Line 1... |
Line 1... |
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: txuart.v
|
// Filename: txuart.v
|
//
|
//
|
// Project: FPGA library
|
// Project: wbuart32, a full featured UART with simulator
|
//
|
//
|
// Purpose: Transmit outputs over a single UART line.
|
// Purpose: Transmit outputs over a single UART line.
|
//
|
//
|
// To interface with this module, connect it to your system clock,
|
// To interface with this module, connect it to your system clock,
|
// pass it the 32 bit setup register (defined below) and the byte
|
// pass it the 32 bit setup register (defined below) and the byte
|
Line 19... |
Line 19... |
// There is a synchronous reset line, logic high.
|
// There is a synchronous reset line, logic high.
|
//
|
//
|
// Now for the setup register. The register is 32 bits, so that this
|
// Now for the setup register. The register is 32 bits, so that this
|
// UART may be set up over a 32-bit bus.
|
// UART may be set up over a 32-bit bus.
|
//
|
//
|
|
// i_setup[30] Set this to zero to use hardware flow control, and to
|
|
// one to ignore hardware flow control. Only works if the hardware
|
|
// flow control has been properly wired.
|
|
//
|
|
// If you don't want hardware flow control, fix the i_rts bit to
|
|
// 1'b1, and let the synthesys tools optimize out the logic.
|
|
//
|
// i_setup[29:28] Indicates the number of data bits per word. This will
|
// i_setup[29:28] Indicates the number of data bits per word. This will
|
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
// for a six bit word, or 2'b11 for a five bit word.
|
// for a six bit word, or 2'b11 for a five bit word.
|
//
|
//
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
Line 55... |
Line 62... |
//
|
//
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
//
|
//
|
//
|
//
|
//
|
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 74... |
Line 80... |
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// You should have received a copy of the GNU General Public License along
|
// You should have received a copy of the GNU General Public License along
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
// target there if the PDF file isn't present.) If not, see
|
// target there if the PDF file isn't present.) If not, see
|
// <http://www.gnu.org/licenses/> for a copy.
|
// <http://www.gnu.org/licenses/> for a copy.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
//
|
|
`define TXU_BIT_ZERO 4'h0
|
`define TXU_BIT_ZERO 4'h0
|
`define TXU_BIT_ONE 4'h1
|
`define TXU_BIT_ONE 4'h1
|
`define TXU_BIT_TWO 4'h2
|
`define TXU_BIT_TWO 4'h2
|
`define TXU_BIT_THREE 4'h3
|
`define TXU_BIT_THREE 4'h3
|
`define TXU_BIT_FOUR 4'h4
|
`define TXU_BIT_FOUR 4'h4
|
Line 104... |
Line 109... |
// `define TXU_START 4'hd // An unused state
|
// `define TXU_START 4'hd // An unused state
|
`define TXU_BREAK 4'he
|
`define TXU_BREAK 4'he
|
`define TXU_IDLE 4'hf
|
`define TXU_IDLE 4'hf
|
//
|
//
|
//
|
//
|
module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data, o_uart, o_busy);
|
module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data,
|
|
i_cts_n, o_uart_tx, o_busy);
|
|
parameter [30:0] INITIAL_SETUP = 31'd868;
|
input i_clk, i_reset;
|
input i_clk, i_reset;
|
input [29:0] i_setup;
|
input [30:0] i_setup;
|
input i_break;
|
input i_break;
|
input i_wr;
|
input i_wr;
|
input [7:0] i_data;
|
input [7:0] i_data;
|
output reg o_uart;
|
// Hardware flow control Ready-To-Send bit. Set this to one to use
|
|
// the core without flow control. (A more appropriate name would be
|
|
// the Ready-To-Receive bit ...)
|
|
input i_cts_n;
|
|
// And the UART input line itself
|
|
output reg o_uart_tx;
|
|
// A line to tell others when we are ready to accept data. If
|
|
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
|
|
// for transmission.
