OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [fasttop.v] - Diff between revs 13 and 24

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 13 Rev 24
Line 108... Line 108...
        input                   i_aux_rx, i_aux_rts;
        input                   i_aux_rx, i_aux_rts;
        output  wire            o_aux_tx, o_aux_cts;
        output  wire            o_aux_tx, o_aux_cts;
 
 
`define FULLCLOCK
`define FULLCLOCK
        // Build our master clock
        // Build our master clock
        wire    i_clk, clk_for_ddr, clk2_unused, enet_clk, clk_analyzer,
        wire    i_clk, clk_for_ddr, mem_serial_clk, mem_serial_clk_inv,
                clk_feedback, clk_locked, clk_analyzer_b;
                enet_clk, clk_halfspeed, clk_feedback, clk_locked, clk_unused;
        PLLE2_BASE      #(
        PLLE2_BASE      #(
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .CLKFBOUT_PHASE(0.0),   // Phase offset in degrees of CLKFB, (-360-360)
                .CLKFBOUT_PHASE(0.0),   // Phase off. in deg of CLKFB,(-360-360)
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns to ps resolution
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns resolution
`ifdef  FULLCLOCK
`ifdef  FULLCLOCK
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: divide amount for each CLKOUT(1-128)
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE:
 
                //      divide amount for each CLKOUT(1-128)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKOUT0_DIVIDE(4),     // 200 MHz
                .CLKOUT0_DIVIDE(4),     // 200 MHz
                .CLKOUT1_DIVIDE(4),     // 200 MHz clock for DDR memory
                .CLKOUT1_DIVIDE(1),     // 800 MHz clock for DDR memory
                .CLKOUT2_DIVIDE(8),     // 100 MHz
                .CLKOUT2_DIVIDE(1),     // 800 MHz clock to run DDR I/O
                .CLKOUT3_DIVIDE(32),    //  25 MHz
                .CLKOUT3_DIVIDE(1),     // 800MHz clk inv to run DDR I/O
                .CLKOUT4_DIVIDE(1),     // 800 MHz
                .CLKOUT4_DIVIDE(8),     // 100 MHz
                .CLKOUT5_DIVIDE(1),
                .CLKOUT5_DIVIDE(32),    //  25 MHz
`else
`else
                // 100*64/40 = 160 -- the fastest speed where the UART will 
                // 100*64/40 = 160 -- the fastest speed where the UART will 
                // still work at 4MBaud.  Others will still support 115200
                // still work at 4MBaud.  Others will still support 115200
                // Baud
                // Baud
                // 100*64/36 = 177.78
                // 100*64/36 = 177.78
                // 100*64/34 = 188.24
                // 100*64/34 = 188.24
                // 100*64/33 = 193.94
                // 100*64/33 = 193.94
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKOUT0_DIVIDE(5),     // 160 MHz
                .CLKOUT0_DIVIDE(5),     // 160 MHz
                .CLKOUT1_DIVIDE(5),     // 160 MHz //Clock too slow for DDR mem
                .CLKOUT1_DIVIDE(5),     // 160 MHz //Clock too slow for DDR mem
                .CLKOUT2_DIVIDE(10),    //  80 MHz
                .CLKOUT2_DIVIDE(5),     // 160 MHz // Clock too slow for DDR
                .CLKOUT3_DIVIDE(40),    //  20 MHz
                .CLKOUT3_DIVIDE(5),     // 160 MHz // Clock too slow for DDR
                .CLKOUT4_DIVIDE(1),     //  40 MHz
                .CLKOUT4_DIVIDE(20),    //  40 MHz
                .CLKOUT5_DIVIDE(1),
                .CLKOUT5_DIVIDE(5),
`endif
`endif
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
Line 149... Line 150...
                .CLKOUT5_DUTY_CYCLE(0.5),
                .CLKOUT5_DUTY_CYCLE(0.5),
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                .CLKOUT0_PHASE(0.0),
                .CLKOUT0_PHASE(0.0),
                .CLKOUT1_PHASE(270.0),
                .CLKOUT1_PHASE(270.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT3_PHASE(0.0),
                .CLKOUT3_PHASE(180.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT5_PHASE(180.0),
                .CLKOUT5_PHASE(0.0),
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .REF_JITTER1(0.0),      // Reference input jitter in UI (0.000-0.999)
                .REF_JITTER1(0.0),      // Ref. input jitter in UI (0.000-0.999)
                .STARTUP_WAIT("FALSE")  // Delayu DONE until PLL Locks, ("TRUE"/"FALSE")
                .STARTUP_WAIT("TRUE")   // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
        ) genclock(
        ) genclock(
                // Clock outputs: 1-bit (each) output
                // Clock outputs: 1-bit (each) output
                .CLKOUT0(i_clk),
                .CLKOUT0(i_clk),
                .CLKOUT1(clk_for_ddr),
                .CLKOUT1(clk_for_ddr),
                .CLKOUT2(clk2_unused), // Reserved for flash, should we need it
                .CLKOUT2(mem_serial_clk),
                .CLKOUT3(enet_clk),
                .CLKOUT3(mem_serial_clk_inv),
                .CLKOUT4(clk_analyzer),
                .CLKOUT4(clk_unused),
                .CLKOUT5(clk_analyzer_b),
                .CLKOUT5(enet_clk),
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .LOCKED(clk_locked),
                .LOCKED(clk_locked),
                .CLKIN1(i_clk_100mhz),
                .CLKIN1(i_clk_100mhz),
                .PWRDWN(1'b0),
                .PWRDWN(1'b0),
                .RST(1'b0),
                .RST(1'b0),
Line 184... Line 185...
 
