file_offset + this->got_plt_->data_size()
 
                  == this->got_irelative_->offset()));
  const section_size_type got_size =
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size());
    convert_to_section_size_type(this->got_plt_->data_size()
 
                                 + this->got_irelative_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
  unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                      got_size);
                                                      got_size);
 
 
  unsigned char* pov = oview;
  unsigned char* pov = oview;
 
 
Line 1082... Line 1308...
                                     - (plt_address + 12)));
                                     - (plt_address + 12)));
  pov += plt_entry_size;
  pov += plt_entry_size;
 
 
  unsigned char* got_pov = got_view;
  unsigned char* got_pov = got_view;
 
 
  memset(got_pov, 0, 24);
  // The first entry in the GOT is the address of the .dynamic section
  got_pov += 24;
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
 
  // We saved space for them when we created the section in
 
  // Target_x86_64::got_section.
 
  Output_section* dynamic = this->layout_->dynamic_section();
 
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
 
  elfcpp::Swap<64, false>::writeval(got_pov, dynamic_addr);
 
  got_pov += 8;
 
  memset(got_pov, 0, 16);
 
  got_pov += 16;
 
 
  unsigned int plt_offset = plt_entry_size;
  unsigned int plt_offset = plt_entry_size;
  unsigned int got_offset = 24;
  unsigned int got_offset = 24;
  const unsigned int count = this->count_;
  const unsigned int count = this->count_ + this->irelative_count_;
  for (unsigned int plt_index = 0;
  for (unsigned int plt_index = 0;
       plt_index < count;
       plt_index < count;
       ++plt_index,
       ++plt_index,
         pov += plt_entry_size,
         pov += plt_entry_size,
         got_pov += 8,
         got_pov += 8,
Line 1145... Line 1379...
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    {
    {
      // Create the GOT sections first.
      // Create the GOT sections first.
      this->got_section(symtab, layout);
      this->got_section(symtab, layout);
 
 
      this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
      this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
                                              this->got_plt_);
                                              this->got_plt_,
 
                                              this->got_irelative_);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                       | elfcpp::SHF_EXECINSTR),
                                      this->plt_, ORDER_PLT, false);
                                      this->plt_, ORDER_PLT, false);
 
 
Line 1178... Line 1413...
    return;
    return;
 
 
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
 
 
  this->plt_->add_entry(gsym);
  this->plt_->add_entry(symtab, layout, gsym);
}
}
 
 
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
 
 
void
void
Line 1192... Line 1427...
{
{
  if (relobj->local_has_plt_offset(local_sym_index))
  if (relobj->local_has_plt_offset(local_sym_index))
    return;
    return;
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(relobj,
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
 
                                                              relobj,
                                                              local_sym_index);
                                                              local_sym_index);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
}
 
 
// Return the number of entries in the PLT.
// Return the number of entries in the PLT.
Line 1267... Line 1503...
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  this->got_tlsdesc_,
                                  this->got_tlsdesc_,
                                  ORDER_NON_RELRO_FIRST, false);
                                  ORDER_NON_RELRO_FIRST, false);
 
 
 
  // If there are any IRELATIVE relocations, they get GOT entries in
 
  // .got.plt after the jump slot and TLSDESC entries.
 
  this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
 
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
 
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
 
                                  this->got_irelative_,
 
                                  ORDER_NON_RELRO_FIRST, false);
 
 
  // Create the PLT section.
  // Create the PLT section.
  this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
  this->plt_ = new Output_data_plt_x86_64(layout, this->got_, this->got_plt_,
                                          this->got_plt_, plt_count);
                                          this->got_irelative_, plt_count);
  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
                                  this->plt_, ORDER_PLT, false);
                                  this->plt_, ORDER_PLT, false);
 
 
  // Make the sh_info field of .rela.plt point to .plt.
  // Make the sh_info field of .rela.plt point to .plt.
Line 1376... Line 1620...
}
}
 
 
// Register an existing PLT entry for a global symbol.
// Register an existing PLT entry for a global symbol.
 
 
void
void
Target_x86_64::register_global_plt_entry(unsigned int plt_index,
Target_x86_64::register_global_plt_entry(Symbol_table* symtab,
 
