Line 2... |
Line 2... |
//
|
//
|
// Filename: wboled.v
|
// Filename: wboled.v
|
//
|
//
|
// Project: OpenArty, an entirely open SoC based upon the Arty platform
|
// Project: OpenArty, an entirely open SoC based upon the Arty platform
|
//
|
//
|
// Purpose:
|
// Purpose: To provide a *very* simplified controller for a PMod OLEDrgb.
|
|
// This controller implements four registers (described below),
|
|
// although it might feel like only two in practice. As with all of our
|
|
// other wishbone work, all transactions are 32-bits--even though, as an
|
|
// example, the data word for the device is only ever 16-bits long.
|
|
//
|
|
// The device control, outlined below, is also colored by two facts:
|
|
// 1. There is no means to read from the device. Sure, the chip on the
|
|
// PMod has a full read/write bus, but it hasn't been entirely
|
|
// wired to the PMod pins. This was probably done so that the
|
|
// interface could handle the paucity of pins available, but for
|
|
// whatever reason, there's no way to read from the device.
|
|
// 2. The device is controlled by a SPI port, but with an extra wire that
|
|
// determines whether or not you are writing to the control or the
|
|
// data port on the device. Hence the four wire SPI protocol has
|
|
// lost the MISO wire and gained a Data / Control (N) (or dcn)
|
|
// wire.
|
|
// 3. As implemented, the device also has two power control wires and a
|
|
// reset wire. The reset wire is negative logic. Without setting
|
|
// the PMOD-Enable wire high, the board has no power. The
|
|
// VCCEN pin is not to be set high without PMOD-Enable high.
|
|
// Finally, setting reset low (with PMod-Enable high), places the
|
|
// device into a reset condition.
|
|
//
|
|
// The design of the controller, as with the design of other controllers
|
|
// we have built, is focused around the design principles:
|
|
// 1. Use the bottom 23 bits of a word for the command, if possible.
|
|
// Such commands can be loaded into registers with simple LDI
|
|
// instructions. Even better, restrict any status results from the
|
|
// device to 18 bits, so that instructions that use immediates
|
|
// such as TEST #,Rx, can use these immediates.
|
|
// 2. Protect against inadvertant changes to the power port. For this,
|
|
// we insist that a minimum of two bits be high to change the
|
|
// power port bits, and that just reading from the port and
|
|
// writing back with a changed power bit is not sufficient to
|
|
// change the power.
|
|
// 3. Permit atomic changes to the individual power control bits,
|
|
// by outlining which exact bits change upon any write, and
|
|
// permitting only the bits specified to change.
|
|
// 4. Don't stall the bus. So, if a command comes in and the
|
|
// device is busy, we'll ignore the command. It is up to the
|
|
// user to make certain the device isn't fed faster than it is
|
|
// able. (Perhaps the user wishes to add a FIFO?)
|
|
// 5. Finally, build this so that either a FIFO or DMA could control it.
|
|
//
|
|
// Registers:
|
|
// 0. Control -- There are several types of control commands to/from
|
|
// the device, all separated and determined by how many bytes are
|
|
// to be sent to the device for the said command. Commands written
|
|
// to the control port of the device are initiated by writes
|
|
// to this register.
|
|
//
|
|
// - Writes of all { 24'h00, data[7:0] } send the single byte
|
|
// data[7:0] to the device.
|
|
// - Writes of { 16'h01, data[15:0] } send two bytes,
|
|
// data[15:0], to the device.
|
|
// - Writes of { 4'h2, 4'hx, data[23:0] } send three bytes,
|
|
// data[23:0], to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send four bytes,
|
|
// data[23:0], then r_a[31:24] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send five bytes,
|
|
// data[23:0], then r_a[31:16] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send six bytes,
|
|
// data[23:0], then r_a[31:8] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send seven bytes,
|
|
// data[23:0], then r_a[31:0] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send eight bytes,
|
|
// data[23:0], r_a[31:16], then r_b[31:24] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send nine bytes,
|
|
// data[23:0], r_a[31:16], then r_b[31:16] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send ten bytes,
|
|
// data[23:0], r_a[31:16], then r_b[31:8] to the device.
|
|
// - Writes of { 4'h3, 4'hx, data[23:0] } send eleven bytes,
|
|
// data[23:0], r_a[31:16], then r_b[31:0] to the device.