 
        wire    [7:0]    rx_data, tx_data;
        wire    [7:0]    rx_data, tx_data;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            tx_stb, tx_busy;
        wire            tx_stb, tx_busy;
 
 
 
        //
 
        // RESET LOGIC
 
        //
 
        // Okay, so this looks bad at a first read--but it's not really that
 
        // bad.  If you look close, there are two parts to the reset logic.
 
        // The first is the "PRE"-reset.  This is a wire, set from the external
 
        // reset button.  In good old-fashioned asynch-logic to synchronous
 
        // logic fashion, we synchronize this wire by registering it first
 
        // to pre_reset, and then to pwr_reset (the actual reset wire).
 
        //
        reg     pwr_reset, pre_reset;
        reg     pwr_reset, pre_reset;
        initial pwr_reset = 1'b1;
        //
 
        // Logic description starts with the PRE-reset, so as to make certain
 
        // we include the reset button
        initial pre_reset = 1'b0;
        initial pre_reset = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                pre_reset <= ~i_reset_btn;
                pre_reset <= ~i_reset_btn;
 
        //
 
        // and then continues with the actual reset, now that we've
 
        // synchronized our reset button wire.
 
        initial pwr_reset = 1'b1;
        always @(posedge i_clk)
        always @(posedge i_clk)
                pwr_reset <= pre_reset;
                pwr_reset <= pre_reset;
 
 
        wire    w_ck_uart, w_uart_tx;
        wire    w_ck_uart, w_uart_tx;
        rxuart  rcv(i_clk, pwr_reset, bus_uart_setup, i_uart_rx,
        rxuart  rcv(i_clk, pwr_reset, bus_uart_setup, i_uart_rx,
Line 202... Line 219...
                                tx_stb, tx_data, o_uart_tx, tx_busy);
                                tx_stb, tx_data, o_uart_tx, tx_busy);
 
 
 
 
 
 
 
 
 
`ifdef  SDRAM_ACCESS
 
///
 
///
 
/// The following lines are included from ddr3insert.v.
 
