OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [cpu/] [busdelay.v] - Diff between revs 3 and 30

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 3 Rev 30
Line 1... Line 1...
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    busdelay.v
// Filename:    busdelay.v
//
//
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
//
//
// Purpose:     Delay any access to the wishbone bus by a single clock.  This
// Purpose:     Delay any access to the wishbone bus by a single clock.
//              particular version of the busdelay builds off of some previous
//
//      work, but also delays and buffers the stall line as well.  It is
//      When the first Zip System would not meet the timing requirements of
//      designed to allow pipelined accesses (1 access/clock) to still work,
//      the board it was placed upon, this bus delay was added to help out.
//      while also providing for single accesses.
//      It may no longer be necessary, having cleaned some other problems up
 
//      first, but it will remain here as a means of alleviating timing
 
//      problems.
 
//
 
//      The specific problem takes place on the stall line: a wishbone master
 
//      *must* know on the first clock whether or not the bus will stall.
 
//
 
//
 
//      After a period of time, I started a new design where the timing
 
//      associated with this original bus clock just wasn't ... fast enough.
 
//      I needed to delay the stall line as well.  A new busdelay was then
 
//      written and debugged whcih delays the stall line.  (I know, you aren't
 
//      supposed to delay the stall line--but what if you *have* to in order
 
//      to meet timing?)  This new logic has been merged in with the old,
 
//      and the DELAY_STALL line can be set to non-zero to use it instead
 
//      of the original logic.  Don't use it if you don't need it: it will
 
//      consume resources and slow your bus down more, but if you do need
 
//      it--don't be afraid to use it.  
 
//
 
//      Both versions of the bus delay will maintain a single access per
 
//      clock when pipelined, they only delay the time between the strobe
 
//      going high and the actual command being accomplished.
//
//
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
Line 30... Line 51...
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
module  busdelay(i_clk,
module  busdelay(i_clk,
                // The input bus
                // The input bus
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
                        o_wb_ack, o_wb_stall, o_wb_data, o_wb_err,
                        o_wb_ack, o_wb_stall, o_wb_data, o_wb_err,
                // The delayed bus
                // The delayed bus
                o_dly_cyc, o_dly_stb, o_dly_we, o_dly_addr, o_dly_data,
                o_dly_cyc, o_dly_stb, o_dly_we, o_dly_addr, o_dly_data,
                        i_dly_ack, i_dly_stall, i_dly_data, i_dly_err);
                        i_dly_ack, i_dly_stall, i_dly_data, i_dly_err);
        parameter       AW=32, DW=32;
        parameter       AW=32, DW=32, DELAY_STALL = 0;
        input   i_clk;
        input   i_clk;
        // Input/master bus
        // Input/master bus
        input                           i_wb_cyc, i_wb_stb, i_wb_we;
        input                           i_wb_cyc, i_wb_stb, i_wb_we;
        input           [(AW-1):0]       i_wb_addr;
        input           [(AW-1):0]       i_wb_addr;
        input           [(DW-1):0]       i_wb_data;
        input           [(DW-1):0]       i_wb_data;
        output  reg                     o_wb_ack;
        output  reg                     o_wb_ack;
        output  reg                     o_wb_stall;
        output  wire                    o_wb_stall;
        output  reg     [(DW-1):0]       o_wb_data;
        output  reg     [(DW-1):0]       o_wb_data;
        output  reg                     o_wb_err;
        output  wire                    o_wb_err;
        // Delayed bus
        // Delayed bus
        output  reg                     o_dly_cyc, o_dly_we;
        output  reg                     o_dly_cyc, o_dly_stb, o_dly_we;
        output  wire                    o_dly_stb;
 
        output  reg     [(AW-1):0]       o_dly_addr;
        output  reg     [(AW-1):0]       o_dly_addr;
        output  reg     [(DW-1):0]       o_dly_data;
        output  reg     [(DW-1):0]       o_dly_data;
        input                           i_dly_ack;
        input                           i_dly_ack;
        input                           i_dly_stall;
        input                           i_dly_stall;
        input           [(DW-1):0]       i_dly_data;
        input           [(DW-1):0]       i_dly_data;
        input                           i_dly_err;
        input                           i_dly_err;
 
 
        reg     loaded;
        generate
        initial o_dly_cyc = 1'b0;
        if (DELAY_STALL != 0)
        initial loaded    = 1'b0;
        begin
 
                reg     r_stb, r_we, r_rtn_stall, r_rtn_err;
 
                reg     [(DW-1):0]       r_data;
 
                reg     [(AW-1):0]       r_addr;
 
 
 
                initial o_dly_cyc  = 1'b0;
 
                initial r_rtn_stall= 1'b0;
 
                initial r_stb      = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                o_wb_stall <= (loaded)&&(i_dly_stall);
                begin
 