                                         Layout* layout,
 
                                         unsigned int plt_index,
                                         Symbol* gsym)
                                         Symbol* gsym)
{
{
  gold_assert(this->plt_ != NULL);
  gold_assert(this->plt_ != NULL);
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  this->plt_->reserve_slot(plt_index);
  this->plt_->reserve_slot(plt_index);
 
 
  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
 
 
  unsigned int got_offset = (plt_index + 3) * 8;
  unsigned int got_offset = (plt_index + 3) * 8;
  this->plt_->add_relocation(gsym, got_offset);
  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
}
}
 
 
// Force a COPY relocation for a given symbol.
// Force a COPY relocation for a given symbol.
 
 
void
void
Line 1608... Line 1854...
// dynamic linker does not support it, issue an error.  The GNU linker
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.
// error even if the section is not read-only.  If GSYM is not NULL,
 
// it is the symbol the relocation is against; if it is NULL, the
 
// relocation is against a local symbol.
 
 
void
void
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type,
 
                                   Symbol* gsym)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
      // These are the relocation types supported by glibc for x86_64
      // These are the relocation types supported by glibc for x86_64
      // which should always work.
      // which should always work.
Line 1629... Line 1878...
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
      return;
      return;
 
 
      // glibc supports these reloc types, but they can overflow.
      // glibc supports these reloc types, but they can overflow.
    case elfcpp::R_X86_64_32:
 
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
 
      // A PC relative reference is OK against a local symbol or if
 
      // the symbol is defined locally.
 
      if (gsym == NULL
 
          || (!gsym->is_from_dynobj()
 
              && !gsym->is_undefined()
 
              && !gsym->is_preemptible()))
 
        return;
 
      /* Fall through.  */
 
    case elfcpp::R_X86_64_32:
      if (this->issued_non_pic_error_)
      if (this->issued_non_pic_error_)
        return;
        return;
      gold_assert(parameters->options().output_is_position_independent());
      gold_assert(parameters->options().output_is_position_independent());
      object->error(_("requires dynamic reloc which may overflow at runtime; "
      if (gsym == NULL)
                      "recompile with -fPIC"));
        object->error(_("requires dynamic R_X86_64_32 reloc which may "
 
                        "overflow at runtime; recompile with -fPIC"));
 
      else
 
        object->error(_("requires dynamic %s reloc against '%s' which may "
 
                        "overflow at runtime; recompile with -fPIC"),
 
                      (r_type == elfcpp::R_X86_64_32
 
                       ? "R_X86_64_32"
 
                       : "R_X86_64_PC32"),
 
                      gsym->name());
      this->issued_non_pic_error_ = true;
      this->issued_non_pic_error_ = true;
      return;
      return;
 
 
    default:
    default:
      // This prevents us from issuing more than one error per reloc
      // This prevents us from issuing more than one error per reloc
      // section.  But we can still wind up issuing more than one
      // section.  But we can still wind up issuing more than one
      // error per object file.
      // error per object file.
      if (this->issued_non_pic_error_)
      if (this->issued_non_pic_error_)
        return;
        return;
      gold_assert(parameters->options().output_is_position_independent());
      gold_assert(parameters->options().output_is_position_independent());
      object->error(_("requires unsupported dynamic reloc; "
      object->error(_("requires unsupported dynamic reloc %u; "
                      "recompile with -fPIC"));
                      "recompile with -fPIC"),
 
                    r_type);
      this->issued_non_pic_error_ = true;
      this->issued_non_pic_error_ = true;
      return;
      return;
 
 
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
      gold_unreachable();
      gold_unreachable();
Line 1728... Line 1994...
      // executable), we need to create a dynamic relocation for this
      // executable), we need to create a dynamic relocation for this
      // location.  We can't use an R_X86_64_RELATIVE relocation
      // location.  We can't use an R_X86_64_RELATIVE relocation
      // because that is always a 64-bit relocation.
      // because that is always a 64-bit relocation.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          this->check_non_pic(object, r_type);
          this->check_non_pic(object, r_type, NULL);
 