///
 
        wire            w_ddr_reset_n, w_ddr_cke, w_ddr_bus_oe;
 
        wire    [26:0]   w_ddr_cmd_a, w_ddr_cmd_b;
 
        wire    [63:0]   wi_ddr_data, wo_ddr_data;
 
        wire    [127:0]  wide_ddr_data;
 
 
 
        //
 
        //
 
        // Wires for setting up the DDR3 memory
 
        //
 
        //
 
 
 
        // First, let's set up the clock(s)
 
        xoddrserdesb ddrclk(mem_serial_clk, i_clk, pwr_reset, 8'h66,
 
                o_ddr_ck_p, o_ddr_ck_n);
 
 
 
        wire    [7:0]    w_udqs_in, w_ldqs_in;
 
 
 
        xioddrserdesb ddrudqs(mem_serial_clk, mem_serial_clk_inv, i_clk,
 
                        ~w_ddr_reset_n, w_ddr_cmd_a[0],
 
                        (w_ddr_cmd_b[0])? 8'h66 : 8'h06,
 
                        w_udqs_in,
 
                        io_ddr_dqs_p[1], io_ddr_dqs_n[1]);
 
 
 
        xioddrserdesb ddrldqs(mem_serial_clk, mem_serial_clk_inv, i_clk,
 
                        ~w_ddr_reset_n, w_ddr_cmd_a[0],
 
                        (w_ddr_cmd_b[0])? 8'h66 : 8'h06,
 
                        w_ldqs_in,
 
                        io_ddr_dqs_p[0], io_ddr_dqs_n[0]);
 
 
 
        // The command wires: CS_N, RAS_N, CAS_N, and WE_N
 
        xoddrserdes ddrcsn(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[26], w_ddr_cmd_a[26],
 
                  w_ddr_cmd_a[26], w_ddr_cmd_a[26],
 
                  w_ddr_cmd_b[26], w_ddr_cmd_b[26],
 
                  w_ddr_cmd_b[26], w_ddr_cmd_b[26] }, o_ddr_cs_n);
 
 
 
        xoddrserdes ddrrasn(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[25], w_ddr_cmd_a[25],
 
                  w_ddr_cmd_a[25], w_ddr_cmd_a[25],
 
                  w_ddr_cmd_b[25], w_ddr_cmd_b[25],
 
                  w_ddr_cmd_b[25], w_ddr_cmd_b[25] }, o_ddr_ras_n);
 
 
 
        xoddrserdes ddrcasn(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[24], w_ddr_cmd_a[24],
 
                  w_ddr_cmd_a[24], w_ddr_cmd_a[24],
 
                  w_ddr_cmd_b[24], w_ddr_cmd_b[24],
 
                  w_ddr_cmd_b[24], w_ddr_cmd_b[24] }, o_ddr_cas_n);
 
 
 
        xoddrserdes ddrwen(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[23], w_ddr_cmd_a[23],
 
                  w_ddr_cmd_a[23], w_ddr_cmd_a[23],
 
                  w_ddr_cmd_b[23], w_ddr_cmd_b[23],
 
                  w_ddr_cmd_b[23], w_ddr_cmd_b[23] }, o_ddr_we_n);
 
 
 
        // Data mask wires, first the upper byte
 
        xoddrserdes ddrudm(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[4], w_ddr_cmd_a[4],
 
                  w_ddr_cmd_a[2], w_ddr_cmd_a[2],
 
                  w_ddr_cmd_b[4], w_ddr_cmd_b[4],
 
                  w_ddr_cmd_b[2], w_ddr_cmd_b[2] }, o_ddr_dm[1]);
 
        // then the lower byte
 
        xoddrserdes ddrldm(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[3], w_ddr_cmd_a[3],
 
                  w_ddr_cmd_a[1], w_ddr_cmd_a[1],
 
                  w_ddr_cmd_b[3], w_ddr_cmd_b[3],
 
                  w_ddr_cmd_b[1], w_ddr_cmd_b[1] }, o_ddr_dm[0]);
 
 
 
