OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [fasttop.v] - Diff between revs 24 and 25

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 24 Rev 25
Line 108... Line 108...
        input                   i_aux_rx, i_aux_rts;
        input                   i_aux_rx, i_aux_rts;
        output  wire            o_aux_tx, o_aux_cts;
        output  wire            o_aux_tx, o_aux_cts;
 
 
`define FULLCLOCK
`define FULLCLOCK
        // Build our master clock
        // Build our master clock
        wire    i_clk, clk_for_ddr, mem_serial_clk, mem_serial_clk_inv,
        wire    s_clk_pll, s_clk, clk_for_ddr, mem_serial_clk, mem_serial_clk_inv,
                enet_clk, clk_halfspeed, clk_feedback, clk_locked, clk_unused;
                enet_clk, clk_halfspeed, clk_feedback, clk_locked, clk_unused;
        PLLE2_BASE      #(
        PLLE2_BASE      #(
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .CLKFBOUT_PHASE(0.0),   // Phase off. in deg of CLKFB,(-360-360)
                .CLKFBOUT_PHASE(0.0),   // Phase offset in degrees of CLKFB, (-360-360)
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns resolution
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns resolution
`ifdef  FULLCLOCK
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: divide amount for each CLKOUT(1-128)
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE:
 
                //      divide amount for each CLKOUT(1-128)
 
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
 
                .CLKOUT0_DIVIDE(4),     // 200 MHz
 
                .CLKOUT1_DIVIDE(1),     // 800 MHz clock for DDR memory
 
                .CLKOUT2_DIVIDE(1),     // 800 MHz clock to run DDR I/O
 
                .CLKOUT3_DIVIDE(1),     // 800MHz clk inv to run DDR I/O
 
                .CLKOUT4_DIVIDE(8),     // 100 MHz
 
                .CLKOUT5_DIVIDE(32),    //  25 MHz
 
`else
 
                // 100*64/40 = 160 -- the fastest speed where the UART will 
 
                // still work at 4MBaud.  Others will still support 115200
 
                // Baud
 
                // 100*64/36 = 177.78
 
                // 100*64/34 = 188.24
 
                // 100*64/33 = 193.94
 
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKOUT0_DIVIDE(5),     // 160 MHz
                .CLKOUT0_DIVIDE(5),     // 160 MHz
                .CLKOUT1_DIVIDE(5),     // 160 MHz //Clock too slow for DDR mem
                .CLKOUT1_DIVIDE(10),    //  80 MHz      (Unused)
                .CLKOUT2_DIVIDE(5),     // 160 MHz // Clock too slow for DDR
                .CLKOUT2_DIVIDE(16),    //  50 MHz      (Unused)
                .CLKOUT3_DIVIDE(5),     // 160 MHz // Clock too slow for DDR
                .CLKOUT3_DIVIDE(32),    //  25 MHz      (Unused/Ethernet clock)
                .CLKOUT4_DIVIDE(20),    //  40 MHz
                .CLKOUT4_DIVIDE(16),    //  50 MHz      (Unused clock?)
                .CLKOUT5_DIVIDE(5),
                .CLKOUT5_DIVIDE(24),
`endif
 
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
                .CLKOUT3_DUTY_CYCLE(0.5),
                .CLKOUT3_DUTY_CYCLE(0.5),
                .CLKOUT4_DUTY_CYCLE(0.5),
                .CLKOUT4_DUTY_CYCLE(0.5),
                .CLKOUT5_DUTY_CYCLE(0.5),
                .CLKOUT5_DUTY_CYCLE(0.5),
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                .CLKOUT0_PHASE(0.0),
                .CLKOUT0_PHASE(0.0),
                .CLKOUT1_PHASE(270.0),
                .CLKOUT1_PHASE(0.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT3_PHASE(180.0),
                .CLKOUT3_PHASE(0.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT5_PHASE(0.0),
                .CLKOUT5_PHASE(0.0),
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .REF_JITTER1(0.0),      // Ref. input jitter in UI (0.000-0.999)
                .REF_JITTER1(0.0),      // Ref. input jitter in UI (0.000-0.999)
                .STARTUP_WAIT("TRUE")   // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
                .STARTUP_WAIT("TRUE")   // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
        ) genclock(
        ) genclock(
                // Clock outputs: 1-bit (each) output
                // Clock outputs: 1-bit (each) output
                .CLKOUT0(i_clk),
                .CLKOUT0(s_clk_pll),
                .CLKOUT1(clk_for_ddr),
                .CLKOUT1(mem_clk),
                .CLKOUT2(mem_serial_clk),
                .CLKOUT2(clk2_unused),
                .CLKOUT3(mem_serial_clk_inv),
                .CLKOUT3(enet_clk),
                .CLKOUT4(clk_unused),
                .CLKOUT4(clk4_unused),
                .CLKOUT5(enet_clk),
                .CLKOUT5(clk5_unused),
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .LOCKED(clk_locked),
                .LOCKED(clk_locked),
                .CLKIN1(i_clk_100mhz),
                .CLKIN1(i_clk_100mhz),
                .PWRDWN(1'b0),
                .PWRDWN(1'b0),
                .RST(1'b0),
                .RST(1'b0),
                .CLKFBIN(clk_feedback)  // 1-bit input, feedback clock
                .CLKFBIN(clk_feedback_bufd)     // 1-bit input, feedback clock
        );
        );
 
