OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [toplevel.v] - Diff between revs 3 and 25

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 3 Rev 25
Line 5... Line 5...
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
//
//
// Purpose:     This is the top level Verilog file.  It is to be contrasted
// Purpose:     This is the top level Verilog file.  It is to be contrasted
//              with the other top level Verilog file in this same project in
//              with the other top level Verilog file in this same project in
//      that *this* top level is designed to create a *safe*, low-speed
//      that *this* top level is designed to create a *safe*, low-speed
//      (100MHz), configuration that can be used to test peripherals and other
//      (80MHz), configuration that can be used to test peripherals and other
//      things on the way to building a full featured high speed configuration.
//      things on the way to building a full featured high speed (160MHz)
 
//      configuration.
//
//
//      Differences between this file and fasttop.v should be limited to speed
//      Differences between this file and fasttop.v should be limited to speed
//      related differences (such as the number of counts per UART baud), and
//      related differences (such as the number of counts per UART baud), and
//      the different daughter module: fastmaster.v (for 200MHz designs) vs
//      the different daughter module: fastmaster.v (for 200MHz designs) vs
//      busmaster.v (for 100MHz designs).
//      busmaster.v (for 100MHz designs).
Line 42... Line 43...
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
module toplevel(i_clk_100mhz, i_reset_btn,
module toplevel(sys_clk_i, i_reset_btn,
        i_sw,                   // Switches
        i_sw,                   // Switches
        i_btn,                  // Buttons
        i_btn,                  // Buttons
        o_led,                  // Single color LEDs
        o_led,                  // Single color LEDs
        o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3, // Color LEDs
        o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3, // Color LEDs
        // RS232 UART
        // RS232 UART
Line 54... Line 55...
        // Quad-SPI Flash control
        // Quad-SPI Flash control
        o_qspi_sck, o_qspi_cs_n, io_qspi_dat,
        o_qspi_sck, o_qspi_cs_n, io_qspi_dat,
        // Missing: Ethernet
        // Missing: Ethernet
        o_eth_mdclk, io_eth_mdio,
        o_eth_mdclk, io_eth_mdio,
        // Memory
        // Memory
        o_ddr_reset_n, o_ddr_cke, o_ddr_ck_p, o_ddr_ck_n,
        ddr3_reset_n, ddr3_cke, ddr3_ck_p, ddr3_ck_n,
        o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
        ddr3_cs_n, ddr3_ras_n, ddr3_cas_n, ddr3_we_n,
        io_ddr_dqs_p, io_ddr_dqs_n,
        ddr3_dqs_p, ddr3_dqs_n,
        o_ddr_addr, o_ddr_ba,
        ddr3_addr, ddr3_ba,
        io_ddr_data, o_ddr_dm, o_ddr_odt,
        ddr3_dq, ddr3_dm, ddr3_odt,
        // SD Card
        // SD Card
        o_sd_sck, io_sd_cmd, io_sd, i_sd_cs, i_sd_wp,
        o_sd_sck, io_sd_cmd, io_sd, i_sd_cs, i_sd_wp,
        // GPS Pmod
        // GPS Pmod
        i_gps_pps, i_gps_3df, i_gps_rx, o_gps_tx,
        i_gps_pps, i_gps_3df, i_gps_rx, o_gps_tx,
        // OLED Pmod
        // OLED Pmod
        o_oled_sck, o_oled_cs_n, o_oled_mosi, o_oled_dcn, o_oled_reset_n,
        o_oled_sck, o_oled_cs_n, o_oled_mosi, o_oled_dcn, o_oled_reset_n,
                o_oled_vccen, o_oled_pmoden,
                o_oled_vccen, o_oled_pmoden,
        // PMod I/O
        // PMod I/O
        i_aux_rx, i_aux_rts, o_aux_tx, o_aux_cts
        i_aux_rx, i_aux_rts, o_aux_tx, o_aux_cts
        );
        );
        input                   i_clk_100mhz, i_reset_btn;
        input           [0:0]     sys_clk_i;
 