        // and the On-Die termination wire
 
        xoddrserdes ddrodt(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                { w_ddr_cmd_a[0], w_ddr_cmd_a[0],
 
                  w_ddr_cmd_a[0], w_ddr_cmd_a[0],
 
                  w_ddr_cmd_b[0], w_ddr_cmd_b[0],
 
                  w_ddr_cmd_b[0], w_ddr_cmd_b[0] }, o_ddr_odt);
 
 
 
        //
 
        // Now for the data, bank, and address wires
 
        //
 
        genvar  k;
 
        generate begin
 
        //
 
        for(k=0; k<16; k=k+1)
 
                xioddrserdes ddrdata(mem_serial_clk, mem_serial_clk_inv, i_clk, ~w_ddr_reset_n,
 
                                w_ddr_bus_oe,
 
                        { wo_ddr_data[48+k], wo_ddr_data[48+k],
 
                          wo_ddr_data[32+k], wo_ddr_data[32+k],
 
                          wo_ddr_data[16+k], wo_ddr_data[16+k],
 
                          wo_ddr_data[   k], wo_ddr_data[   k] },
 
                        { wide_ddr_data[112+k], wide_ddr_data[96+k],
 
                          wide_ddr_data[ 80+k], wide_ddr_data[64+k],
 
                          wide_ddr_data[ 48+k], wide_ddr_data[32+k],
 
                          wide_ddr_data[ 16+k], wide_ddr_data[   k] },
 
                        io_ddr_data[k]);
 
        //
 
        for(k=0; k<3; k=k+1)
 
                xoddrserdes ddrbank(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                        { w_ddr_cmd_a[20+k], w_ddr_cmd_a[20+k],
 
                          w_ddr_cmd_a[20+k], w_ddr_cmd_a[20+k],
 
                          w_ddr_cmd_b[20+k], w_ddr_cmd_b[20+k],
 
                          w_ddr_cmd_b[20+k], w_ddr_cmd_b[20+k] },
 
                        o_ddr_ba[k]);
 
        //
 
        for(k=0; k<14; k=k+1)
 
                xoddrserdes ddraddr(mem_serial_clk, i_clk, ~w_ddr_reset_n,
 
                        { w_ddr_cmd_a[ 6+k], w_ddr_cmd_a[ 6+k],
 
                          w_ddr_cmd_a[ 6+k], w_ddr_cmd_a[ 6+k],
 
                          w_ddr_cmd_b[ 6+k], w_ddr_cmd_b[ 6+k],
 
                          w_ddr_cmd_b[ 6+k], w_ddr_cmd_b[ 6+k] },
 
                        o_ddr_addr[k]);
 
        //
 
 
 
        for(k=0; k<64; k=k+1)
 
                assign wi_ddr_data[k] = (w_ddr_bus_oe) ? wide_ddr_data[2*k+1]
 
                                        : wide_ddr_data[2*k];
 
        end endgenerate
 
 
 
        assign  o_ddr_reset_n = w_ddr_reset_n;
 
        assign  o_ddr_cke = w_ddr_cke;
 
 
 
 
 
///
 
///
 
///
 
///
 
`else
 
        wire            w_ddr_reset_n, w_ddr_cke, w_ddr_bus_oe;
 
        wire    [26:0]   w_ddr_cmd_a, w_ddr_cmd_b;
 
        wire    [63:0]   wi_ddr_data, wo_ddr_data;
 
        wire    [127:0]  wide_ddr_data;
 
 
 
        //
 
        //
 
        // Wires for setting up the DDR3 memory
 
        //
 
        //
 
 
 
        // Leave the SDRAM in a permanent state of reset
 
        assign  o_ddr_reset_n = 1'b0;
 
        // Leave the SDRAM clock ... disabled
 
        assign  o_ddr_cke = 1'b0;
 
 
 
        // Disable the clock(s)
 
        OBUFDS(.I(1'b0), .O(o_ddr_ck_p), .OB(o_ddr_ck_n));
 
        // And the data strobe
 
        OBUFDS(.I(1'b0), .O(io_ddr_dqs_p[0]), .OB(io_ddr_dqs_n[0]));
 