 
 
        // Help reduce skew ...
 
        BUFG    sys_clk_buffer( .I(s_clk_pll), .O(s_clk));
 
        BUFG    feedback_buffer(.I(clk_feedback),.O(clk_feedback_bufd));
 
 
        // UART interface
        // UART interface
        wire    [29:0]   bus_uart_setup;
        wire    [29:0]   bus_uart_setup;
`ifdef  FULLCLOCK
        assign          bus_uart_setup = 30'h10000028; // 4MBaud, 7 bits
        assign          bus_uart_setup = 30'h10000032; // 4MBaud, 7 bits
 
`else
 
        assign          bus_uart_setup = 30'h10000028;//4MBaud,7 bits,@160MHzClk
 
        //assign        bus_uart_setup = 30'h10000019;//4MBaud,7 bits,@100MHzClk
 
`endif
 
 
 
        wire    [7:0]    rx_data, tx_data;
        wire    [7:0]    rx_data, tx_data;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            tx_stb, tx_busy;
        wire            tx_stb, tx_busy;
 
 
Line 200... Line 182...
        reg     pwr_reset, pre_reset;
        reg     pwr_reset, pre_reset;
        //
        //
        // Logic description starts with the PRE-reset, so as to make certain
        // Logic description starts with the PRE-reset, so as to make certain
        // we include the reset button
        // we include the reset button
        initial pre_reset = 1'b0;
        initial pre_reset = 1'b0;
        always @(posedge i_clk)
        always @(posedge s_clk)
                pre_reset <= ~i_reset_btn;
                pre_reset <= ~i_reset_btn;
        //
        //
        // and then continues with the actual reset, now that we've
        // and then continues with the actual reset, now that we've
        // synchronized our reset button wire.
        // synchronized our reset button wire.
        initial pwr_reset = 1'b1;
        initial pwr_reset = 1'b1;
        always @(posedge i_clk)
        always @(posedge s_clk)
                pwr_reset <= pre_reset;
                pwr_reset <= pre_reset;
 
 
        wire    w_ck_uart, w_uart_tx;
        wire    w_ck_uart, w_uart_tx;
        rxuart  rcv(i_clk, pwr_reset, bus_uart_setup, i_uart_rx,
        rxuart  rcv(s_clk, pwr_reset, bus_uart_setup, i_uart_rx,
                                rx_stb, rx_data, rx_break,
                                rx_stb, rx_data, rx_break,
                                rx_parity_err, rx_frame_err, w_ck_uart);
                                rx_parity_err, rx_frame_err, w_ck_uart);
        txuart  txv(i_clk, pwr_reset, bus_uart_setup, 1'b0,
        txuart  txv(s_clk, pwr_reset, bus_uart_setup, 1'b0,
                                tx_stb, tx_data, o_uart_tx, tx_busy);
                                tx_stb, tx_data, o_uart_tx, tx_busy);
 
 
 
 
 
 
 
 
Line 400... Line 382...
        wire    [1:0]    qspi_bmod;
        wire    [1:0]    qspi_bmod;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    i_qspi_dat;
        wire    [3:0]    i_qspi_dat;
 
 
        //
        //
 
        wire    [2:0]    w_ddr_dqs;
 
        wire    [31:0]   wo_ddr_data, wi_ddr_data;
 