|
output wire o_busy;
|
output wire o_busy;
|
|
|
wire [27:0] clocks_per_baud, break_condition;
|
wire [27:0] clocks_per_baud, break_condition;
|
wire [1:0] data_bits;
|
wire [1:0] data_bits;
|
wire use_parity, parity_even, dblstop, fixd_parity;
|
wire use_parity, parity_even, dblstop, fixd_parity,
|
reg [29:0] r_setup;
|
fixdp_value, hw_flow_control;
|
|
reg [30:0] r_setup;
|
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
|
assign hw_flow_control = !r_setup[30];
|
assign data_bits = r_setup[29:28];
|
assign data_bits = r_setup[29:28];
|
assign dblstop = r_setup[27];
|
assign dblstop = r_setup[27];
|
assign use_parity = r_setup[26];
|
assign use_parity = r_setup[26];
|
assign fixd_parity = r_setup[25];
|
assign fixd_parity = r_setup[25];
|
assign parity_even = r_setup[24];
|
assign parity_even = r_setup[24];
|
|
assign fixdp_value = r_setup[24];
|
|
|
reg [27:0] baud_counter;
|
reg [27:0] baud_counter;
|
reg [3:0] state;
|
reg [3:0] state;
|
reg [7:0] lcl_data;
|
reg [7:0] lcl_data;
|
reg calc_parity, r_busy, zero_baud_counter;
|
reg calc_parity, r_busy, zero_baud_counter;
|
|
|
initial o_uart = 1'b1;
|
|
|
// First step ... handle any hardware flow control, if so enabled.
|
|
//
|
|
// Clock in the flow control data, two clocks to avoid metastability
|
|
// Default to using hardware flow control (uart_setup[30]==0 to use it).
|
|
// Set this high order bit off if you do not wish to use it.
|
|
reg q_cts_n, qq_cts_n, ck_cts;
|
|
// While we might wish to give initial values to q_rts and ck_cts,
|
|
// 1) it's not required since the transmitter starts in a long wait
|
|
// state, and 2) doing so will prevent the synthesizer from optimizing
|
|
// this pin in the case it is hard set to 1'b1 external to this
|
|
// peripheral.
|
|
//
|
|
// initial q_cts_n = 1'b1;
|
|
// initial qq_cts_n = 1'b1;
|
|
// initial ck_cts = 1'b0;
|
|
always @(posedge i_clk)
|
|
q_cts_n <= i_cts_n;
|
|
always @(posedge i_clk)
|
|
qq_cts_n <= q_cts_n;
|
|
always @(posedge i_clk)
|
|
ck_cts <= (!qq_cts_n)||(!hw_flow_control);
|
|
|
|
initial o_uart_tx = 1'b1;
|
initial r_busy = 1'b1;
|
initial r_busy = 1'b1;
|
initial state = `TXU_IDLE;
|
initial state = `TXU_IDLE;
|
initial lcl_data= 8'h0;
|
initial lcl_data= 8'h0;
|
initial calc_parity = 1'b0;
|
initial calc_parity = 1'b0;
|
// initial baud_counter = clocks_per_baud;//ILLEGAL--not constant
|
// initial baud_counter = clocks_per_baud;//ILLEGAL--not constant
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
if (i_reset)
|
if (i_reset)
|
begin
|
begin
|
o_uart <= 1'b1;
|
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
state <= `TXU_IDLE;
|
state <= `TXU_IDLE;
|
lcl_data <= 8'h0;
|
|
calc_parity <= 1'b0;
|
|
end else if (i_break)
|
end else if (i_break)
|
begin
|
begin
|
o_uart <= 1'b0;
|
|
state <= `TXU_BREAK;
|
state <= `TXU_BREAK;
|
calc_parity <= 1'b0;
|
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
end else if (~zero_baud_counter)
|
end else if (!zero_baud_counter)
|
