OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [actel_m1a3pl_dev_kit/] [rtl/] [verilog/] [openmsp430/] [omsp_multiplier.v] - Diff between revs 107 and 111

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 107 Rev 111
Line 50... Line 50...
    mclk,                           // Main system clock
    mclk,                           // Main system clock
    per_addr,                       // Peripheral address
    per_addr,                       // Peripheral address
    per_din,                        // Peripheral data input
    per_din,                        // Peripheral data input
    per_en,                         // Peripheral enable (high active)
    per_en,                         // Peripheral enable (high active)
    per_we,                         // Peripheral write enable (high active)
    per_we,                         // Peripheral write enable (high active)
    puc                             // Main system reset
    puc_rst                         // Main system reset
);
);
 
 
// OUTPUTs
// OUTPUTs
//=========
//=========
output       [15:0] per_dout;       // Peripheral data output
output       [15:0] per_dout;       // Peripheral data output
 
 
// INPUTs
// INPUTs
//=========
//=========
input               mclk;           // Main system clock
input               mclk;           // Main system clock
input         [7:0] per_addr;       // Peripheral address
input        [13:0] per_addr;       // Peripheral address
input        [15:0] per_din;        // Peripheral data input
input        [15:0] per_din;        // Peripheral data input
input               per_en;         // Peripheral enable (high active)
input               per_en;         // Peripheral enable (high active)
input         [1:0] per_we;         // Peripheral write enable (high active)
input         [1:0] per_we;         // Peripheral write enable (high active)
input               puc;            // Main system reset
input               puc_rst;        // Main system reset
 
 
 
 
//=============================================================================
//=============================================================================
// 1)  PARAMETER/REGISTERS & WIRE DECLARATION
// 1)  PARAMETER/REGISTERS & WIRE DECLARATION
//=============================================================================
//=============================================================================
 
 
// Register addresses
// Register base address (must be aligned to decoder bit width)
parameter           OP1_MPY    = 9'h130;
parameter       [14:0] BASE_ADDR   = 15'h0130;
parameter           OP1_MPYS   = 9'h132;
 
parameter           OP1_MAC    = 9'h134;
 
parameter           OP1_MACS   = 9'h136;
 
parameter           OP2        = 9'h138;
 
parameter           RESLO      = 9'h13A;
 
parameter           RESHI      = 9'h13C;
 
parameter           SUMEXT     = 9'h13E;
 
 
 
 
// Decoder bit width (defines how many bits are considered for address decoding)
 
parameter              DEC_WD      =  4;
 
 
 
// Register addresses offset
 
parameter [DEC_WD-1:0] OP1_MPY     = 'h0,
 
                       OP1_MPYS    = 'h2,
 
                       OP1_MAC     = 'h4,
 
                       OP1_MACS    = 'h6,
 
                       OP2         = 'h8,
 
                       RESLO       = 'hA,
 
                       RESHI       = 'hC,
 
                       SUMEXT      = 'hE;
 
 
 
// Register one-hot decoder utilities
 
parameter              DEC_SZ      =  2**DEC_WD;
 
parameter [DEC_SZ-1:0] BASE_REG    =  {{DEC_SZ-1{1'b0}}, 1'b1};
 
 
// Register one-hot decoder
// Register one-hot decoder
parameter           OP1_MPY_D  = (512'h1 << OP1_MPY);
parameter [DEC_SZ-1:0] OP1_MPY_D   = (BASE_REG << OP1_MPY),
parameter           OP1_MPYS_D = (512'h1 << OP1_MPYS);
                       OP1_MPYS_D  = (BASE_REG << OP1_MPYS),
parameter           OP1_MAC_D  = (512'h1 << OP1_MAC);
                       OP1_MAC_D   = (BASE_REG << OP1_MAC),
parameter           OP1_MACS_D = (512'h1 << OP1_MACS);
                       OP1_MACS_D  = (BASE_REG << OP1_MACS),
parameter           OP2_D      = (512'h1 << OP2);
                       OP2_D       = (BASE_REG << OP2),
parameter           RESLO_D    = (512'h1 << RESLO);
                       RESLO_D     = (BASE_REG << RESLO),
parameter           RESHI_D    = (512'h1 << RESHI);
                       RESHI_D     = (BASE_REG << RESHI),
parameter           SUMEXT_D   = (512'h1 << SUMEXT);
                       SUMEXT_D    = (BASE_REG << SUMEXT);
 
 
 
 
// Wire pre-declarations
// Wire pre-declarations
wire  result_wr;
wire  result_wr;
wire  result_clr;
wire  result_clr;
Line 103... Line 112...
 
