OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [actel_m1a3pl_dev_kit/] [rtl/] [verilog/] [openmsp430/] [omsp_register_file.v] - Diff between revs 132 and 136

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 132 Rev 136
Line 53... Line 53...
    oscoff,                       // Turns off LFXT1 clock input
    oscoff,                       // Turns off LFXT1 clock input
    pc_sw,                        // Program counter software value
    pc_sw,                        // Program counter software value
    pc_sw_wr,                     // Program counter software write
    pc_sw_wr,                     // Program counter software write
    reg_dest,                     // Selected register destination content
    reg_dest,                     // Selected register destination content
    reg_src,                      // Selected register source content
    reg_src,                      // Selected register source content
 
    scg0,                         // System clock generator 1. Turns off the DCO
    scg1,                         // System clock generator 1. Turns off the SMCLK
    scg1,                         // System clock generator 1. Turns off the SMCLK
    status,                       // R2 Status {V,N,Z,C}
    status,                       // R2 Status {V,N,Z,C}
 
 
// INPUTs
// INPUTs
    alu_stat,                     // ALU Status {V,N,Z,C}
    alu_stat,                     // ALU Status {V,N,Z,C}
Line 72... Line 73...
    reg_pc_call,                  // Trigger PC update for a CALL instruction
    reg_pc_call,                  // Trigger PC update for a CALL instruction
    reg_sp_val,                   // Stack Pointer next value
    reg_sp_val,                   // Stack Pointer next value
    reg_sp_wr,                    // Stack Pointer write
    reg_sp_wr,                    // Stack Pointer write
    reg_sr_wr,                    // Status register update for RETI instruction
    reg_sr_wr,                    // Status register update for RETI instruction
    reg_sr_clr,                   // Status register clear for interrupts
    reg_sr_clr,                   // Status register clear for interrupts
    reg_incr                      // Increment source register
    reg_incr,                     // Increment source register
 
    scan_enable                   // Scan enable (active during scan shifting)
);
);
 
 
// OUTPUTs
// OUTPUTs
//=========
//=========
output              cpuoff;       // Turns off the CPU
output              cpuoff;       // Turns off the CPU
Line 84... Line 86...
output              oscoff;       // Turns off LFXT1 clock input
output              oscoff;       // Turns off LFXT1 clock input
output       [15:0] pc_sw;        // Program counter software value
output       [15:0] pc_sw;        // Program counter software value
output              pc_sw_wr;     // Program counter software write
output              pc_sw_wr;     // Program counter software write
output       [15:0] reg_dest;     // Selected register destination content
output       [15:0] reg_dest;     // Selected register destination content
output       [15:0] reg_src;      // Selected register source content
output       [15:0] reg_src;      // Selected register source content
 
output              scg0;         // System clock generator 1. Turns off the DCO
output              scg1;         // System clock generator 1. Turns off the SMCLK
output              scg1;         // System clock generator 1. Turns off the SMCLK
output        [3:0] status;       // R2 Status {V,N,Z,C}
output        [3:0] status;       // R2 Status {V,N,Z,C}
 
 
// INPUTs
// INPUTs
//=========
//=========
Line 105... Line 108...
input        [15:0] reg_sp_val;   // Stack Pointer next value
input        [15:0] reg_sp_val;   // Stack Pointer next value
input               reg_sp_wr;    // Stack Pointer write
input               reg_sp_wr;    // Stack Pointer write
input               reg_sr_wr;    // Status register update for RETI instruction
input               reg_sr_wr;    // Status register update for RETI instruction
input               reg_sr_clr;   // Status register clear for interrupts
input               reg_sr_clr;   // Status register clear for interrupts
input               reg_incr;     // Increment source register
input               reg_incr;     // Increment source register
 
input               scan_enable;  // Scan enable (active during scan shifting)
 
 
 