 
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
            rela_dyn->add_local(object, r_sym, r_type, output_section,
            rela_dyn->add_local(object, r_sym, r_type, output_section,
Line 1812... Line 2078...
                                                 elfcpp::R_X86_64_RELATIVE,
                                                 elfcpp::R_X86_64_RELATIVE,
                                                 got, got_offset, 0);
                                                 got, got_offset, 0);
                  }
                  }
                else
                else
                  {
                  {
                    this->check_non_pic(object, r_type);
                    this->check_non_pic(object, r_type, NULL);
 
 
                    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                    rela_dyn->add_local(
                    rela_dyn->add_local(
                        object, r_sym, r_type, got,
                        object, r_sym, r_type, got,
                        object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
                        object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
Line 2113... Line 2379...
              {
              {
                // Use an IRELATIVE reloc for a locally defined
                // Use an IRELATIVE reloc for a locally defined
                // STT_GNU_IFUNC symbol.  This makes a function
                // STT_GNU_IFUNC symbol.  This makes a function
                // address in a PIE executable match the address in a
                // address in a PIE executable match the address in a
                // shared library that it links against.
                // shared library that it links against.
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn =
 
                  target->rela_irelative_section(layout);
                unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
                unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
                rela_dyn->add_symbolless_global_addend(gsym, r_type,
                rela_dyn->add_symbolless_global_addend(gsym, r_type,
                                                       output_section, object,
                                                       output_section, object,
                                                       data_shndx,
                                                       data_shndx,
                                                       reloc.get_r_offset(),
                                                       reloc.get_r_offset(),
Line 2133... Line 2400...
                                              reloc.get_r_offset(),
                                              reloc.get_r_offset(),
                                              reloc.get_r_addend());
                                              reloc.get_r_addend());
              }
              }
            else
            else
              {
              {
                this->check_non_pic(object, r_type);
                this->check_non_pic(object, r_type, gsym);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global(gsym, r_type, output_section, object,
                rela_dyn->add_global(gsym, r_type, output_section, object,
                                     data_shndx, reloc.get_r_offset(),
                                     data_shndx, reloc.get_r_offset(),
                                     reloc.get_r_addend());
                                     reloc.get_r_addend());
              }
              }
Line 2161... Line 2428...
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else
            else
              {
              {
                this->check_non_pic(object, r_type);
                this->check_non_pic(object, r_type, gsym);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global(gsym, r_type, output_section, object,
                rela_dyn->add_global(gsym, r_type, output_section, object,
                                     data_shndx, reloc.get_r_offset(),
                                     data_shndx, reloc.get_r_offset(),
                                     reloc.get_r_addend());
                                     reloc.get_r_addend());
              }
              }
Line 2192... Line 2459...
        else
        else
          {
          {
            // If this symbol is not fully resolved, we need to add a
            // If this symbol is not fully resolved, we need to add a
            // dynamic relocation for it.
            // dynamic relocation for it.
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
 
 
 
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
 
            //
 
            // 1) The symbol may be defined in some other module.
 
            //
 
            // 2) We are building a shared library and this is a
 
            // protected symbol; using GLOB_DAT means that the dynamic
 
            // linker can use the address of the PLT in the main
 
            // executable when appropriate so that function address
 
            // comparisons work.
 
            //
 
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
 
            // code, again so that function address comparisons work.
            if (gsym->is_from_dynobj()
            if (gsym->is_from_dynobj()
                || gsym->is_undefined()
                || gsym->is_undefined()
                || gsym->is_preemptible()
                || gsym->is_preemptible()
 
                || (gsym->visibility() == elfcpp::STV_PROTECTED
 
                    && parameters->options().shared())
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                    && parameters->options().output_is_position_independent()))
                    && parameters->options().output_is_position_independent()))
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
                                        elfcpp::R_X86_64_GLOB_DAT);
                                        elfcpp::R_X86_64_GLOB_DAT);
            else
            else
Line 2516... Line 2798...
  if (sym != NULL)
  if (sym != NULL)
    {
    {
      uint64_t data_size = this->got_plt_->current_data_size();
      uint64_t data_size = this->got_plt_->current_data_size();
      symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
      symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
    }
    }
 
 
 
  if (parameters->doing_static_link()
 
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
 
    {
 
      // If linking statically, make sure that the __rela_iplt symbols
 
      // were defined if necessary, even if we didn't create a PLT.
 