                        o_dly_cyc <= (i_wb_cyc);
 
 
 
                        if (!i_dly_stall)
 
                        begin
 
                                r_we   <= i_wb_we;
 
                                r_addr <= i_wb_addr;
 
                                r_data <= i_wb_data;
 
 
 
                                if (r_stb)
 
                                begin
 
                                        o_dly_we   <= r_we;
 
                                        o_dly_addr <= r_addr;
 
                                        o_dly_data <= r_data;
 
                                        o_dly_stb  <= 1'b1;
 
                                        r_rtn_stall <= 1'b0;
 
                                        r_stb <= 1'b0;
 
                                end else begin
 
                                        o_dly_we   <= i_wb_we;
 
                                        o_dly_addr <= i_wb_addr;
 
                                        o_dly_data <= i_wb_data;
 
                                        o_dly_stb  <= i_wb_stb;
 
                                        r_stb <= 1'b0;
 
                                        r_rtn_stall <= 1'b0;
 
                                end
 
                        end else if ((!r_stb)&&(!o_wb_stall))
 
                        begin
 
                                r_we   <= i_wb_we;
 
                                r_addr <= i_wb_addr;
 
                                r_data <= i_wb_data;
 
                                r_stb  <= i_wb_stb;
 
 
 
                                r_rtn_stall <= i_wb_stb;
 
                        end
 
 
 
                        if (!i_wb_cyc)
 
                        begin
 
                                o_dly_stb <= 1'b0;
 
                                r_stb <= 1'b0;
 
                                r_rtn_stall <= 1'b0;
 
                        end
 
 
 
                        o_wb_ack  <= (i_dly_ack)&&(i_wb_cyc)&&(o_dly_cyc);
 
                        o_wb_data <= i_dly_data;
 
                        r_rtn_err <= (i_dly_err)&&(i_wb_cyc)&&(o_dly_cyc);
 
                end
 
 
 
                assign  o_wb_stall = r_rtn_stall;
 
                assign  o_wb_err   = r_rtn_err;
 
 
 
        end else begin
 
 
        initial o_dly_cyc = 1'b0;
        initial o_dly_cyc = 1'b0;
 
                initial o_dly_stb = 1'b0;
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                o_dly_cyc <= (i_wb_cyc);
                        o_dly_cyc <= i_wb_cyc;
        // Add the i_wb_cyc criteria here, so we can simplify the o_wb_stall
                // Add the i_wb_cyc criteria here, so we can simplify the
        // criteria below, which would otherwise *and* these two.
                // o_wb_stall criteria below, which would otherwise *and*
 
                // these two.
        always @(posedge i_clk)
        always @(posedge i_clk)
                loaded <= (i_wb_stb)||((loaded)&&(i_dly_stall)&&(~i_dly_err)&&(i_wb_cyc));
                        if (~o_wb_stall)
        assign  o_dly_stb = loaded;
                                o_dly_stb <= ((i_wb_cyc)&&(i_wb_stb));
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (~i_dly_stall)
                        if (~o_wb_stall)
                        o_dly_we  <= i_wb_we;
                        o_dly_we  <= i_wb_we;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (~i_dly_stall)
                        if (~o_wb_stall)
                        o_dly_addr<= i_wb_addr;
                        o_dly_addr<= i_wb_addr;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (~i_dly_stall)
                        if (~o_wb_stall)
                        o_dly_data <= i_wb_data;
                        o_dly_data <= i_wb_data;
        always @(posedge i_clk)
        always @(posedge i_clk)
                o_wb_ack  <= (i_dly_ack)&&(o_dly_cyc)&&(i_wb_cyc);
                o_wb_ack  <= (i_dly_ack)&&(o_dly_cyc)&&(i_wb_cyc);
        always @(posedge i_clk)
        always @(posedge i_clk)
                o_wb_data <= i_dly_data;
                o_wb_data <= i_dly_data;
 
 
        always @(posedge i_clk)
                // Our only non-delayed line, yet still really delayed.  Perhaps
                o_wb_err <= (i_dly_err)&&(o_dly_cyc)&&(i_wb_cyc);
                // there's a way to register this?
 
                // o_wb_stall <= (i_wb_cyc)&&(i_wb_stb) ... or some such?
 
                // assign o_wb_stall=((i_wb_cyc)&&(i_dly_stall)&&(o_dly_stb));//&&o_cyc
 
                assign  o_wb_stall = ((i_dly_stall)&&(o_dly_stb));//&&o_cyc
 
                assign  o_wb_err   = i_dly_err;
 
        end endgenerate
 
 
endmodule
endmodule
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.