        input                   i_reset_btn;
        input           [3:0]    i_sw;   // Switches
        input           [3:0]    i_sw;   // Switches
        input           [3:0]    i_btn;  // Buttons
        input           [3:0]    i_btn;  // Buttons
        output  wire    [3:0]    o_led;  // LED
        output  wire    [3:0]    o_led;  // LED
        output  wire    [2:0]    o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3;
        output  wire    [2:0]    o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3;
        // UARTs
        // UARTs
Line 85... Line 87...
        // Ethernet // Not yet implemented
        // Ethernet // Not yet implemented
        // Ethernet control (MDIO)
        // Ethernet control (MDIO)
        output  wire            o_eth_mdclk;
        output  wire            o_eth_mdclk;
        inout   wire            io_eth_mdio;
        inout   wire            io_eth_mdio;
        // DDR3 SDRAM
        // DDR3 SDRAM
        output  wire            o_ddr_reset_n;
        output  wire            ddr3_reset_n;
        output  wire            o_ddr_cke;
        output  wire    [0:0]     ddr3_cke;
        output  wire            o_ddr_ck_p, o_ddr_ck_n;
        output  wire    [0:0]     ddr3_ck_p, ddr3_ck_n;
        output  wire            o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n;
        output  wire    [0:0]     ddr3_cs_n;
        inout           [1:0]    io_ddr_dqs_p, io_ddr_dqs_n;
        output  wire            ddr3_ras_n, ddr3_cas_n, ddr3_we_n;
        output  wire    [13:0]   o_ddr_addr;
        output  wire    [2:0]    ddr3_ba;
        output  wire    [2:0]    o_ddr_ba;
        output  wire    [13:0]   ddr3_addr;
        inout           [15:0]   io_ddr_data;
        output  wire    [0:0]     ddr3_odt;
 
        output  wire    [1:0]    ddr3_dm;
 
        inout           [1:0]    ddr3_dqs_p, ddr3_dqs_n;
 
        inout           [15:0]   ddr3_dq;
        //
        //
        output  wire    [1:0]    o_ddr_dm;
 
        output  wire            o_ddr_odt;
 
        // SD Card
        // SD Card
        output  wire            o_sd_sck;
        output  wire            o_sd_sck;
        inout                   io_sd_cmd;
        inout                   io_sd_cmd;
        inout           [3:0]    io_sd;
        inout           [3:0]    io_sd;
        input                   i_sd_cs;
        input                   i_sd_cs;
Line 114... Line 117...
        // Aux UART
        // Aux UART
        input                   i_aux_rx, i_aux_rts;
        input                   i_aux_rx, i_aux_rts;
        output  wire            o_aux_tx, o_aux_cts;
        output  wire            o_aux_tx, o_aux_cts;
 
 
        // Build our master clock
        // Build our master clock
        wire    i_clk, clk_for_ddr, clk2_unused, enet_clk, clk5_unused,
        wire    s_clk, sys_clk, mem_clk_200mhz,
                clk_feedback, clk_locked;
                clk1_unused, clk2_unused, enet_clk, clk4_unnused,
 