begin // r_busy needs to be set coming into here
|
begin // r_busy needs to be set coming into here
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
end else if (state == `TXU_BREAK)
|
end else if (state == `TXU_BREAK)
|
begin
|
begin
|
state <= `TXU_IDLE;
|
state <= `TXU_IDLE;
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
o_uart <= 1'b1;
|
|
calc_parity <= 1'b0;
|
|
end else if (state == `TXU_IDLE) // STATE_IDLE
|
end else if (state == `TXU_IDLE) // STATE_IDLE
|
begin
|
begin
|
// baud_counter <= 0;
|
if ((i_wr)&&(!r_busy))
|
r_setup <= i_setup;
|
|
calc_parity <= 1'b0;
|
|
lcl_data <= i_data;
|
|
if ((i_wr)&&(~r_busy))
|
|
begin // Immediately start us off with a start bit
|
begin // Immediately start us off with a start bit
|
o_uart <= 1'b0;
|
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
case(data_bits)
|
case(data_bits)
|
2'b00: state <= `TXU_BIT_ZERO;
|
2'b00: state <= `TXU_BIT_ZERO;
|
2'b01: state <= `TXU_BIT_ONE;
|
2'b01: state <= `TXU_BIT_ONE;
|
2'b10: state <= `TXU_BIT_TWO;
|
2'b10: state <= `TXU_BIT_TWO;
|
2'b11: state <= `TXU_BIT_THREE;
|
2'b11: state <= `TXU_BIT_THREE;
|
endcase
|
endcase
|
// baud_counter <= clocks_per_baud-28'h01;
|
|
end else begin // Stay in idle
|
end else begin // Stay in idle
|
o_uart <= 1'b1;
|
r_busy <= !ck_cts;
|
r_busy <= 0;
|
|
// state <= state;
|
|
end
|
end
|
end else begin
|
end else begin
|
// One clock tick in each of these states ...
|
// One clock tick in each of these states ...
|
// baud_counter <= clocks_per_baud - 28'h01;
|
// baud_counter <= clocks_per_baud - 28'h01;
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
if (state[3] == 0) // First 8 bits
|
if (state[3] == 0) // First 8 bits
|
begin
|
begin
|
o_uart <= lcl_data[0];
|
|
calc_parity <= calc_parity ^ lcl_data[0];
|
|
if (state == `TXU_BIT_SEVEN)
|
if (state == `TXU_BIT_SEVEN)
|
state <= (use_parity)?`TXU_PARITY:`TXU_STOP;
|
state <= (use_parity)?`TXU_PARITY:`TXU_STOP;
|
else
|
else
|
state <= state + 1;
|
state <= state + 1;
|
lcl_data <= { 1'b0, lcl_data[7:1] };
|
|
end else if (state == `TXU_PARITY)
|
end else if (state == `TXU_PARITY)
|
begin
|
begin
|
state <= `TXU_STOP;
|
state <= `TXU_STOP;
|
if (fixd_parity)
|
|
o_uart <= parity_even;
|
|
else
|
|
o_uart <= calc_parity^((parity_even)? 1'b1:1'b0);
|
|
end else if (state == `TXU_STOP)
|
end else if (state == `TXU_STOP)
|
begin // two stop bit(s)
|
begin // two stop bit(s)
|
o_uart <= 1'b1;
|
|
if (dblstop)
|
if (dblstop)
|
state <= `TXU_SECOND_STOP;
|
state <= `TXU_SECOND_STOP;
|
else
|
else
|
state <= `TXU_IDLE;
|
state <= `TXU_IDLE;
|
calc_parity <= 1'b0;
|
|
end else // `TXU_SECOND_STOP and default:
|
end else // `TXU_SECOND_STOP and default:
|
begin
|
begin
|
state <= `TXU_IDLE; // Go back to idle
|
state <= `TXU_IDLE; // Go back to idle
|
o_uart <= 1'b1;
|
|
// Still r_busy, since we need to wait
|
// Still r_busy, since we need to wait
|
// for the baud clock to finish counting
|
// for the baud clock to finish counting
|
// out this last bit.