 
//=============================================================================
//=============================================================================
// 1)  AUTOINCREMENT UNIT
// 1)  AUTOINCREMENT UNIT
//=============================================================================
//=============================================================================
Line 143... Line 147...
//-------------------
//-------------------
reg [15:0] r1;
reg [15:0] r1;
wire       r1_wr  = inst_dest[1] & reg_dest_wr;
wire       r1_wr  = inst_dest[1] & reg_dest_wr;
wire       r1_inc = inst_src_in[1]  & reg_incr;
wire       r1_inc = inst_src_in[1]  & reg_incr;
 
 
always @(posedge mclk or posedge puc_rst)
`ifdef CLOCK_GATING
 
wire       r1_en  = r1_wr | reg_sp_wr | r1_inc;
 
wire       mclk_r1;
 
omsp_clock_gate clock_gate_r1 (.gclk(mclk_r1),
 
                               .clk (mclk), .enable(r1_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r1 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r1 or posedge puc_rst)
  if (puc_rst)        r1 <= 16'h0000;
  if (puc_rst)        r1 <= 16'h0000;
  else if (r1_wr)     r1 <= reg_dest_val_in & 16'hfffe;
  else if (r1_wr)     r1 <= reg_dest_val_in & 16'hfffe;
  else if (reg_sp_wr) r1 <= reg_sp_val      & 16'hfffe;
  else if (reg_sp_wr) r1 <= reg_sp_val      & 16'hfffe;
 
`ifdef CLOCK_GATING
 
  else                r1 <= reg_incr_val    & 16'hfffe;
 
`else
  else if (r1_inc)    r1 <= reg_incr_val    & 16'hfffe;
  else if (r1_inc)    r1 <= reg_incr_val    & 16'hfffe;
 
`endif
 
 
 
 
// R2: Status register
// R2: Status register
//---------------------
//---------------------
reg  [15:0] r2;
reg  [15:0] r2;
wire        r2_wr  = (inst_dest[2] & reg_dest_wr) | reg_sr_wr;
wire        r2_wr  = (inst_dest[2] & reg_dest_wr) | reg_sr_wr;
 
 
 
`ifdef CLOCK_GATING                                                              //      -- WITH CLOCK GATING --
 
wire        r2_c   = alu_stat_wr[0] ? alu_stat[0]          : reg_dest_val_in[0]; // C
 
 
 
wire        r2_z   = alu_stat_wr[1] ? alu_stat[1]          : reg_dest_val_in[1]; // Z
 
 
 
wire        r2_n   = alu_stat_wr[2] ? alu_stat[2]          : reg_dest_val_in[2]; // N
 
 
 
wire  [7:3] r2_nxt = r2_wr          ? reg_dest_val_in[7:3] : r2[7:3];
 
 
 
wire        r2_v   = alu_stat_wr[3] ? alu_stat[3]          : reg_dest_val_in[8]; // V
 
 
 
wire        r2_en  = |alu_stat_wr | r2_wr | reg_sr_clr;
 
wire        mclk_r2;
 
omsp_clock_gate clock_gate_r2 (.gclk(mclk_r2),
 
                               .clk (mclk), .enable(r2_en), .scan_enable(scan_enable));
 
 
 
`else                                                                            //      -- WITHOUT CLOCK GATING --
wire        r2_c   = alu_stat_wr[0] ? alu_stat[0]       :
wire        r2_c   = alu_stat_wr[0] ? alu_stat[0]       :
                     r2_wr          ? reg_dest_val_in[0]   : r2[0]; // C
                     r2_wr          ? reg_dest_val_in[0]   : r2[0]; // C
 
 
wire        r2_z   = alu_stat_wr[1] ? alu_stat[1]       :
wire        r2_z   = alu_stat_wr[1] ? alu_stat[1]       :
                     r2_wr          ? reg_dest_val_in[1]   : r2[1]; // Z
                     r2_wr          ? reg_dest_val_in[1]   : r2[1]; // Z
Line 170... Line 204...
 
 
wire        r2_v   = alu_stat_wr[3] ? alu_stat[3]       :
wire        r2_v   = alu_stat_wr[3] ? alu_stat[3]       :
                     r2_wr          ? reg_dest_val_in[8]   : r2[8]; // V
                     r2_wr          ? reg_dest_val_in[8]   : r2[8]; // V
 
 
 
 
always @(posedge mclk or posedge puc_rst)
wire        mclk_r2 = mclk;
 
`endif
 
 
 