                clk5_unused, clk_feedback, clk_locked, mem_clk_200mhz_nobuf;
        PLLE2_BASE      #(
        PLLE2_BASE      #(
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .BANDWIDTH("OPTIMIZED"),        // OPTIMIZED, HIGH, LOW
                .CLKFBOUT_PHASE(0.0),   // Phase offset in degrees of CLKFB, (-360-360)
                .CLKFBOUT_PHASE(0.0),   // Phase offset in degrees of CLKFB, (-360-360)
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns to ps resolution
                .CLKIN1_PERIOD(10.0),   // Input clock period in ns resolution
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: divide amount for each CLKOUT(1-128)
                // CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: divide amount for each CLKOUT(1-128)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKFBOUT_MULT(8),      // Multiply value for all CLKOUT (2-64)
                .CLKOUT0_DIVIDE(8),     // 100 MHz      (Main clock)
                .CLKOUT0_DIVIDE(8),     // 100 MHz      (Clock for MIG)
                .CLKOUT1_DIVIDE(8),     // 100 MHz      (DDR3 SDRAM clock)
                .CLKOUT1_DIVIDE(4),     // 200 MHz      (MIG Reference clock)
                .CLKOUT2_DIVIDE(16),    //  50 MHz      (Flash clock, should we need it)
                .CLKOUT2_DIVIDE(32),    //  50 MHz      (Unused)
                .CLKOUT3_DIVIDE(32),    //  25 MHz      (Ethernet clock ?)
                .CLKOUT3_DIVIDE(64),    //  25 MHz      (Unused/Ethernet clock)
                .CLKOUT4_DIVIDE(16),    //  50 MHz      (Unused clock?)
                .CLKOUT4_DIVIDE(32),    //  50 MHz      (Unused clock?)
                .CLKOUT5_DIVIDE(24),
                .CLKOUT5_DIVIDE(24),    //  66 MHz
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                // CLKOUT0_DUTY_CYCLE -- Duty cycle for each CLKOUT
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT0_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT1_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
                .CLKOUT2_DUTY_CYCLE(0.5),
                .CLKOUT3_DUTY_CYCLE(0.5),
                .CLKOUT3_DUTY_CYCLE(0.5),
                .CLKOUT4_DUTY_CYCLE(0.5),
                .CLKOUT4_DUTY_CYCLE(0.5),
                .CLKOUT5_DUTY_CYCLE(0.5),
                .CLKOUT5_DUTY_CYCLE(0.5),
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                // CLKOUT0_PHASE -- phase offset for each CLKOUT
                .CLKOUT0_PHASE(0.0),
                .CLKOUT0_PHASE(0.0),
                .CLKOUT1_PHASE(90.0),
                .CLKOUT1_PHASE(0.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT2_PHASE(0.0),
                .CLKOUT3_PHASE(0.0),
                .CLKOUT3_PHASE(0.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT4_PHASE(0.0),
                .CLKOUT5_PHASE(0.0),
                .CLKOUT5_PHASE(0.0),
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .DIVCLK_DIVIDE(1),      // Master division value , (1-56)
                .REF_JITTER1(0.0),      // Reference input jitter in UI (0.000-0.999)
                .REF_JITTER1(0.0),      // Ref. input jitter in UI (0.000-0.999)
                .STARTUP_WAIT("FALSE")  // Delayu DONE until PLL Locks, ("TRUE"/"FALSE")
                .STARTUP_WAIT("TRUE")   // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
        ) genclock(
        ) genclock(
                // Clock outputs: 1-bit (each) output
                // Clock outputs: 1-bit (each) output
                .CLKOUT0(i_clk),
                .CLKOUT0(mem_clk_nobuf),
                .CLKOUT1(clk_for_ddr),
                .CLKOUT1(mem_clk_200mhz_nobuf),
                .CLKOUT2(clk2_unused), // Reserved for flash, should we need it
                .CLKOUT2(clk2_unused),
                .CLKOUT3(enet_clk),
                .CLKOUT3(enet_clk),
                .CLKOUT4(clk4_unused),
                .CLKOUT4(clk4_unused),
                .CLKOUT5(clk5_unused),
                .CLKOUT5(clk5_unused),
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .CLKFBOUT(clk_feedback), // 1-bit output, feedback clock
                .LOCKED(clk_locked),
                .LOCKED(clk_locked),
                .CLKIN1(i_clk_100mhz),
                .CLKIN1(sys_clk),
                .PWRDWN(1'b0),
                .PWRDWN(1'b0),
                .RST(1'b0),
                .RST(1'b0),
                .CLKFBIN(clk_feedback)  // 1-bit input, feedback clock
                .CLKFBIN(clk_feedback_bufd)     // 1-bit input, feedback clock
        );
        );
 
 
 
        BUFH    feedback_buffer(.I(clk_feedback),.O(clk_feedback_bufd));
 
        // BUFG memref_buffer(.I(mem_clk_200mhz_nobuf),.O(mem_clk_200mhz));
 
        IBUF    sysclk_buf(.I(sys_clk_i[0]), .O(sys_clk));
 
 
 
        //
 
        //
        // UART interface
        // UART interface
 
        //
 
        //
        wire    [29:0]   bus_uart_setup;
        wire    [29:0]   bus_uart_setup;
        assign          bus_uart_setup = 30'h10000019; // 4MBaud, 7 bits
        // assign       bus_uart_setup = 30'h10000014; // ~4MBaud, 7 bits
 
        assign          bus_uart_setup = 30'h10000051; // ~1MBaud, 7 bits
 
 
        wire    [7:0]    rx_data, tx_data;
        wire    [7:0]    rx_data, tx_data;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            rx_break, rx_parity_err, rx_frame_err, rx_stb;
        wire            tx_stb, tx_busy;
        wire            tx_stb, tx_busy;
 
 
        reg     pwr_reset, pre_reset;
        //
        initial pwr_reset = 1'b1;
        // RESET LOGIC
 
        //
 
        // Okay, so this looks bad at a first read--but it's not really that
 
        // bad.  If you look close, there are two parts to the reset logic.
 
        // The first is the "PRE"-reset.  This is a wire, set from the external
 
        // reset button.  In good old-fashioned asynch-logic to synchronous
 
        // logic fashion, we synchronize this wire by registering it first
 
        // to pre_reset, and then to pwr_reset (the actual reset wire).
 