|
|
//
|
|
// 1. A This register is used, just like the B register below, for
|
|
// setting up commands that send multiple bytes to the device.
|
|
// Be aware that the high order bits/bytes will be sent first.
|
|
// This is one of the few registers that may be read with meaning.
|
|
// Once the word is written, however, the register is cleared.
|
|
//
|
|
// 2. B This is the same as the A register, save on writes the A
|
|
// register will be written first before any bits from the B
|
|
// register. As with the A register, this value is cleared upon
|
|
// any write--regardless of whether its value is used in the
|
|
// write.
|
|
//
|
|
// 3. Data --- This is both the data and the power control register.
|
|
//
|
|
// To write data to the graphics data RAM within the device,
|
|
// simply write a 16'bit word: { 16'h00, data[15:0] } to this
|
|
// port.
|
|
//
|
|
// To change the three power bits, {reset, vccen, pmoden},
|
|
// you must also set a 1'b1 in the corresponding bit position from
|
|
// bit 16-18. Hence a:
|
|
//
|
|
// 32'h010001 sets the pmod enable bit, whereas 32'h010000 clears
|
|
// it.
|
|
// 32'h020002 sets the vcc bit, whereas 32'h010000 clears it.
|
|
//
|
|
// Multiple of the power bits can be changed at once. Each
|
|
// respective bit is only changed if it's change enable bit is
|
|
// also high.
|
|
//
|
|
//
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
Line 37... |
Line 142... |
//
|
//
|
module wboled(i_clk, i_cyc, i_stb, i_we, i_addr, i_data,
|
module wboled(i_clk, i_cyc, i_stb, i_we, i_addr, i_data,
|
o_ack, o_stall, o_data,
|
o_ack, o_stall, o_data,
|
o_sck, o_cs_n, o_mosi, o_dbit,
|
o_sck, o_cs_n, o_mosi, o_dbit,
|
o_pwr, o_int);
|
o_pwr, o_int);
|
parameter CBITS=4; // 2^4*2@6.25ns -> 200ns/clock > 150ns min
|
parameter CBITS=8, // 2^4*2@6.25ns -> 200ns/clock > 150ns min
|
|
EXTRA_BUS_CLOCK = 0;
|
input i_clk, i_cyc, i_stb, i_we;
|
input i_clk, i_cyc, i_stb, i_we;
|
input [1:0] i_addr;
|
input [1:0] i_addr;
|
input [31:0] i_data;
|
input [31:0] i_data;
|
output reg o_ack;
|
output reg o_ack;
|
output wire o_stall;
|
output wire o_stall;
|
Line 56... |
Line 162... |
wire dev_busy;
|
wire dev_busy;
|
lloled #(CBITS)
|
lloled #(CBITS)
|
lwlvl(i_clk, dev_wr, dev_dbit, dev_word, dev_len, dev_busy,
|
lwlvl(i_clk, dev_wr, dev_dbit, dev_word, dev_len, dev_busy,
|
o_sck, o_cs_n, o_mosi, o_dbit);
|
o_sck, o_cs_n, o_mosi, o_dbit);
|
|
|
`define EXTRA_WB_DELAY
|
wire wb_stb, wb_we;
|
`ifdef EXTRA_WB_DELAY
|
wire [31:0] wb_data;
|
|
wire [1:0] wb_addr;
|
|
|
|
// I've thought about bumping this from a clock at <= 100MHz up to a
|
|
// clock near 200MHz. Doing so requires an extra clock to come off
|
|
// the bus--the bus fanout is just too wide otherwise. However,
|
|
// if you don't need to ... why take the extra clock cycle? Hence
|
|
// this little snippet of code allows the rest of the controller
|
|
// to work at 200MHz or 100MHz as need be.