`ifdef ASIC
 
   `ifdef CPUOFF_EN
 
   wire [15:0] cpuoff_mask = 16'h0010;
 
   `else
 
   wire [15:0] cpuoff_mask = 16'h0000;
 
   `endif
 
   `ifdef OSCOFF_EN
 
   wire [15:0] oscoff_mask = 16'h0020;
 
   `else
 
   wire [15:0] oscoff_mask = 16'h0000;
 
   `endif
 
   `ifdef SCG0_EN
 
   wire [15:0] scg0_mask   = 16'h0040;
 
   `else
 
   wire [15:0] scg0_mask   = 16'h0000;
 
   `endif
 
   `ifdef SCG1_EN
 
   wire [15:0] scg1_mask   = 16'h0080;
 
   `else
 
   wire [15:0] scg1_mask   = 16'h0000;
 
   `endif
 
`else
 
   wire [15:0] cpuoff_mask = 16'h0010; // For the FPGA version: - the CPUOFF mode is emulated
 
   wire [15:0] oscoff_mask = 16'h0020; //                       - the SCG1 mode is emulated
 
   wire [15:0] scg0_mask   = 16'h0000; //                       - the SCG0 is not supported
 
   wire [15:0] scg1_mask   = 16'h0080; //                       - the SCG1 mode is emulated
 
`endif
 
 
 
   wire [15:0] r2_mask     = cpuoff_mask | oscoff_mask | scg0_mask | scg1_mask | 16'h010f;
 
 
 
always @(posedge mclk_r2 or posedge puc_rst)
  if (puc_rst)         r2 <= 16'h0000;
  if (puc_rst)         r2 <= 16'h0000;
  else if (reg_sr_clr) r2 <= 16'h0000;
  else if (reg_sr_clr) r2 <= 16'h0000;
  else                 r2 <= {7'h00, r2_v, r2_nxt, r2_n, r2_z, r2_c};
  else                 r2 <= {7'h00, r2_v, r2_nxt, r2_n, r2_z, r2_c} & r2_mask;
 
 
assign status = {r2[8], r2[2:0]};
assign status = {r2[8], r2[2:0]};
assign gie    =  r2[3];
assign gie    =  r2[3];
assign cpuoff =  r2[4] | (r2_nxt[4] & r2_wr);
assign cpuoff =  r2[4] | (r2_nxt[4] & r2_wr & cpuoff_mask[4]);
assign oscoff =  r2[5];
assign oscoff =  r2[5];
 
assign scg0   =  r2[6];
assign scg1   =  r2[7];
assign scg1   =  r2[7];
 
 
 
 
// R3: Constant generator
// R3: Constant generator
//------------------------
//-------------------------------------------------------------
 
// Note: the auto-increment feature is not implemented for R3
 
//       because the @R3+ addressing mode is used for constant
 
//       generation (#-1).
reg [15:0] r3;
reg [15:0] r3;
wire       r3_wr  = inst_dest[3] & reg_dest_wr;
wire       r3_wr  = inst_dest[3] & reg_dest_wr;
wire       r3_inc = inst_src_in[3]  & reg_incr;
 
 
 
always @(posedge mclk or posedge puc_rst)
`ifdef CLOCK_GATING
 
wire       r3_en   = r3_wr;
 
wire       mclk_r3;
 
omsp_clock_gate clock_gate_r3 (.gclk(mclk_r3),
 
                               .clk (mclk), .enable(r3_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r3 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r3 or posedge puc_rst)
  if (puc_rst)     r3 <= 16'h0000;
  if (puc_rst)     r3 <= 16'h0000;
 
`ifdef CLOCK_GATING
 
  else             r3 <= reg_dest_val_in;
 
`else
  else if (r3_wr)  r3 <= reg_dest_val_in;
  else if (r3_wr)  r3 <= reg_dest_val_in;
  else if (r3_inc) r3 <= reg_incr_val;
`endif
 
 
 
 
//=============================================================================
//=============================================================================
// 4)  GENERAL PURPOSE REGISTERS (R4...R15)
// 4)  GENERAL PURPOSE REGISTERS (R4...R15)
//=============================================================================
//=============================================================================
 