        //
 
        reg     [7:0]    pre_reset;
 
        reg             pwr_reset;
 
        // Since all our stuff is synchronous to the clock that comes out of 
 
        // the memory controller, sys_reset must needs come out of the memory
 
        // controller.
 
        //
 
        // Logic description starts with the PRE-reset, so as to make certain
 
        // we include the reset button.  The memory controller wants an active
 
        // low reset here, so we provide such.
        initial pre_reset = 1'b0;
        initial pre_reset = 1'b0;
        always @(posedge i_clk)
        always @(posedge sys_clk)
                pre_reset <= ~i_reset_btn;
                pre_reset <= ((!i_reset_btn)||(!clk_locked))
        always @(posedge i_clk)
                                        ? 8'h00 : {pre_reset[6:0], 1'b1};
                pwr_reset <= pre_reset;
        //
 
        // and then continues with the actual reset, now that we've
 
        // synchronized our reset button wire.  This is an active LOW reset.
 
        initial pwr_reset = 1'b0;
 
        always @(posedge sys_clk)
 
                pwr_reset <= pre_reset[7];
 
        //
 
        // Of course, this only goes into the memory controller.  The true
 
        // device reset comes out of that memory controller, synchronized to
 
        // our memory generator provided clock(s)
 
 
        wire    w_ck_uart, w_uart_tx;
        wire    w_ck_uart, w_uart_tx;
        rxuart  rcv(i_clk, pwr_reset, bus_uart_setup, i_uart_rx,
        rxuart  rcv(s_clk, s_reset, bus_uart_setup, i_uart_rx,
                                rx_stb, rx_data, rx_break,
                                rx_stb, rx_data, rx_break,
                                rx_parity_err, rx_frame_err, w_ck_uart);
                                rx_parity_err, rx_frame_err, w_ck_uart);
        txuart  txv(i_clk, pwr_reset, bus_uart_setup, 1'b0,
        txuart  txv(s_clk, s_reset, bus_uart_setup|30'h8000000, 1'b0,
                                tx_stb, tx_data, o_uart_tx, tx_busy);
                                tx_stb, tx_data, o_uart_tx, tx_busy);
 
 
 
 
 
        wire    [3:0]    w_led;
 
        reg     [24:0]   dbg_counter;
 
        always @(posedge  sys_clk)
 
                dbg_counter <= dbg_counter + 25'h01;
 
        assign o_led = { w_led[3:2],
 
                        ((!pwr_reset)&(dbg_counter[24]))
 
                                ||((pwr_reset)&&(w_led[1])),
 
                        (s_reset & dbg_counter[23])
 
                                ||((!s_reset)&&(w_led[0])) };
 
 
 
 
 
 
        //////
        //////
        //
        //
        //
        //
        // The WB bus interconnect, herein called busmaster, which handles
        // The WB bus interconnect, herein called busmaster, which handles
        // just about ... everything.  It is in contrast to the other WB bus
        // just about ... everything.  It is in contrast to the other WB bus
        // interconnect, fastmaster, in that the busmaster build permits
        // interconnect, fastmaster, in that the busmaster build permits
        // peripherals that can *only* operate at 100MHz, no faster.
        // peripherals that can *only* operate at 80MHz, no faster, no slower.
        //
        //
        //
        //
        //////
        //////
        wire            w_qspi_sck;
        wire            w_qspi_sck, w_qspi_cs_n;
        wire    [1:0]    qspi_bmod;
        wire    [1:0]    qspi_bmod;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    qspi_dat;
        wire    [3:0]    i_qspi_dat;
        wire    [3:0]    i_qspi_dat;
 
 
        //
        //
        wire    [2:0]    w_ddr_dqs;
        // The SDRAM interface wires
        wire    [31:0]   wo_ddr_data, wi_ddr_data;
        //
 
        wire            ram_cyc, ram_stb, ram_we;
 
        wire    [25:0]   ram_addr;
 
        wire    [31:0]   ram_rdata, ram_wdata;
 
        wire            ram_ack, ram_stall, ram_err;
 