        OBUFDS(.I(1'b0), .O(io_ddr_dqs_p[1]), .OB(io_ddr_dqs_n[1]));
 
 
 
        // Output ... something, anything, on the address lines
 
        assign  o_ddr_cs_n  = 1'b1;     // Never enable any commands
 
        assign  o_ddr_ras_n = 1'b0;
 
        assign  o_ddr_cas_n = 1'b0;
 
        assign  o_ddr_we_n  = 1'b0;
 
        assign  o_ddr_ba    = 3'h0;
 
        assign  o_ddr_addr  = 14'h0;
 
        assign  o_ddr_dm    = 2'b00;
 
        assign  o_ddr_odt   = 1'b0;
 
 
 
        assign  io_ddr_data = 16'bzzzz_zzzz_zzzz_zzzz;
 
        assign  wi_ddr_data = io_ddr_data;
 
 
 
`endif
 
 
 
 
        //////
        //////
        //
        //
        //
        //
Line 218... Line 400...
        wire    [1:0]    qspi_bmod;
        wire    [1:0]    qspi_bmod;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    i_qspi_dat;
        wire    [3:0]    i_qspi_dat;
 
 
        //
        //
        wire    [31:0]   wo_ddr_data, wi_ddr_data;
 
        wire            w_ddr_dqs, w_ddr_dm, w_ddr_bus_oe, w_ddr_odt;
 
        wire    [2:0]    w_ddr_ba;
 
        wire            w_ddr_cs_n, w_ddr_ras_n, w_ddr_cas_n, w_ddr_we_n;
 
        wire    [13:0]   w_ddr_addr;
 
        reg     [31:0]   r_ddr_data;
 
 
 
        //
 
        wire            w_mdio, w_mdwe;
        wire            w_mdio, w_mdwe;
        //
        //
        wire            w_sd_cmd;
        wire            w_sd_cmd;
        wire    [3:0]    w_sd_data;
        wire    [3:0]    w_sd_data;
        fastmaster      wbbus(i_clk, pwr_reset,
        fastmaster      wbbus(i_clk, pwr_reset,
Line 241... Line 415...
                // Board level PMod I/O
                // Board level PMod I/O
                i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx,
                i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx,
                // Quad SPI flash
                // Quad SPI flash
                w_qspi_cs_n, w_qspi_sck, qspi_dat, i_qspi_dat, qspi_bmod,
                w_qspi_cs_n, w_qspi_sck, qspi_dat, i_qspi_dat, qspi_bmod,
                // DDR3 SDRAM
                // DDR3 SDRAM
                o_ddr_reset_n, o_ddr_cke,
                w_ddr_reset_n, w_ddr_cke, w_ddr_bus_oe,
                w_ddr_cs_n, w_ddr_ras_n, w_ddr_cas_n, w_ddr_we_n,
                w_ddr_cmd_a, w_ddr_cmd_b, wo_ddr_data, wi_ddr_data,
                w_ddr_dqs, w_ddr_dm, w_ddr_odt, w_ddr_bus_oe,
 
                w_ddr_addr, w_ddr_ba, wo_ddr_data, r_ddr_data,
 
                // SD Card
                // SD Card
                o_sd_sck, w_sd_cmd, w_sd_data, io_sd_cmd, io_sd, i_sd_cs,
                o_sd_sck, w_sd_cmd, w_sd_data, io_sd_cmd, io_sd, i_sd_cs,
                // Ethernet control (MDIO) lines
                // Ethernet control (MDIO) lines
                o_eth_mdclk, w_mdio, w_mdwe, io_eth_mdio,
                o_eth_mdclk, w_mdio, w_mdwe, io_eth_mdio,
                // OLEDRGB PMod wires
                // OLEDRGB PMod wires
Line 328... Line 500...
        //
        //
        //
        //
        // Wires for setting up the DDR3 memory
        // Wires for setting up the DDR3 memory
        //
        //
        //
        //
`ifdef  SDRAM_ACCESS
 
        reg     [15:0]   bottom_half_data;
 
        always @(posedge i_clk)
 
                bottom_half_data <= wo_ddr_data[15:0];
 
        xioddr  p0(i_clk, w_ddr_bus_oe, { wo_ddr_data[16], wo_ddr_data[0] },
 
                { wi_ddr_data[16], wi_ddr_data[0] }, io_ddr_data[0]);
 