 
// R4
// R4
 
//------------
reg [15:0] r4;
reg [15:0] r4;
wire       r4_wr  = inst_dest[4] & reg_dest_wr;
wire       r4_wr  = inst_dest[4] & reg_dest_wr;
wire       r4_inc = inst_src_in[4]  & reg_incr;
wire       r4_inc = inst_src_in[4]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r4_en  = r4_wr | r4_inc;
 
wire       mclk_r4;
 
omsp_clock_gate clock_gate_r4 (.gclk(mclk_r4),
 
                               .clk (mclk), .enable(r4_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r4 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r4 or posedge puc_rst)
  if (puc_rst)      r4  <= 16'h0000;
  if (puc_rst)      r4  <= 16'h0000;
  else if (r4_wr)   r4  <= reg_dest_val_in;
  else if (r4_wr)   r4  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r4  <= reg_incr_val;
 
`else
  else if (r4_inc)  r4  <= reg_incr_val;
  else if (r4_inc)  r4  <= reg_incr_val;
 
`endif
 
 
// R5
// R5
 
//------------
reg [15:0] r5;
reg [15:0] r5;
wire       r5_wr  = inst_dest[5] & reg_dest_wr;
wire       r5_wr  = inst_dest[5] & reg_dest_wr;
wire       r5_inc = inst_src_in[5]  & reg_incr;
wire       r5_inc = inst_src_in[5]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r5_en  = r5_wr | r5_inc;
 
wire       mclk_r5;
 
omsp_clock_gate clock_gate_r5 (.gclk(mclk_r5),
 
                               .clk (mclk), .enable(r5_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r5 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r5 or posedge puc_rst)
  if (puc_rst)      r5  <= 16'h0000;
  if (puc_rst)      r5  <= 16'h0000;
  else if (r5_wr)   r5  <= reg_dest_val_in;
  else if (r5_wr)   r5  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r5  <= reg_incr_val;
 
`else
  else if (r5_inc)  r5  <= reg_incr_val;
  else if (r5_inc)  r5  <= reg_incr_val;
 
`endif
 
 
// R6
// R6
 
//------------
reg [15:0] r6;
reg [15:0] r6;
wire       r6_wr  = inst_dest[6] & reg_dest_wr;
wire       r6_wr  = inst_dest[6] & reg_dest_wr;
wire       r6_inc = inst_src_in[6]  & reg_incr;
wire       r6_inc = inst_src_in[6]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r6_en  = r6_wr | r6_inc;
 
wire       mclk_r6;
 
omsp_clock_gate clock_gate_r6 (.gclk(mclk_r6),
 
                               .clk (mclk), .enable(r6_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r6 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r6 or posedge puc_rst)
  if (puc_rst)      r6  <= 16'h0000;
  if (puc_rst)      r6  <= 16'h0000;
  else if (r6_wr)   r6  <= reg_dest_val_in;
  else if (r6_wr)   r6  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r6  <= reg_incr_val;
 
`else
  else if (r6_inc)  r6  <= reg_incr_val;
  else if (r6_inc)  r6  <= reg_incr_val;
 
`endif
 
 
// R7
// R7
 
//------------
reg [15:0] r7;
reg [15:0] r7;
wire       r7_wr  = inst_dest[7] & reg_dest_wr;
wire       r7_wr  = inst_dest[7] & reg_dest_wr;
wire       r7_inc = inst_src_in[7]  & reg_incr;
wire       r7_inc = inst_src_in[7]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r7_en  = r7_wr | r7_inc;
 
wire       mclk_r7;
 
omsp_clock_gate clock_gate_r7 (.gclk(mclk_r7),
 
                               .clk (mclk), .enable(r7_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r7 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r7 or posedge puc_rst)
  if (puc_rst)      r7  <= 16'h0000;
  if (puc_rst)      r7  <= 16'h0000;
  else if (r7_wr)   r7  <= reg_dest_val_in;
  else if (r7_wr)   r7  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r7  <= reg_incr_val;
 
`else
  else if (r7_inc)  r7  <= reg_incr_val;
  else if (r7_inc)  r7  <= reg_incr_val;
 