        wire    [31:0]   ram_dbg;
        //
        //
        wire            w_mdio, w_mdwe;
        wire            w_mdio, w_mdwe;
        //
        //
        wire            w_sd_cmd;
        wire            w_sd_cmd;
        wire    [3:0]    w_sd_data;
        wire    [3:0]    w_sd_data;
        busmaster       wbbus(i_clk, pwr_reset,
        busmaster       wbbus(s_clk, s_reset,
                // External USB-UART bus control
                // External USB-UART bus control
                rx_stb, rx_data, tx_stb, tx_data, tx_busy,
                rx_stb, rx_data, tx_stb, tx_data, tx_busy,
                // Board lights and switches
                // Board lights and switches
                i_sw, i_btn, o_led,
                i_sw, i_btn, w_led,
                o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3,
                o_clr_led0, o_clr_led1, o_clr_led2, o_clr_led3,
                // Board level PMod I/O
                // Board level PMod I/O
                i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx,
                i_aux_rx, o_aux_tx, o_aux_cts, i_gps_rx, o_gps_tx,
                // Quad SPI flash
                // Quad SPI flash
                o_qspi_cs_n, w_qspi_sck, qspi_dat, io_qspi_dat, qspi_bmod,
                w_qspi_cs_n, w_qspi_sck, qspi_dat, i_qspi_dat, qspi_bmod,
                // DDR3 SDRAM
                // DDR3 SDRAM
                o_ddr_reset_n, o_ddr_cke,
                // o_ddr_reset_n, o_ddr_cke, o_ddr_ck_p, o_ddr_ck_n,
                o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
                // o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
                w_ddr_dqs, o_ddr_addr, o_ddr_ba, wo_ddr_data, wi_ddr_data,
                // o_ddr_ba, o_ddr_addr, o_ddr_odt, o_ddr_dm,
 
                // io_ddr_dqs_p, io_ddr_dqs_n, io_ddr_data,
 
                ram_cyc, ram_stb, ram_we, ram_addr, ram_wdata,
 
                        ram_ack, ram_stall, ram_rdata, ram_err,
 
                        ram_dbg,
                // SD Card
                // SD Card
                o_sd_sck, w_sd_cmd, w_sd_data, io_sd_cmd, io_sd, i_sd_cs,
                o_sd_sck, w_sd_cmd, w_sd_data, io_sd_cmd, io_sd, i_sd_cs,
                // Ethernet control (MDIO) lines
                // Ethernet control (MDIO) lines
                o_eth_mdclk, w_mdio, w_mdwe, io_eth_mdio,
                o_eth_mdclk, w_mdio, w_mdwe, io_eth_mdio,
                // OLEDRGB PMod wires
                // OLEDRGB PMod wires
Line 262... Line 318...
        //
        //
        //      ??      Dual mode in  (not yet)
        //      ??      Dual mode in  (not yet)
        //      ??      Dual mode out (not yet)
        //      ??      Dual mode out (not yet)
        //
        //
        //
        //
//      assign io_qspi_dat = (~qspi_bmod[1])?({2'b11,1'bz,qspi_dat[0]})
        wire    [3:0]    i_qspi_pedge, i_qspi_nedge;
//                              :((qspi_bmod[0])?(4'bzzzz):(qspi_dat[3:0]));
 
//      assign  i_qspi_dat = io_qspi_dat;
        xoddr   xqspi_sck( s_clk, { w_qspi_sck,  w_qspi_sck }, o_qspi_sck);
//
        xoddr   xqspi_csn( s_clk, { w_qspi_cs_n, w_qspi_cs_n },o_qspi_cs_n);
        wire    [3:0]    i_qspi_dat_ign;
        //
        ODDR #(.DDR_CLK_EDGE("OPPOSITE_EDGE"), .INIT(1'b1), .SRTYPE("SYNC"))
        xioddr  xqspi_d0(  s_clk, (qspi_bmod != 2'b11),
                qsck(
 
                        .Q(o_qspi_sck),
 
                        .C(i_clk),
 
                        .CE(1'b1),
 
                        .D1(w_qspi_sck),
 
                        .D2(w_qspi_sck),
 
                        .R(1'b0), .S(1'b0));
 