 
 
        xioddr  p1(i_clk, w_ddr_bus_oe, { wo_ddr_data[17], wo_ddr_data[1] },
 
                { wi_ddr_data[17], wi_ddr_data[1] }, io_ddr_data[1]);
 
 
 
        xioddr  p2(i_clk, w_ddr_bus_oe, { wo_ddr_data[18], wo_ddr_data[2] },
 
                { wi_ddr_data[18], wi_ddr_data[2] }, io_ddr_data[2]);
 
 
 
        xioddr  p3(i_clk, w_ddr_bus_oe, { wo_ddr_data[19], wo_ddr_data[3] },
 
                { wi_ddr_data[19], wi_ddr_data[3] }, io_ddr_data[3]);
 
 
 
        xioddr  p4(i_clk, w_ddr_bus_oe, { wo_ddr_data[20], wo_ddr_data[4] },
 
                { wi_ddr_data[20], wi_ddr_data[4] }, io_ddr_data[4]);
 
 
 
        xioddr  p5(i_clk, w_ddr_bus_oe, { wo_ddr_data[21], wo_ddr_data[5] },
 
                { wi_ddr_data[21], wi_ddr_data[5] }, io_ddr_data[5]);
 
 
 
        xioddr  p6(i_clk, w_ddr_bus_oe, { wo_ddr_data[22], wo_ddr_data[6] },
 
                { wi_ddr_data[22], wi_ddr_data[6] }, io_ddr_data[6]);
 
 
 
        xioddr  p7(i_clk, w_ddr_bus_oe, { wo_ddr_data[23], wo_ddr_data[7] },
 
                { wi_ddr_data[23], wi_ddr_data[7] }, io_ddr_data[7]);
 
 
 
        xioddr  p8(i_clk, w_ddr_bus_oe, { wo_ddr_data[24], wo_ddr_data[8] },
 
                { wi_ddr_data[24], wi_ddr_data[8] }, io_ddr_data[8]);
 
 
 
        xioddr  p9(i_clk, w_ddr_bus_oe, { wo_ddr_data[25], wo_ddr_data[9] },
 
                { wi_ddr_data[25], wi_ddr_data[9] }, io_ddr_data[9]);
 
 
 
        xioddr  pa(i_clk, w_ddr_bus_oe, { wo_ddr_data[26], wo_ddr_data[10] },
 
                { wi_ddr_data[26], wi_ddr_data[10] }, io_ddr_data[10]);
 
 
 
        xioddr  pb(i_clk, w_ddr_bus_oe, { wo_ddr_data[27], wo_ddr_data[11] },
 
                { wi_ddr_data[27], wi_ddr_data[11] }, io_ddr_data[11]);
 
 
 
        xioddr  pc(i_clk, w_ddr_bus_oe, { wo_ddr_data[28], wo_ddr_data[12] },
 
                { wi_ddr_data[28], wi_ddr_data[12] }, io_ddr_data[12]);
 
 
 
        xioddr  pd(i_clk, w_ddr_bus_oe, { wo_ddr_data[29], wo_ddr_data[13] },
 
                { wi_ddr_data[29], wi_ddr_data[13] }, io_ddr_data[13]);
 
 
 
        xioddr  pe(i_clk, w_ddr_bus_oe, { wo_ddr_data[30], wo_ddr_data[14] },
 
                { wi_ddr_data[30], wi_ddr_data[14] }, io_ddr_data[14]);
 