|
// out this last bit.
|
end
|
end
|
end
|
end
|
end
|
end
|
|
|
|
// o_busy
|
|
//
|
|
// This is a wire, designed to be true is we are ever busy above.
|
|
// originally, this was going to be true if we were ever not in the
|
|
// idle state. The logic has since become more complex, hence we have
|
|
// a register dedicated to this and just copy out that registers value.
|
assign o_busy = (r_busy);
|
assign o_busy = (r_busy);
|
|
|
|
|
initial zero_baud_counter = 1'b1;
|
// r_setup
|
initial baud_counter = 28'd200000; // 1ms @ 200MHz
|
//
|
|
// Our setup register. Accept changes between any pair of transmitted
|
|
// words. The register itself has many fields to it. These are
|
|
// broken out up top, and indicate what 1) our baud rate is, 2) our
|
|
// number of stop bits, 3) what type of parity we are using, and 4)
|
|
// the size of our data word.
|
|
initial r_setup = INITIAL_SETUP;
|
|
always @(posedge i_clk)
|
|
if (state == `TXU_IDLE)
|
|
r_setup <= i_setup;
|
|
|
|
// lcl_data
|
|
//
|
|
// This is our working copy of the i_data register which we use
|
|
// when transmitting. It is only of interest during transmit, and is
|
|
// allowed to be whatever at any other time. Hence, if r_busy isn't
|
|
// true, we can always set it. On the one clock where r_busy isn't
|
|
// true and i_wr is, we set it and r_busy is true thereafter.
|
|
// Then, on any zero_baud_counter (i.e. change between baud intervals)
|
|
// we simple logically shift the register right to grab the next bit.
|
|
always @(posedge i_clk)
|
|
if (!r_busy)
|
|
lcl_data <= i_data;
|
|
else if (zero_baud_counter)
|
|
lcl_data <= { 1'b0, lcl_data[7:1] };
|
|
|
|
// o_uart_tx
|
|
//
|
|
// This is the final result/output desired of this core. It's all
|
|
// centered about o_uart_tx. This is what finally needs to follow
|
|
// the UART protocol.
|
|
//
|
|
// Ok, that said, our rules are:
|
|
// 1'b0 on any break condition
|
|
// 1'b0 on a start bit (IDLE, write, and not busy)
|
|
// lcl_data[0] during any data transfer, but only at the baud
|
|
// change
|
|
// PARITY -- During the parity bit. This depends upon whether or
|
|
// not the parity bit is fixed, then what it's fixed to,
|
|
// or changing, and hence what it's calculated value is.
|
|
// 1'b1 at all other times (stop bits, idle, etc)
|
|
always @(posedge i_clk)
|
|
if (i_reset)
|
|
o_uart_tx <= 1'b1;
|
|
else if ((i_break)||((i_wr)&&(!r_busy)))
|
|
o_uart_tx <= 1'b0;
|
|
else if (zero_baud_counter)
|
|
casez(state)
|
|
4'b0???: o_uart_tx <= lcl_data[0];
|
|
`TXU_PARITY: o_uart_tx <= calc_parity;
|
|
default: o_uart_tx <= 1'b1;
|
|
endcase
|
|
|
|
|
|
// calc_parity
|
|
//
|
|
// Calculate the parity to be placed into the parity bit. If the
|
|
// parity is fixed, then the parity bit is given by the fixed parity
|
|
// value (r_setup[24]). Otherwise the parity is given by the GF2
|
|
// sum of all the data bits (plus one for even parity).
|
|
always @(posedge i_clk)
|
|
if (fixd_parity)
|
|
calc_parity <= fixdp_value;
|
|
else if (zero_baud_counter)
|
|
begin
|
|
if (state[3] == 0) // First 8 bits of msg
|
|
calc_parity <= calc_parity ^ lcl_data[0];
|
|
else
|
|
calc_parity <= parity_even;
|
|
end else if (!r_busy)
|
|
calc_parity <= parity_even;
|
|
|
|
|
|
// All of the above logic is driven by the baud counter. Bits must last
|
|
// clocks_per_baud in length, and this baud counter is what we use to
|
|
// make certain of that.