 
//============================================================================
//============================================================================
// 2)  REGISTER DECODER
// 2)  REGISTER DECODER
//============================================================================
//============================================================================
 
 
 
// Local register selection
 
wire              reg_sel   =  per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
 
 
 
// Register local address
 
wire [DEC_WD-1:0] reg_addr  =  {per_addr[DEC_WD-2:0], 1'b0};
 
 
// Register address decode
// Register address decode
reg  [511:0]  reg_dec;
wire [DEC_SZ-1:0] reg_dec   =  (OP1_MPY_D   &  {DEC_SZ{(reg_addr == OP1_MPY  )}})  |
always @(per_addr)
                               (OP1_MPYS_D  &  {DEC_SZ{(reg_addr == OP1_MPYS )}})  |
  case ({per_addr,1'b0})
                               (OP1_MAC_D   &  {DEC_SZ{(reg_addr == OP1_MAC  )}})  |
    OP1_MPY  :  reg_dec  =  OP1_MPY_D;
                               (OP1_MACS_D  &  {DEC_SZ{(reg_addr == OP1_MACS )}})  |
    OP1_MPYS :  reg_dec  =  OP1_MPYS_D;
                               (OP2_D       &  {DEC_SZ{(reg_addr == OP2      )}})  |
    OP1_MAC  :  reg_dec  =  OP1_MAC_D;
                               (RESLO_D     &  {DEC_SZ{(reg_addr == RESLO    )}})  |
    OP1_MACS :  reg_dec  =  OP1_MACS_D;
                               (RESHI_D     &  {DEC_SZ{(reg_addr == RESHI    )}})  |
    OP2      :  reg_dec  =  OP2_D;
                               (SUMEXT_D    &  {DEC_SZ{(reg_addr == SUMEXT   )}});
    RESLO    :  reg_dec  =  RESLO_D;
 
    RESHI    :  reg_dec  =  RESHI_D;
 
    SUMEXT   :  reg_dec  =  SUMEXT_D;
 
    default  :  reg_dec  =  {512{1'b0}};
 
  endcase
 
 
 
// Read/Write probes
// Read/Write probes
wire         reg_write =  |per_we & per_en;
wire              reg_write =  |per_we & reg_sel;
wire         reg_read  = ~|per_we & per_en;
wire              reg_read  = ~|per_we & reg_sel;
 
 
// Read/Write vectors
// Read/Write vectors
wire [511:0] reg_wr    = reg_dec & {512{reg_write}};
wire [DEC_SZ-1:0] reg_wr    = reg_dec & {DEC_SZ{reg_write}};
wire [511:0] reg_rd    = reg_dec & {512{reg_read}};
wire [DEC_SZ-1:0] reg_rd    = reg_dec & {DEC_SZ{reg_read}};
 
 
 
 
//============================================================================
//============================================================================
// 3) REGISTERS
// 3) REGISTERS
//============================================================================
//============================================================================
Line 140... Line 150...
wire        op1_wr = reg_wr[OP1_MPY]  |
wire        op1_wr = reg_wr[OP1_MPY]  |
                     reg_wr[OP1_MPYS] |
                     reg_wr[OP1_MPYS] |
                     reg_wr[OP1_MAC]  |
                     reg_wr[OP1_MAC]  |
                     reg_wr[OP1_MACS];
                     reg_wr[OP1_MACS];
 
 
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)          op1 <=  16'h0000;
  if (puc_rst)      op1 <=  16'h0000;
  else if (op1_wr)  op1 <=  per_din;
  else if (op1_wr)  op1 <=  per_din;
 
 
wire [15:0] op1_rd  = op1;
wire [15:0] op1_rd  = op1;
 
 
 
 
Line 153... Line 163...
//-----------------   
//-----------------   
reg  [15:0] op2;
reg  [15:0] op2;
 
 
wire        op2_wr = reg_wr[OP2];
wire        op2_wr = reg_wr[OP2];
 
 
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)          op2 <=  16'h0000;
  if (puc_rst)      op2 <=  16'h0000;
  else if (op2_wr)  op2 <=  per_din;
  else if (op2_wr)  op2 <=  per_din;
 
 
wire [15:0] op2_rd  = op2;
wire [15:0] op2_rd  = op2;
 
 
 
 
Line 167... Line 177...
reg  [15:0] reslo;
reg  [15:0] reslo;
 
 
wire [15:0] reslo_nxt;
wire [15:0] reslo_nxt;
wire        reslo_wr = reg_wr[RESLO];
wire        reslo_wr = reg_wr[RESLO];
 