 
 
        xioddr  pf(i_clk, w_ddr_bus_oe, { wo_ddr_data[31], wo_ddr_data[15] },
 
                { wi_ddr_data[31], wi_ddr_data[15] }, io_ddr_data[15]);
 
        always @(posedge i_clk)
 
                r_ddr_data <= wi_ddr_data;
 
 
 
        wire    [7:0]    w_dqs_ignore;
/*
        xioddrds        dqs0(clk_for_ddr, w_ddr_dqs, { 1'b0, 1'b1 },
        wire    w_clk_for_ddr;
                { w_dqs_ignore[0], w_dqs_ignore[1] },
        ODDR    #(.DDR_CLK_EDGE("SAME_EDGE"))
                io_ddr_dqs_p[0], io_ddr_dqs_n[0]);
                memclkddr(.Q(w_clk_for_ddr), .C(clk_for_ddr), .CE(1'b1),
        xioddrds        dqs1(clk_for_ddr, w_ddr_dqs, { 1'b0, 1'b1 },
                        .D1(1'b0), .D2(1'b1), .R(1'b0), .S(1'b0));
                { w_dqs_ignore[2], w_dqs_ignore[3] },
        OBUFDS  #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
                io_ddr_dqs_p[1], io_ddr_dqs_n[1]);
                clkbuf(.O(o_ddr_ck_p), .OB(o_ddr_ck_n), .I(w_clk_for_ddr));
 
*/
        xoddr   xcs_n( i_clk, { w_ddr_cs_n,  w_ddr_cs_n  }, o_ddr_cs_n);
 
        xoddr   xras_n(i_clk, { w_ddr_ras_n, w_ddr_ras_n }, o_ddr_ras_n);
 
        xoddr   xcas_n(i_clk, { w_ddr_cas_n, w_ddr_cas_n }, o_ddr_cas_n);
 
        xoddr   xwe_n( i_clk, { w_ddr_we_n,  w_ddr_we_n  }, o_ddr_we_n);
 
        xoddr   xba0(  i_clk, { w_ddr_ba[0], w_ddr_ba[0]  }, o_ddr_ba[0]);
 
        xoddr   xba1(  i_clk, { w_ddr_ba[1], w_ddr_ba[1]  }, o_ddr_ba[1]);
 
        xoddr   xba2(  i_clk, { w_ddr_ba[2], w_ddr_ba[2]  }, o_ddr_ba[2]);
 
        xoddr   xaddr0(i_clk, { w_ddr_addr[0], w_ddr_addr[0] }, o_ddr_addr[0]);
 
        xoddr   xaddr1(i_clk, { w_ddr_addr[1], w_ddr_addr[1] }, o_ddr_addr[1]);
 
        xoddr   xaddr2(i_clk, { w_ddr_addr[2], w_ddr_addr[2] }, o_ddr_addr[2]);
 
        xoddr   xaddr3(i_clk, { w_ddr_addr[3], w_ddr_addr[3] }, o_ddr_addr[3]);
 
        xoddr   xaddr4(i_clk, { w_ddr_addr[4], w_ddr_addr[4] }, o_ddr_addr[4]);
 
        xoddr   xaddr5(i_clk, { w_ddr_addr[5], w_ddr_addr[5] }, o_ddr_addr[5]);
 
        xoddr   xaddr6(i_clk, { w_ddr_addr[6], w_ddr_addr[6] }, o_ddr_addr[6]);
 
        xoddr   xaddr7(i_clk, { w_ddr_addr[7], w_ddr_addr[7] }, o_ddr_addr[7]);
 
        xoddr   xaddr8(i_clk, { w_ddr_addr[8], w_ddr_addr[8] }, o_ddr_addr[8]);
 
        xoddr   xaddr9(i_clk, { w_ddr_addr[9], w_ddr_addr[9] }, o_ddr_addr[9]);
 
        xoddr   xaddr10(i_clk,{ w_ddr_addr[10],w_ddr_addr[10]}, o_ddr_addr[10]);
 
        xoddr   xaddr11(i_clk,{ w_ddr_addr[11],w_ddr_addr[11]}, o_ddr_addr[11]);
 
        xoddr   xaddr12(i_clk,{ w_ddr_addr[12],w_ddr_addr[12]}, o_ddr_addr[12]);
 
        xoddr   xaddr13(i_clk,{ w_ddr_addr[13],w_ddr_addr[13]}, o_ddr_addr[13]);
 