        //
        wire            w_mdio, w_mdwe;
        wire            w_mdio, w_mdwe;
        //
        //
        wire            w_sd_cmd;
        wire            w_sd_cmd;
        wire    [3:0]    w_sd_data;
        wire    [3:0]    w_sd_data;
        fastmaster      wbbus(i_clk, pwr_reset,
        fastmaster      wbbus(s_clk, pwr_reset,
                // External USB-UART bus control
                // External USB-UART bus control
                rx_stb, rx_data, tx_stb, tx_data, tx_busy,
                rx_stb, rx_data, tx_stb, tx_data, tx_busy,
                // Board lights and switches
                // Board lights and switches
                i_sw, i_btn, o_led,
                i_sw, i_btn, o_led,
                o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3,
                o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3,
Line 448... Line 433...
        //
        //
        //      ??      Dual mode in  (not yet)
        //      ??      Dual mode in  (not yet)
        //      ??      Dual mode out (not yet)
        //      ??      Dual mode out (not yet)
        //
        //
        //
        //
// `define      QSPI_OUT_VERSION_ONE
 
`ifdef  QSPI_OUT_VERSION_ONE
 
        assign io_qspi_dat = (~qspi_bmod[1])?({2'b11,1'bz,qspi_dat[0]})
 
                                :((qspi_bmod[0])?(4'bzzzz):(qspi_dat[3:0]));
 
        assign  i_qspi_dat = io_qspi_dat;
 
        assign  o_qspi_sck = w_qspi_sck;
 
`else
 
        wire    [3:0]    i_qspi_pedge, i_qspi_nedge;
        wire    [3:0]    i_qspi_pedge, i_qspi_nedge;
 
 
        xoddr   xqspi_sck( i_clk, { w_qspi_sck,  w_qspi_sck }, o_qspi_sck);
        xoddr   xqspi_sck( i_clk, { w_qspi_sck,  w_qspi_sck }, o_qspi_sck);
        xoddr   xqspi_csn( i_clk, { w_qspi_cs_n, w_qspi_cs_n },o_qspi_cs_n);
        xoddr   xqspi_csn( i_clk, { w_qspi_cs_n, w_qspi_cs_n },o_qspi_cs_n);
        //
        //
        xioddr  xqspi_d0(  i_clk, (qspi_bmod != 2'b11),
        xioddr  xqspi_d0(  s_clk, (qspi_bmod != 2'b11),
                { qspi_dat[0], qspi_dat[0] },
                { qspi_dat[0], qspi_dat[0] },
                { i_qspi_pedge[0], i_qspi_nedge[0] }, io_qspi_dat[0]);
                { i_qspi_pedge[0], i_qspi_nedge[0] }, io_qspi_dat[0]);
        xioddr  xqspi_d1(  i_clk, (qspi_bmod==2'b10),
        xioddr  xqspi_d1(  s_clk, (qspi_bmod==2'b10),
                { qspi_dat[1], qspi_dat[1] },
                { qspi_dat[1], qspi_dat[1] },
                { i_qspi_pedge[1], i_qspi_nedge[1] }, io_qspi_dat[1]);
                { i_qspi_pedge[1], i_qspi_nedge[1] }, io_qspi_dat[1]);
        xioddr  xqspi_d2(  i_clk, (qspi_bmod!=2'b11),
        xioddr  xqspi_d2(  s_clk, (qspi_bmod!=2'b11),
                (qspi_bmod[1])?{ qspi_dat[2], qspi_dat[2] }:2'b11,
                (qspi_bmod[1])?{ qspi_dat[2], qspi_dat[2] }:2'b11,
                { i_qspi_pedge[2], i_qspi_nedge[2] }, io_qspi_dat[2]);
                { i_qspi_pedge[2], i_qspi_nedge[2] }, io_qspi_dat[2]);
        xioddr  xqspi_d3(  i_clk, (qspi_bmod!=2'b11),
        xioddr  xqspi_d3(  s_clk, (qspi_bmod!=2'b11),
                (qspi_bmod[1])?{ qspi_dat[3], qspi_dat[3] }:2'b11,
                (qspi_bmod[1])?{ qspi_dat[3], qspi_dat[3] }:2'b11,
                { i_qspi_pedge[3], i_qspi_nedge[3] }, io_qspi_dat[3]);
                { i_qspi_pedge[3], i_qspi_nedge[3] }, io_qspi_dat[3]);
 
 
        assign  i_qspi_dat = i_qspi_pedge;
        assign  i_qspi_dat = i_qspi_pedge;
`endif
        //
 
        // Proposed QSPI mode select, to allow dual I/O mode
 
        //      000     Normal SPI mode
 
        //      001     Dual mode input
 
        //      010     Dual mode, output
 
        //      101     Quad I/O mode input
 
        //      110     Quad I/O mode output
 
        //
 
        //
 
 
 
 
        //
        //
        //
        //
        // Wires for setting up the SD Card Controller
        // Wires for setting up the SD Card Controller
        //
        //

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.