|
|
generate
|
|
if (EXTRA_BUS_CLOCK != 0)
|
|
begin
|
reg r_wb_stb, r_wb_we;
|
reg r_wb_stb, r_wb_we;
|
reg [31:0] r_wb_data;
|
reg [31:0] r_wb_data;
|
reg [1:0] r_wb_addr;
|
reg [1:0] r_wb_addr;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_wb_stb <= i_stb;
|
r_wb_stb <= i_stb;
|
Line 69... |
Line 186... |
r_wb_we <= i_we;
|
r_wb_we <= i_we;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_wb_data <= i_data;
|
r_wb_data <= i_data;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_wb_addr <= i_addr;
|
r_wb_addr <= i_addr;
|
`else
|
|
wire r_wb_stb, r_wb_we;
|
assign wb_stb = r_wb_stb;
|
wire r_wb_data;
|
assign wb_we = r_wb_we;
|
wire [1:0] r_wb_addr;
|
assign wb_data = r_wb_data;
|
|
assign wb_addr = r_wb_addr;
|
assign r_wb_stb = i_stb;
|
end else begin
|
assign r_wb_we = i_we;
|
assign wb_stb = i_stb;
|
assign r_wb_data = i_data;
|
assign wb_we = i_we;
|
assign r_wb_addr = i_addr;
|
assign wb_data = i_data;
|
`endif
|
assign wb_addr = i_addr;
|
|
end endgenerate
|
|
|
|
|
|
|
reg r_busy;
|
reg r_busy;
|
reg [3:0] r_len;
|
reg [3:0] r_len;
|
|
|
|
|
|
//
|
|
// Handle registers A & B. These are set either upon a write, or
|
|
// cleared (set to zero) upon any command to the control register.
|
|
//
|
reg [31:0] r_a, r_b;
|
reg [31:0] r_a, r_b;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((r_wb_stb)&&(r_wb_we))
|
if ((wb_stb)&&(wb_we))
|
begin
|
begin
|
if (r_wb_addr[1:0]==2'b01)
|
if (wb_addr[1:0]==2'b01)
|
r_a <= r_wb_data;
|
r_a <= wb_data;
|
if (r_wb_addr[1:0]==2'b10)
|
if (wb_addr[1:0]==2'b10)
|
r_b <= r_wb_data;
|
r_b <= wb_data;
|
end else if (r_cstb)
|
end else if (r_cstb)
|
begin
|
begin
|
r_a <= 32'h00;
|
r_a <= 32'h00;
|
r_b <= 32'h00;
|
r_b <= 32'h00;
|
end
|
end
|
|
|
|
//
|
|
// Handle reads from our device. These really aren't all that
|
|
// interesting, but ... we can do them anyway. We attempt to provide
|
|
// some sort of useful value here. For example, upon reading r_a or
|
|
// r_b, you can read the current value(s) of those register(s).
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
case (r_wb_addr)
|
case (wb_addr)
|
2'b00: o_data <= { 13'h00, o_pwr, 8'h00, r_len, 3'h0, r_busy };
|
2'b00: o_data <= { 13'h00, o_pwr, 8'h00, r_len, 1'b0, o_dbit, !o_cs_n, r_busy };
|
2'b01: o_data <= r_a;
|
2'b01: o_data <= r_a;
|
2'b10: o_data <= r_b;
|
2'b10: o_data <= r_b;
|
2'b11: o_data <= { 13'h00, o_pwr, 8'h00, r_len, 3'h0, r_busy };
|
2'b11: o_data <= { 16'h00, 13'h0, o_pwr };
|
endcase
|
endcase
|
end
|
end
|
|
|
initial o_ack = 1'b0;
|
initial o_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_ack <= r_wb_stb;
|
o_ack <= wb_stb;
|
assign o_stall = 1'b0;
|
assign o_stall = 1'b0;
|
|
|
reg r_cstb, r_dstb, r_pstb;
|
reg r_cstb, r_dstb, r_pstb, r_pre_busy;
|
reg [23:0] r_data;
|
reg [18:0] r_data;
|
initial r_cstb = 1'b0;
|
initial r_cstb = 1'b0;
|
initial r_dstb = 1'b0;
|
initial r_dstb = 1'b0;
|
initial r_pstb = 1'b0;
|
initial r_pstb = 1'b0;
|
|
initial r_pre_busy = 1'b0; // Used to clear the interrupt a touch earlier
|
|
|
|
// The control strobe. This will be true if we need to command a
|
|
// control interaction.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_cstb <= (r_wb_stb)&&(r_wb_addr[1:0]==2'b00);
|
r_cstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b00);
|
|
|
|
// The data strobe, true if we need to command a data interaction.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_dstb <= (r_wb_stb)&&(r_wb_addr[1:0]==2'b11)&&(r_wb_data[22:20]==3'h0);
|
r_dstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b11)&&(wb_data[18:16]==3'h0);
|
|
|
|
// The power strobe. True if we are about to adjust the power and/or
|
|
// reset bits.