      static const Define_symbol_in_segment syms[] =
 
        {
 
          {
 
            "__rela_iplt_start",        // name
 
            elfcpp::PT_LOAD,            // segment_type
 
            elfcpp::PF_W,               // segment_flags_set
 
            elfcpp::PF(0),               // segment_flags_clear
 
            0,                           // value
 
            0,                           // size
 
            elfcpp::STT_NOTYPE,         // type
 
            elfcpp::STB_GLOBAL,         // binding
 
            elfcpp::STV_HIDDEN,         // visibility
 
            0,                           // nonvis
 
            Symbol::SEGMENT_START,      // offset_from_base
 
            true                        // only_if_ref
 
          },
 
          {
 
            "__rela_iplt_end",          // name
 
            elfcpp::PT_LOAD,            // segment_type
 
            elfcpp::PF_W,               // segment_flags_set
 
            elfcpp::PF(0),               // segment_flags_clear
 
            0,                           // value
 
            0,                           // size
 
            elfcpp::STT_NOTYPE,         // type
 
            elfcpp::STB_GLOBAL,         // binding
 
            elfcpp::STV_HIDDEN,         // visibility
 
            0,                           // nonvis
 
            Symbol::SEGMENT_START,      // offset_from_base
 
            true                        // only_if_ref
 
          }
 
        };
 
 
 
      symtab->define_symbols(layout, 2, syms,
 
                             layout->script_options()->saw_sections_clause());
 
    }
}
}
 
 
// Perform a relocation.
// Perform a relocation.
 
 
inline bool
inline bool
Line 2557... Line 2880...
  // Pick the value to use for symbols defined in the PLT.
  // Pick the value to use for symbols defined in the PLT.
  Symbol_value<64> symval;
  Symbol_value<64> symval;
  if (gsym != NULL
  if (gsym != NULL
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
    {
    {
      symval.set_output_value(target->plt_section()->address()
      symval.set_output_value(target->plt_address_for_global(gsym)
                              + gsym->plt_offset());
                              + gsym->plt_offset());
      psymval = &symval;
      psymval = &symval;
    }
    }
  else if (gsym == NULL && psymval->is_ifunc_symbol())
  else if (gsym == NULL && psymval->is_ifunc_symbol())
    {
    {
      unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
      unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
      if (object->local_has_plt_offset(r_sym))
      if (object->local_has_plt_offset(r_sym))
        {
        {
          symval.set_output_value(target->plt_section()->address()
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
                                  + object->local_plt_offset(r_sym));
                                  + object->local_plt_offset(r_sym));
          psymval = &symval;
          psymval = &symval;
        }
        }
    }
    }
 
 
Line 2825... Line 3148...
          // leave it unoptimized.
          // leave it unoptimized.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
                             rela, r_type, value, view,
                             rela, r_type, value, view,
                             view_size);
                             view_size);
          break;
          break;
        }
        }
Line 2851... Line 3179...
              got_offset = (object->local_got_offset(r_sym, got_type)
              got_offset = (object->local_got_offset(r_sym, got_type)
                            - target->got_size());
                            - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              gold_assert(tls_segment != NULL);
              if (tls_segment == NULL)
 
                {
 
                  gold_assert(parameters->errors()->error_count() > 0
 
                              || issue_undefined_symbol_error(gsym));
 
                  return;
 
                }
              value = target->got_plt_section()->address() + got_offset;
              value = target->got_plt_section()->address() + got_offset;
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
                                 value, view, address, view_size);
                                 value, view, address, view_size);
              break;
              break;
            }
            }
Line 2880... Line 3213...
          // See above comment for R_X86_64_TLSGD.
          // See above comment for R_X86_64_TLSGD.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
                                  rela, r_type, value, view,
                                  rela, r_type, value, view,
                                  view_size);
                                  view_size);
          break;
          break;
        }
        }
Line 2915... Line 3253...
              got_offset += (object->local_got_offset(r_sym, got_type)
              got_offset += (object->local_got_offset(r_sym, got_type)
                             - target->got_size());
                             - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              gold_assert(tls_segment != NULL);
              if (tls_segment == NULL)
 
                {
 
                  gold_assert(parameters->errors()->error_count() > 0
 
                              || issue_undefined_symbol_error(gsym));
 
                  return;
 
