Line 1... |
Line 1... |
///////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: cpuops.v
|
// Filename: cpuops.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
Line 10... |
Line 10... |
//
|
//
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 24... |
Line 24... |
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
|
// target there if the PDF file isn't present.) If not, see
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
`include "cpudefs.v"
|
`include "cpudefs.v"
|
//
|
//
|
module cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
|
module cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
|
o_busy);
|
o_busy);
|
Line 43... |
Line 48... |
output reg [31:0] o_c;
|
output reg [31:0] o_c;
|
output wire [3:0] o_f;
|
output wire [3:0] o_f;
|
output reg o_valid;
|
output reg o_valid;
|
output wire o_busy;
|
output wire o_busy;
|
|
|
// Rotate-left pre-logic
|
|
wire [63:0] w_rol_tmp;
|
|
assign w_rol_tmp = { i_a, i_a } << i_b[4:0];
|
|
wire [31:0] w_rol_result;
|
|
assign w_rol_result = w_rol_tmp[63:32]; // Won't set flags
|
|
|
|
// Shift register pre-logic
|
// Shift register pre-logic
|
wire [32:0] w_lsr_result, w_asr_result, w_lsl_result;
|
wire [32:0] w_lsr_result, w_asr_result, w_lsl_result;
|
wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted;
|
wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted;
|
assign w_pre_asr_input = { i_a, 1'b0 };
|
assign w_pre_asr_input = { i_a, 1'b0 };
|
assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
|
assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
|
Line 73... |
Line 72... |
for(k=0; k<32; k=k+1)
|
for(k=0; k<32; k=k+1)
|
begin : bit_reversal_cpuop
|
begin : bit_reversal_cpuop
|
assign w_brev_result[k] = i_b[31-k];
|
assign w_brev_result[k] = i_b[31-k];
|
end endgenerate
|
end endgenerate
|
|
|
// Popcount pre-logic
|
|
wire [31:0] w_popc_result;
|
|
assign w_popc_result[5:0]=
|
|
({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]})
|
|
+({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]})
|
|
+({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]})
|
|
+({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]})
|
|
+({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]})
|
|
+({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]})
|
|
+({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]})
|
|
+({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]});
|
|
assign w_popc_result[31:6] = 26'h00;
|
|
|
|
// Prelogic for our flags registers
|
// Prelogic for our flags registers
|
wire z, n, v;
|
wire z, n, v;
|
reg c, pre_sign, set_ovfl;
|
reg c, pre_sign, set_ovfl, keep_sgn_on_ovfl;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_ce) // 1 LUT
|
if (i_ce) // 1 LUT
|
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
set_ovfl<=(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
||(i_op == 4'h6) // LSL
|
||(i_op == 4'h6) // LSL
|
||(i_op == 4'h5)); // LSR
|
||(i_op == 4'h5)); // LSR
|
|
always @(posedge i_clk)
|
|
if (i_ce) // 1 LUT
|
|
keep_sgn_on_ovfl<=
|
|
(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
|
||((i_op==4'h2)&&(i_a[31] == i_b[31]))); // ADD
|
|
|
wire [63:0] mpy_result; // Where we dump the multiply result
|
wire [63:0] mpy_result; // Where we dump the multiply result
|
reg mpyhi; // Return the high half of the multiply
|
reg mpyhi; // Return the high half of the multiply
|
wire mpybusy; // The multiply is busy if true
|
wire mpybusy; // The multiply is busy if true
|
wire mpydone; // True if we'll be valid on the next clock;
|
wire mpydone; // True if we'll be valid on the next clock;
|
Line 108... |
Line 99... |
// the Xilinx multiplexer fabric that follows.
|
// the Xilinx multiplexer fabric that follows.
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
// this will cost a minimum of 132 6-LUTs.
|
// this will cost a minimum of 132 6-LUTs.
|
|
|
wire this_is_a_multiply_op;
|
wire this_is_a_multiply_op;
|
assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'h8));
|
assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'hc));
|
|
|
generate
|
generate
|
if (IMPLEMENT_MPY == 0)
|
if (IMPLEMENT_MPY == 0)
|
begin // No multiply support.
|
begin // No multiply support.
|
assign mpy_result = 63'h00;
|
assign mpy_result = 63'h00;
|
Line 135... |
Line 126... |
end
|
end
|
|
|
assign mpy_result = r_mpy_a_input * r_mpy_b_input;
|
assign mpy_result = r_mpy_a_input * r_mpy_b_input;
|
assign mpybusy = 1'b0;
|
assign mpybusy = 1'b0;
|
|
|
initial mpypipe = 1'b0;
|
|
reg mpypipe;
|
reg mpypipe;
|
|
initial mpypipe = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
mpypipe <= 1'b0;
|
mpypipe <= 1'b0;
|
else
|
else
|
mpypipe <= (this_is_a_multiply_op);
|
mpypipe <= (this_is_a_multiply_op);
|
Line 212... |
Line 203... |
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
reg r_mpy_signed;
|
reg r_mpy_signed;
|
reg [2:0] mpypipe;
|
reg [2:0] mpypipe;
|
|
|
// First clock, latch in the inputs
|
// First clock, latch in the inputs
|
|
initial mpypipe = 3'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
// mpypipe indicates we have a multiply in the
|
// mpypipe indicates we have a multiply in the
|
// pipeline. In this case, the multiply
|
// pipeline. In this case, the multiply
|
// pipeline is a two stage pipeline, so we need
|
// pipeline is a two stage pipeline, so we need
|
Line 331... |
Line 323... |
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
|
4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
4'b1000: o_c <= mpy_result[31:0]; // MPY
|
4'b1000: o_c <= w_brev_result; // BREV
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
4'b1010: o_c <= mpy_result[63:32]; // MPYHU
|
4'b1010: o_c <= mpy_result[63:32]; // MPYHU
|
4'b1011: o_c <= mpy_result[63:32]; // MPYHS
|
4'b1011: o_c <= mpy_result[63:32]; // MPYHS
|
4'b1100: o_c <= w_brev_result; // BREV
|
4'b1100: o_c <= mpy_result[31:0]; // MPY
|
4'b1101: o_c <= w_popc_result; // POPC
|
|
4'b1110: o_c <= w_rol_result; // ROL
|
|
default: o_c <= i_b; // MOV, LDI
|
default: o_c <= i_b; // MOV, LDI
|
endcase
|
endcase
|
end else // if (mpydone)
|
end else // if (mpydone)
|
o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
|
o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
|
|
|
Line 357... |
Line 347... |
|
|
|
|
assign z = (o_c == 32'h0000);
|
assign z = (o_c == 32'h0000);
|
assign n = (o_c[31]);
|
assign n = (o_c[31]);
|
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
|
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
|
|
wire vx = (keep_sgn_on_ovfl)&&(pre_sign != o_c[31]);
|
|
|
assign o_f = { v, n, c, z };
|
assign o_f = { v, n^vx, c, z };
|
|
|
initial o_valid = 1'b0;
|
initial o_valid = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
o_valid <= 1'b0;
|
o_valid <= 1'b0;
|