|
|
always @(posedge i_clk) // Power strobe, change power settings
|
|
r_pstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b11)&&(wb_data[18:16]!=3'h0);
|
|
|
|
// Pre-busy: true if either r_cstb or r_dstb is true, and true on the
|
|
// same clock they are true. This is to support our interrupt, by
|
|
// clearing the interrupt one clock earlier--lest the DMA decide to send
|
|
// two words our way instead of one.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_pstb <= (r_wb_stb)&&(r_wb_addr[1:0]==2'b11)&&(r_wb_data[22:20]!=3'h0);
|
r_pre_busy <= (wb_stb)&&(wb_we)&&
|
|
((wb_addr[1:0]==2'b11)||(wb_addr[1:0]==2'b00));
|
|
|
|
// But ... to use these strobe values, we are now one more clock
|
|
// removed from the bus. We need something that matches this, so let's
|
|
// delay our bus data one more clock 'til the time when we actually use
|
|
// it.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_data <= r_wb_data[23:0];
|
r_data <= wb_data[18:0];
|
|
|
initial o_pwr = 3'h0;
|
initial o_pwr = 3'h0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (r_pstb)
|
if (r_pstb)
|
o_pwr <= ((o_pwr)&(~r_data[22:20]))
|
o_pwr <= ((o_pwr)&(~r_data[18:16]))
|
|((r_wb_data[18:16])&(r_data[22:20]));
|
|((r_data[2:0])&(r_data[18:16]));
|
|
|
|
// Sadly, because our commands can have a whole slew of different
|
|
// lengths, and because these lengths can be ... difficult to
|
|
// decipher from the command (especially the first two lengths),
|
|
// this quick case statement is needed to decode the amount of bytes
|
|
// that will be sent.
|
reg [3:0] b_len;
|
reg [3:0] b_len;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
casez(r_wb_data[31:28])
|
casez(wb_data[31:28])
|
4'b000?: b_len <= (r_wb_data[16])? 4'h1:4'h2;
|
4'b0000: b_len <= (wb_data[16])? 4'h2:4'h1;
|
|
4'b0001: b_len <= 4'h2;
|
4'b0010: b_len <= 4'h3;
|
4'b0010: b_len <= 4'h3;
|
4'b0011: b_len <= 4'h4;
|
4'b0011: b_len <= 4'h4;
|
4'b0100: b_len <= 4'h5;
|
4'b0100: b_len <= 4'h5;
|
4'b0101: b_len <= 4'h6;
|
4'b0101: b_len <= 4'h6;
|
4'b0110: b_len <= 4'h7;
|
4'b0110: b_len <= 4'h7;
|
Line 149... |
Line 306... |
4'b1001: b_len <= 4'ha;
|
4'b1001: b_len <= 4'ha;
|
4'b1010: b_len <= 4'hb;
|
4'b1010: b_len <= 4'hb;
|
default: b_len <= 4'h0;
|
default: b_len <= 4'h0;
|
endcase
|
endcase
|
|
|
reg [87:0] r_sreg;
|
//
|
|
// On the next clock, we're going to set our data register to
|
|
// whatever's in register A, and B, and ... something of the data
|
|
// written to the control register. Because this must all be
|
|
// written on the most-significant bits of a word, we pause a moment
|
|
// here to move the control word that was writen to our bus up
|
|
// by an amount given by the length of our message. That way, you
|
|
// can write to the bottom bits of the register, and yet still end
|
|
// up in the top several bits of the following register.
|
|
//
|
|
reg [23:0] c_data;
|
|
always @(posedge i_clk)
|
|
if (wb_data[31:29] != 3'h0)
|
|
c_data <= wb_data[23:0];
|
|
else if (wb_data[16])
|
|
c_data <= { wb_data[15:0], 8'h00 };
|
|
else
|
|
c_data <= { wb_data[7:0], 16'h00 };
|
|
|
|
//
|
|
// Finally, after massaging the incoming data off our bus, we finally
|
|
// get to controlling the lower level controller and sending the
|
|
// data to the device itself.