        xioddr  qd0(i_clk, (~qspi_bmod[1])|(~qspi_bmod[0]),
 
                { qspi_dat[0], qspi_dat[0] },
                { qspi_dat[0], qspi_dat[0] },
                { i_qspi_dat_ign[0], i_qspi_dat[0] }, io_qspi_dat[0]);
                { i_qspi_pedge[0], i_qspi_nedge[0] }, io_qspi_dat[0]);
        xioddr  qd1(i_clk, (qspi_bmod == 2'b10),
        xioddr  xqspi_d1(  s_clk, (qspi_bmod==2'b10),
                { qspi_dat[1], qspi_dat[1] },
                { qspi_dat[1], qspi_dat[1] },
                { i_qspi_dat_ign[1], i_qspi_dat[1] }, io_qspi_dat[1]);
                { i_qspi_pedge[1], i_qspi_nedge[1] }, io_qspi_dat[1]);
        xioddr  qd2(i_clk, (~qspi_bmod[1])||(~qspi_bmod[0]),
        xioddr  xqspi_d2(  s_clk, (qspi_bmod!=2'b11),
                { qspi_dat[2], qspi_dat[2] },
                (qspi_bmod[1])?{ qspi_dat[2], qspi_dat[2] }:2'b11,
                { i_qspi_dat_ign[2], i_qspi_dat[2] }, io_qspi_dat[2]);
                { i_qspi_pedge[2], i_qspi_nedge[2] }, io_qspi_dat[2]);
        xioddr  qd3(i_clk, (~qspi_bmod[1])||(~qspi_bmod[0]),
        xioddr  xqspi_d3(  s_clk, (qspi_bmod!=2'b11),
                { qspi_dat[3], qspi_dat[3] },
                (qspi_bmod[1])?{ qspi_dat[3], qspi_dat[3] }:2'b11,
                { i_qspi_dat_ign[3], i_qspi_dat[3] }, io_qspi_dat[3]);
                { i_qspi_pedge[3], i_qspi_nedge[3] }, io_qspi_dat[3]);
 
 
 
        assign  i_qspi_dat = i_qspi_pedge;
        //
        //
        // Proposed QSPI mode select, to allow dual I/O mode
        // Proposed QSPI mode select, to allow dual I/O mode
        //      000     Normal SPI mode
        //      000     Normal SPI mode
        //      001     Dual mode input
        //      001     Dual mode input
        //      010     Dual mode, output
        //      010     Dual mode, output
        //      101     Quad I/O mode input
        //      101     Quad I/O mode input
        //      110     Quad I/O mode output
        //      110     Quad I/O mode output
        //
        //
        //
        //
        // assign io_qspi_dat[3:2] = (~qspi_bmod[2]) ? 2'b11
 
        //                      : (qspi_bmod[0])?2'bzz : qspi_dat[3:2];
 
        // assign io_qspi_dat[1] = (~qspi_bmod[1])?qspi_dat[1]:1'bz;
 
        // assign io_qspi_dat[0] = (qspi_bmod[0])?1'bz : qspi_dat[0];
 
 
 
        //
 
        //
 
        // The following primitive is necessary in order to gain access
 
        // to the o_qspi_sck pin.  
 
        //
 
        //
 
/*
 
        wire    [3:0]   su_nc;  // Startup primitive, no connect
 
        STARTUPE2 #(
 
                // Leave PROG_USR false to avoid activating the program
 
                // event security feature.  Notes state that such a feature
 
                // requires encrypted bitstreams.
 
                .PROG_USR("FALSE"),
 
                // Sets the configuration clock frequency (in ns) for
 
                // simulation.
 
                .SIM_CCLK_FREQ(0.0)
 
        ) STARTUPE2_inst (
 
        // CFGCLK, 1'b output: Configuration main clock output -- no connect
 
        .CFGCLK(su_nc[0]),
 
        // CFGMCLK, 1'b output: Configuration internal oscillator clock output
 
        .CFGMCLK(su_nc[1]),
 
        // EOS, 1'b output: Active high output indicating the End Of Startup.
 
        .EOS(su_nc[2]),
 
        // PREQ, 1'b output: PROGRAM request to fabric output
 
        //      Only enabled if PROG_USR is set.  This lets the fabric know
 
        //      that a request has been made (either JTAG or pin pulled low)
 
        //      to program the device
 
        .PREQ(su_nc[3]),
 
        // CLK, 1'b input: User start-up clock input
 
        .CLK(1'b0),
 
        // GSR, 1'b input: Global Set/Reset input
 
        .GSR(1'b0),
 
        // GTS, 1'b input: Global 3-state input
 
        .GTS(1'b0),
 
        // KEYCLEARB, 1'b input: Clear AES Decrypter Key input from BBRAM
 
        .KEYCLEARB(1'b0),
 
        // PACK, 1-bit input: PROGRAM acknowledge input
 
        //      This pin is only enabled if PROG_USR is set.  This allows the
 
        //      FPGA to acknowledge a request for reprogram to allow the FPGA
 
        //      to get itself into a reprogrammable state first.
 