                }
              value = target->got_plt_section()->address() + got_offset;
              value = target->got_plt_section()->address() + got_offset;
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
                                      rela, r_type, value, view, address,
                                      rela, r_type, value, view, address,
                                      view_size);
                                      view_size);
              break;
              break;
Line 2947... Line 3290...
          // See above comment for R_X86_64_TLSGD.
          // See above comment for R_X86_64_TLSGD.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
                             value, view, view_size);
                             value, view, view_size);
          break;
          break;
        }
        }
      else if (optimized_type == tls::TLSOPT_NONE)
      else if (optimized_type == tls::TLSOPT_NONE)
Line 2977... Line 3325...
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
      // R_X86_64_TLSLD.
      // R_X86_64_TLSLD.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          value -= tls_segment->memsz();
          value -= tls_segment->memsz();
        }
        }
      Relocate_functions<64, false>::rela32(view, value, addend);
      Relocate_functions<64, false>::rela32(view, value, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          value -= tls_segment->memsz();
          value -= tls_segment->memsz();
        }
        }
      Relocate_functions<64, false>::rela64(view, value, addend);
      Relocate_functions<64, false>::rela64(view, value, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          gold_assert(tls_segment != NULL);
          if (tls_segment == NULL)
 
            {
 
              gold_assert(parameters->errors()->error_count() > 0
 
                          || issue_undefined_symbol_error(gsym));
 
              return;
 
            }
          Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
          Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
                                                rela, r_type, value, view,
                                                rela, r_type, value, view,
                                                view_size);
                                                view_size);
          break;
          break;
        }
        }
Line 3031... Line 3394...
                             _("unsupported reloc type %u"),
                             _("unsupported reloc type %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
 
      if (tls_segment == NULL)
 
        {
 
          gold_assert(parameters->errors()->error_count() > 0
 
                      || issue_undefined_symbol_error(gsym));
 
          return;
 
        }
      value -= tls_segment->memsz();
      value -= tls_segment->memsz();
      Relocate_functions<64, false>::rela32(view, value, addend);
      Relocate_functions<64, false>::rela32(view, value, addend);
      break;
      break;
    }
    }
}
}
Line 3476... Line 3845...
 
 
uint64_t
uint64_t
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
{
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_section()->address() + gsym->plt_offset();
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
}
}
 
 
// Return a string used to fill a code section with nops to take up
// Return a string used to fill a code section with nops to take up
// the specified length.
// the specified length.
 
 
Line 3561... Line 3930...
  gold_assert(psymval->is_tls_symbol());
  gold_assert(psymval->is_tls_symbol());
  // The value of a TLS symbol is the offset in the TLS segment.
  // The value of a TLS symbol is the offset in the TLS segment.
  return psymval->value(ti.object, 0);
  return psymval->value(ti.object, 0);
}
}
 
 
 
// Return the value to use for the base of a DW_EH_PE_datarel offset
 
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
 
// assembler can not write out the difference between two labels in
 
// different sections, so instead of using a pc-relative value they
 
// use an offset from the GOT.
 
 
 
uint64_t
 
Target_x86_64::do_ehframe_datarel_base() const
 
{
 
  gold_assert(this->global_offset_table_ != NULL);
 
  Symbol* sym = this->global_offset_table_;
 
  Sized_symbol<64>* ssym = static_cast<Sized_symbol<64>*>(sym);
 
  return ssym->value();
 
}
 
 
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// compiled with -fsplit-stack.  The function calls non-split-stack
// compiled with -fsplit-stack.  The function calls non-split-stack
// code.  We have to change the function so that it always ensures
// code.  We have to change the function so that it always ensures
// that it has enough stack space to run some random function.
// that it has enough stack space to run some random function.
 
 
Line 3629... Line 4013...
class Target_selector_x86_64 : public Target_selector_freebsd
class Target_selector_x86_64 : public Target_selector_freebsd
{
{
public:
public:
  Target_selector_x86_64()
  Target_selector_x86_64()
    : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
    : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
                              "elf64-x86-64-freebsd")
                              "elf64-x86-64-freebsd", "elf_x86_64")
  { }
  { }
 
 
  Target*
  Target*
  do_instantiate_target()
  do_instantiate_target()
  { return new Target_x86_64(); }
  { return new Target_x86_64(); }

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.