|
|
//
|
|
// The basic idea is this: we use r_busy to know if we are in the
|
|
// middle of an operation, or whether or not we will be responsive to
|
|
// the bus. r_sreg holds the data we wish to send, and r_len the
|
|
// number of bytes within r_sreg that remain to be sent. The controller
|
|
// will accept up to 32-bits at a time, so once we issue a command
|
|
// (dev_wr & !dev_busy), we transition to either the next command.
|
|
// Once all the data has been sent, and the device is now idle, we
|
|
// clear r_busy and therefore become responsive to the bus again.
|
|
//
|
|
//
|
|
reg [87:0] r_sreg; // Composed of 24-bits, 32-bits, and 32-bits
|
initial r_busy = 1'b0;
|
initial r_busy = 1'b0;
|
|
initial dev_wr = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((~r_busy)&&(r_cstb))
|
|
begin
|
begin
|
dev_wr <= 1'b0;
|
dev_wr <= 1'b0;
|
|
if ((~r_busy)&&(r_cstb))
|
|
begin
|
dev_dbit <= 1'b0;
|
dev_dbit <= 1'b0;
|
r_sreg <= { r_data[23:0], r_a, r_b };
|
r_sreg <= { c_data[23:0], r_a, r_b };
|
r_len <= b_len;
|
r_len <= b_len;
|
r_busy <= (b_len != 4'h0);
|
r_busy <= (b_len != 4'h0);
|
if (b_len == 4'h1)
|
end else if ((~r_busy)&&(r_dstb))
|
r_sreg[87:72] <= { r_data[7:0], r_data[7:0] };
|
|
else if (b_len == 4'h2)
|
|
r_sreg[87:72] <= r_data[15:0];
|
|
else
|
|
r_sreg[87:72] <= r_data[23:8];
|
|
end else if ((~dev_busy)&&(r_dstb))
|
|
begin
|
begin
|
dev_wr <= 1'b0;
|
|
dev_dbit <= 1'b1;
|
dev_dbit <= 1'b1;
|
r_sreg <= { r_data[15:0], 72'h00 };
|
r_sreg <= { r_data[15:0], 72'h00 };
|
r_len <= 4'h2;
|
r_len <= 4'h2;
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
end else if ((r_busy)&&(~dev_busy))
|
end else if ((r_busy)&&(!dev_busy))
|
begin
|
begin
|
|
// Issue the command to write up to 32-bits at a time
|
|
dev_wr <= (r_len != 4'h0);
|
dev_word <= r_sreg[87:56];
|
dev_word <= r_sreg[87:56];
|
r_sreg <= { r_sreg[55:0], 32'h00 };
|
r_sreg <= { r_sreg[55:0], 32'h00 };
|
dev_len <= (r_len > 4'h4)? 2'b11:(r_len[1:0]+2'b11);
|
dev_len <= (r_len > 4'h4)? 2'b11:(r_len[1:0]+2'b11);
|
|
if (dev_wr)
|
r_len <= (r_len > 4'h4) ? (r_len-4'h4):0;
|
r_len <= (r_len > 4'h4) ? (r_len-4'h4):0;
|
end else if (r_busy)
|
r_busy <= (dev_wr)||(r_len != 4'h0)&&(!dev_wr);
|
r_busy <= (r_len != 4'h0);
|
end else if (r_busy) // & dev_busy
|
|
begin
|
|
dev_wr <= (r_len != 4'h0);
|
|
dev_len <= (r_len > 4'h4)? 2'b11:(r_len[1:0]+2'b11);
|
|
end
|
|
end
|
|
|
assign o_int = (~r_busy);
|
//
|
|
// Here, we pick a self-clearing interrupt input. This will set the
|
|
// interrupt any time we are idle, and will automatically clear itself
|
|
// any time we become busy. This should be sufficient to allow the
|
|
// DMA controller to send things to the card.
|
|
//
|
|
// Of course ... if you are not running in any sort of interrupt mode,
|
|
// you *could* just ignore this line and poll the busy bit instead.
|
|
//
|
|
assign o_int = (~r_busy)&&(!r_pre_busy);
|
|
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|