        .PACK(1'b0),
 
        // USRCLKO, 1-bit input: User CCLK input -- This is why I am using this
 
        // module at all.
 
        .USRCCLKO(qspi_sck),
 
        // USRCCLKTS, 1'b input: User CCLK 3-state enable input
 
        //      An active high here places the clock into a high impedence
 
        //      state.  Since we wish to use the clock as an active output
 
        //      always, we drive this pin low.
 
        .USRCCLKTS(1'b0),
 
        // USRDONEO, 1'b input: User DONE pin output control
 
        //      Set this to "high" to make sure that the DONE LED pin is
 
        //      high.
 
        .USRDONEO(1'b1),
 
        // USRDONETS, 1'b input: User DONE 3-state enable output
 
        //      This enables the FPGA DONE pin to be active.  Setting this
 
        //      active high sets the DONE pin to high impedence, setting it
 
        //      low allows the output of this pin to be as stated above.
 
        .USRDONETS(1'b1)
 
        );
 
*/
 
 
 
 
 
 
 
        //
        //
        //
        //
        // Wires for setting up the SD Card Controller
        // Wires for setting up the SD Card Controller
Line 375... Line 358...
        assign io_sd_cmd = w_sd_cmd ? 1'bz:1'b0;
        assign io_sd_cmd = w_sd_cmd ? 1'bz:1'b0;
        assign io_sd[0] = w_sd_data[0]? 1'bz:1'b0;
        assign io_sd[0] = w_sd_data[0]? 1'bz:1'b0;
        assign io_sd[1] = w_sd_data[1]? 1'bz:1'b0;
        assign io_sd[1] = w_sd_data[1]? 1'bz:1'b0;
        assign io_sd[2] = w_sd_data[2]? 1'bz:1'b0;
        assign io_sd[2] = w_sd_data[2]? 1'bz:1'b0;
        assign io_sd[3] = w_sd_data[3]? 1'bz:1'b0;
        assign io_sd[3] = w_sd_data[3]? 1'bz:1'b0;
        assign  o_sd_wp = 1'b0;
 
 
 
 
 
        //
        //
        //
        //
        // Wire(s) for setting up the MDIO ethernet control structure
        // Wire(s) for setting up the MDIO ethernet control structure
        //
        //
        //
        //
        assign  io_eth_mdio = (w_mdwe)?w_mdio : 1'bz;
        assign  io_eth_mdio = (w_mdwe)?w_mdio : 1'bz;
 
 
 
 
        //
        //
        //
        //
        // Wires for setting up the DDR3 memory
        // Now, to set up our memory ...
        //
        //
        //
        //
        wire    [31:0]   r_ddr_data;
        migsdram rami(
 
                .i_clk(mem_clk_nobuf), .i_clk_200mhz(mem_clk_200mhz_nobuf),
        xioddr  p0(i_clk, ~o_ddr_we_n, { wo_ddr_data[16], wo_ddr_data[0] },
                .o_sys_clk(s_clk), .i_rst(pwr_reset), .o_sys_reset(s_reset),
                { wi_ddr_data[16], wi_ddr_data[0] }, io_ddr_data[0]);
                .i_wb_cyc(ram_cyc), .i_wb_stb(ram_stb), .i_wb_we(ram_we),
 
                        .i_wb_addr(ram_addr), .i_wb_data(ram_wdata),
        xioddr  p1(i_clk, ~o_ddr_we_n, { wo_ddr_data[17], wo_ddr_data[1] },
                        .i_wb_sel(4'hf),
                { wi_ddr_data[17], wi_ddr_data[1] }, io_ddr_data[1]);
                .o_wb_ack(ram_ack), .o_wb_stall(ram_stall),
 
                        .o_wb_data(ram_rdata), .o_wb_err(ram_err),
        xioddr  p2(i_clk, ~o_ddr_we_n, { wo_ddr_data[18], wo_ddr_data[2] },
                .o_ddr_ck_p(ddr3_ck_p),         .o_ddr_ck_n(ddr3_ck_n),
                { wi_ddr_data[18], wi_ddr_data[2] }, io_ddr_data[2]);
                .o_ddr_reset_n(ddr3_reset_n),   .o_ddr_cke(ddr3_cke),
 