 
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)             reslo <=  16'h0000;
  if (puc_rst)         reslo <=  16'h0000;
  else if (reslo_wr)   reslo <=  per_din;
  else if (reslo_wr)   reslo <=  per_din;
  else if (result_clr) reslo <=  16'h0000;
  else if (result_clr) reslo <=  16'h0000;
  else if (result_wr)  reslo <=  reslo_nxt;
  else if (result_wr)  reslo <=  reslo_nxt;
 
 
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
Line 183... Line 193...
reg  [15:0] reshi;
reg  [15:0] reshi;
 
 
wire [15:0] reshi_nxt;
wire [15:0] reshi_nxt;
wire        reshi_wr = reg_wr[RESHI];
wire        reshi_wr = reg_wr[RESHI];
 
 
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)             reshi <=  16'h0000;
  if (puc_rst)         reshi <=  16'h0000;
  else if (reshi_wr)   reshi <=  per_din;
  else if (reshi_wr)   reshi <=  per_din;
  else if (result_clr) reshi <=  16'h0000;
  else if (result_clr) reshi <=  16'h0000;
  else if (result_wr)  reshi <=  reshi_nxt;
  else if (result_wr)  reshi <=  reshi_nxt;
 
 
wire [15:0] reshi_rd = early_read ? reshi_nxt  : reshi;
wire [15:0] reshi_rd = early_read ? reshi_nxt  : reshi;
Line 198... Line 208...
//-----------------   
//-----------------   
reg  [1:0] sumext_s;
reg  [1:0] sumext_s;
 
 
wire [1:0] sumext_s_nxt;
wire [1:0] sumext_s_nxt;
 
 
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)             sumext_s <=  2'b00;
  if (puc_rst)         sumext_s <=  2'b00;
  else if (op2_wr)     sumext_s <=  2'b00;
  else if (op2_wr)     sumext_s <=  2'b00;
  else if (result_wr)  sumext_s <=  sumext_s_nxt;
  else if (result_wr)  sumext_s <=  sumext_s_nxt;
 
 
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
wire [15:0] sumext     = {{14{sumext_s[1]}},     sumext_s};
wire [15:0] sumext     = {{14{sumext_s[1]}},     sumext_s};
Line 238... Line 248...
// Multiplier configuration
// Multiplier configuration
//--------------------------
//--------------------------
 
 
// Detect signed mode
// Detect signed mode
reg sign_sel;
reg sign_sel;
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)         sign_sel <=  1'b0;
  if (puc_rst)     sign_sel <=  1'b0;
  else if (op1_wr) sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
  else if (op1_wr) sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
 
 
 
 
// Detect accumulate mode
// Detect accumulate mode
reg acc_sel;
reg acc_sel;
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc)         acc_sel  <=  1'b0;
  if (puc_rst)     acc_sel  <=  1'b0;
  else if (op1_wr) acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
  else if (op1_wr) acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
 
 
 
 
// Detect whenever the RESHI and RESLO registers should be cleared
// Detect whenever the RESHI and RESLO registers should be cleared
assign      result_clr = op2_wr & ~acc_sel;
assign      result_clr = op2_wr & ~acc_sel;
Line 263... Line 273...
//-----------------------------------------------------
//-----------------------------------------------------
`ifdef MPY_16x16
`ifdef MPY_16x16
 
 
// Detect start of a multiplication
// Detect start of a multiplication
reg cycle;
reg cycle;
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc) cycle <=  1'b0;
  if (puc_rst) cycle <=  1'b0;
  else     cycle <=  op2_wr;
  else     cycle <=  op2_wr;
 
 
assign result_wr = cycle;
assign result_wr = cycle;
 
 
// Expand the operands to support signed & unsigned operations
// Expand the operands to support signed & unsigned operations
Line 299... Line 309...
//-----------------------------------------------------
//-----------------------------------------------------
`else
`else
 
 
// Detect start of a multiplication
// Detect start of a multiplication
reg [1:0] cycle;
reg [1:0] cycle;
always @ (posedge mclk or posedge puc)
always @ (posedge mclk or posedge puc_rst)
  if (puc) cycle <=  2'b00;
  if (puc_rst) cycle <=  2'b00;
  else     cycle <=  {cycle[0], op2_wr};
  else     cycle <=  {cycle[0], op2_wr};
 
 
assign result_wr = |cycle;
assign result_wr = |cycle;
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.