|
|
//
|
|
// The basic logic is this: at the beginning of a bit interval, start
|
|
// the baud counter and set it to count clocks_per_baud. When it gets
|
|
// to zero, restart it.
|
|
//
|
|
// However, comparing a 28'bit number to zero can be rather complex--
|
|
// especially if we wish to do anything else on that same clock. For
|
|
// that reason, we create "zero_baud_counter". zero_baud_counter is
|
|
// nothing more than a flag that is true anytime baud_counter is zero.
|
|
// It's true when the logic (above) needs to step to the next bit.
|
|
// Simple enough?
|
|
//
|
|
// I wish we could stop there, but there are some other (ugly)
|
|
// conditions to deal with that offer exceptions to this basic logic.
|
|
//
|
|
// 1. When the user has commanded a BREAK across the line, we need to
|
|
// wait several baud intervals following the break before we start
|
|
// transmitting, to give any receiver a chance to recognize that we are
|
|
// out of the break condition, and to know that the next bit will be
|
|
// a stop bit.
|
|
//
|
|
// 2. A reset is similar to a break condition--on both we wait several
|
|
// baud intervals before allowing a start bit.
|
|
//
|
|
// 3. In the idle state, we stop our counter--so that upon a request
|
|
// to transmit when idle we can start transmitting immediately, rather
|
|
// than waiting for the end of the next (fictitious and arbitrary) baud
|
|
// interval.
|
|
//
|
|
// When (i_wr)&&(!r_busy)&&(state == `TXU_IDLE) then we're not only in
|
|
// the idle state, but we also just accepted a command to start writing
|
|
// the next word. At this point, the baud counter needs to be reset
|
|
// to the number of clocks per baud, and zero_baud_counter set to zero.
|
|
//
|
|
// The logic is a bit twisted here, in that it will only check for the
|
|
// above condition when zero_baud_counter is false--so as to make
|
|
// certain the STOP bit is complete.
|
|
initial zero_baud_counter = 1'b0;
|
|
initial baud_counter = 28'h05;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
zero_baud_counter <= (baud_counter == 28'h01);
|
zero_baud_counter <= (baud_counter == 28'h01);
|
if ((i_reset)||(i_break))
|
if ((i_reset)||(i_break))
|
|
begin
|
// Give ourselves 16 bauds before being ready
|
// Give ourselves 16 bauds before being ready
|
baud_counter <= break_condition;
|
baud_counter <= break_condition;
|
else if (~zero_baud_counter)
|
zero_baud_counter <= 1'b0;
|
|
end else if (!zero_baud_counter)
|
baud_counter <= baud_counter - 28'h01;
|
baud_counter <= baud_counter - 28'h01;
|
else if (state == `TXU_BREAK)
|
else if (state == `TXU_BREAK)
|
// Give us two stop bits before becoming available
|
// Give us four idle baud intervals before becoming
|
|
// available
|
baud_counter <= clocks_per_baud<<2;
|
baud_counter <= clocks_per_baud<<2;
|
else if (state == `TXU_IDLE)
|
else if (state == `TXU_IDLE)
|
begin
|
begin
|
if((i_wr)&&(~r_busy))
|
baud_counter <= 28'h0;
|
baud_counter <= clocks_per_baud - 28'h01;
|
|
else
|
|
zero_baud_counter <= 1'b1;
|
zero_baud_counter <= 1'b1;
|
|
if ((i_wr)&&(!r_busy))
|
|
begin
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
|
zero_baud_counter <= 1'b0;
|
|
end
|
end else
|
end else
|
baud_counter <= clocks_per_baud - 28'h01;
|
baud_counter <= clocks_per_baud - 28'h01;
|
end
|
end
|
endmodule
|
endmodule
|
|
|