                .o_ddr_cs_n(ddr3_cs_n),         .o_ddr_ras_n(ddr3_ras_n),
        xioddr  p3(i_clk, ~o_ddr_we_n, { wo_ddr_data[19], wo_ddr_data[3] },
                        .o_ddr_cas_n(ddr3_cas_n), .o_ddr_we_n(ddr3_we_n),
                { wi_ddr_data[19], wi_ddr_data[3] }, io_ddr_data[3]);
                .o_ddr_ba(ddr3_ba),             .o_ddr_addr(ddr3_addr),
 
                        .o_ddr_odt(ddr3_odt),   .o_ddr_dm(ddr3_dm),
        xioddr  p4(i_clk, ~o_ddr_we_n, { wo_ddr_data[20], wo_ddr_data[4] },
                .io_ddr_dqs_p(ddr3_dqs_p),      .io_ddr_dqs_n(ddr3_dqs_n),
                { wi_ddr_data[20], wi_ddr_data[4] }, io_ddr_data[4]);
                .io_ddr_data(ddr3_dq),
 
        //
        xioddr  p5(i_clk, ~o_ddr_we_n, { wo_ddr_data[21], wo_ddr_data[5] },
                .o_ram_dbg(ram_dbg)
                { wi_ddr_data[21], wi_ddr_data[5] }, io_ddr_data[5]);
        );
 
 
        xioddr  p6(i_clk, ~o_ddr_we_n, { wo_ddr_data[22], wo_ddr_data[6] },
 
                { wi_ddr_data[22], wi_ddr_data[6] }, io_ddr_data[6]);
 
 
 
        xioddr  p7(i_clk, ~o_ddr_we_n, { wo_ddr_data[23], wo_ddr_data[7] },
 
                { wi_ddr_data[23], wi_ddr_data[7] }, io_ddr_data[7]);
 
 
 
        xioddr  p8(i_clk, ~o_ddr_we_n, { wo_ddr_data[24], wo_ddr_data[8] },
 
                { wi_ddr_data[24], wi_ddr_data[8] }, io_ddr_data[8]);
 
 
 
        xioddr  p9(i_clk, ~o_ddr_we_n, { wo_ddr_data[25], wo_ddr_data[9] },
 
                { wi_ddr_data[25], wi_ddr_data[9] }, io_ddr_data[9]);
 
 
 
        xioddr  pa(i_clk, ~o_ddr_we_n, { wo_ddr_data[26], wo_ddr_data[10] },
 
                { wi_ddr_data[26], wi_ddr_data[10] }, io_ddr_data[10]);
 
 
 
        xioddr  pb(i_clk, ~o_ddr_we_n, { wo_ddr_data[27], wo_ddr_data[11] },
 
                { wi_ddr_data[27], wi_ddr_data[11] }, io_ddr_data[11]);
 
 
 
        xioddr  pc(i_clk, ~o_ddr_we_n, { wo_ddr_data[28], wo_ddr_data[12] },
 
                { wi_ddr_data[28], wi_ddr_data[12] }, io_ddr_data[12]);
 
 
 
        xioddr  pd(i_clk, ~o_ddr_we_n, { wo_ddr_data[29], wo_ddr_data[13] },
 
                { wi_ddr_data[29], wi_ddr_data[13] }, io_ddr_data[13]);
 
 
 
        xioddr  pe(i_clk, ~o_ddr_we_n, { wo_ddr_data[30], wo_ddr_data[14] },
 
                { wi_ddr_data[30], wi_ddr_data[14] }, io_ddr_data[14]);
 
 
 
        xioddr  pf(i_clk, ~o_ddr_we_n, { wo_ddr_data[31], wo_ddr_data[15] },
 
                { wi_ddr_data[31], wi_ddr_data[15] }, io_ddr_data[15]);
 
 
 
        OBUFTDS #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
 
                dqsbuf0(.O(io_ddr_dqs_p[0]), .OB(io_ddr_dqs_n[0]),
 
                        .I(w_ddr_dqs[1]), .T(w_ddr_dqs[2]));
 
        OBUFTDS #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
 
                dqsbuf1(.O(io_ddr_dqs_p[1]), .OB(io_ddr_dqs_n[1]),
 
                        .I(w_ddr_dqs[0]), .T(w_ddr_dqs[2]));
 
 
 
        OBUFDS  #(.IOSTANDARD("DIFF_SSTL135"), .SLEW("FAST"))
 
                clkbuf(.O(o_ddr_ck_p), .OB(o_ddr_ck_n), .I(clk_for_ddr));
 
 
 
        assign  o_ddr_dm  = 2'b00;
 
        assign  o_ddr_odt = 1'b0;
 
 
 
endmodule
endmodule
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.