 
 
        wire    w_clk_for_ddr;
 
        ODDR    #(.DDR_CLK_EDGE("SAME_EDGE"))
 
                memclkddr(.Q(w_clk_for_ddr), .C(clk_for_ddr), .CE(1'b1),
 
                        .D1(1'b0), .D2(1'b1), .R(1'b0), .S(1'b0));
 
        OBUFDS  #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
 
                clkbuf(.O(o_ddr_ck_p), .OB(o_ddr_ck_n), .I(w_clk_for_ddr));
 
 
 
        // assign       o_ddr_dm[0] = w_ddr_dm;
 
        // assign       o_ddr_dm[1] = w_ddr_dm;
 
        xoddr   xdm0(i_clk,{ w_ddr_dm, w_ddr_dm }, o_ddr_dm[0]);
 
        xoddr   xdm1(i_clk,{ w_ddr_dm, w_ddr_dm }, o_ddr_dm[1]);
 
 
 
        assign  o_ddr_odt = (~o_ddr_reset_n)? 1'bz : w_ddr_odt;
 
 
 
        // xlogicanalyzer ladata(i_clk, io_ddr_data[0], w_ddr_debug[3:0]);
 
        // xlogicanalyzer ladclk(clk_analyzer, clk_analyzer_b,
 
                // i_clk, o_ddr_ck_p, w_ddr_debug[7:4]);
 
        assign w_ddr_debug[7:4] = 4'h0;
 
        assign w_ddr_debug[3:0] = 4'h0;
 
`else
 
        assign  o_ddr_cs_n = w_ddr_cs_n;
 
        assign  o_ddr_ras_n = w_ddr_ras_n;
 
        assign  o_ddr_cas_n = w_ddr_cas_n;
 
        assign  o_ddr_we_n = w_ddr_we_n;
 
        //
 
        assign  o_ddr_ba = w_ddr_ba;
 
        assign  o_ddr_addr = w_ddr_addr;
 
        //
 
        assign  o_ddr_dm[1:0] = 2'b00;
 
        assign  o_ddr_odt     = 1'b0;
 
        //
 
        assign  io_ddr_data = 16'bzzzz_zzzz_zzzz_zzzz;
 
        always @(posedge i_clk)
 
                r_ddr_data = 16'h0000;
 
 
 
        //wire  w_clk_for_ddr;
 
        //ODDR  #(.DDR_CLK_EDGE("SAME_EDGE"))
 
                //memclkddr(.Q(w_clk_for_ddr), .C(clk_for_ddr), .CE(1'b1),
 
                        //.D1(1'b0), .D2(1'b1), .R(1'b0), .S(1'b0));
 
        OBUFDS  #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
 
                clkbuf(.O(o_ddr_ck_p), .OB(o_ddr_ck_n), .I(1'b1));
 
 
 
        wire    [7:0]    w_dqs_ignore;
 
        xioddrds        dqs0(clk_for_ddr, w_ddr_dqs, { 1'b0, 1'b1 },
 
                { w_dqs_ignore[0], w_dqs_ignore[1] },
 
                io_ddr_dqs_p[0], io_ddr_dqs_n[0]);
 
        xioddrds        dqs1(clk_for_ddr, w_ddr_dqs, { 1'b0, 1'b1 },
 
                { w_dqs_ignore[2], w_dqs_ignore[3] },
 
                io_ddr_dqs_p[1], io_ddr_dqs_n[1]);
 
 
 
 
 
`endif
 
 
 
endmodule
endmodule
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.