`endif
 
 
// R8
// R8
 
//------------
reg [15:0] r8;
reg [15:0] r8;
wire       r8_wr  = inst_dest[8] & reg_dest_wr;
wire       r8_wr  = inst_dest[8] & reg_dest_wr;
wire       r8_inc = inst_src_in[8]  & reg_incr;
wire       r8_inc = inst_src_in[8]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r8_en  = r8_wr | r8_inc;
 
wire       mclk_r8;
 
omsp_clock_gate clock_gate_r8 (.gclk(mclk_r8),
 
                               .clk (mclk), .enable(r8_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r8 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r8 or posedge puc_rst)
  if (puc_rst)      r8  <= 16'h0000;
  if (puc_rst)      r8  <= 16'h0000;
  else if (r8_wr)   r8  <= reg_dest_val_in;
  else if (r8_wr)   r8  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r8  <= reg_incr_val;
 
`else
  else if (r8_inc)  r8  <= reg_incr_val;
  else if (r8_inc)  r8  <= reg_incr_val;
 
`endif
 
 
// R9
// R9
 
//------------
reg [15:0] r9;
reg [15:0] r9;
wire       r9_wr  = inst_dest[9] & reg_dest_wr;
wire       r9_wr  = inst_dest[9] & reg_dest_wr;
wire       r9_inc = inst_src_in[9]  & reg_incr;
wire       r9_inc = inst_src_in[9]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r9_en  = r9_wr | r9_inc;
 
wire       mclk_r9;
 
omsp_clock_gate clock_gate_r9 (.gclk(mclk_r9),
 
                               .clk (mclk), .enable(r9_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r9 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r9 or posedge puc_rst)
  if (puc_rst)      r9  <= 16'h0000;
  if (puc_rst)      r9  <= 16'h0000;
  else if (r9_wr)   r9  <= reg_dest_val_in;
  else if (r9_wr)   r9  <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r9  <= reg_incr_val;
 
`else
  else if (r9_inc)  r9  <= reg_incr_val;
  else if (r9_inc)  r9  <= reg_incr_val;
 
`endif
 
 
// R10
// R10
 
//------------
reg [15:0] r10;
reg [15:0] r10;
wire       r10_wr  = inst_dest[10] & reg_dest_wr;
wire       r10_wr  = inst_dest[10] & reg_dest_wr;
wire       r10_inc = inst_src_in[10]  & reg_incr;
wire       r10_inc = inst_src_in[10]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r10_en  = r10_wr | r10_inc;
 
wire       mclk_r10;
 
omsp_clock_gate clock_gate_r10 (.gclk(mclk_r10),
 
                                .clk (mclk), .enable(r10_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r10 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r10 or posedge puc_rst)
  if (puc_rst)      r10 <= 16'h0000;
  if (puc_rst)      r10 <= 16'h0000;
  else if (r10_wr)  r10 <= reg_dest_val_in;
  else if (r10_wr)  r10 <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r10 <= reg_incr_val;
 
`else
  else if (r10_inc) r10 <= reg_incr_val;
  else if (r10_inc) r10 <= reg_incr_val;
 
`endif
 
 
// R11
// R11
 
//------------
reg [15:0] r11;
reg [15:0] r11;
wire       r11_wr  = inst_dest[11] & reg_dest_wr;
wire       r11_wr  = inst_dest[11] & reg_dest_wr;
wire       r11_inc = inst_src_in[11]  & reg_incr;
wire       r11_inc = inst_src_in[11]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r11_en  = r11_wr | r11_inc;
 
wire       mclk_r11;
 
omsp_clock_gate clock_gate_r11 (.gclk(mclk_r11),
 
                                .clk (mclk), .enable(r11_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r11 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r11 or posedge puc_rst)
  if (puc_rst)      r11 <= 16'h0000;
  if (puc_rst)      r11 <= 16'h0000;
  else if (r11_wr)  r11 <= reg_dest_val_in;
  else if (r11_wr)  r11 <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r11 <= reg_incr_val;
 
`else
  else if (r11_inc) r11 <= reg_incr_val;
  else if (r11_inc) r11 <= reg_incr_val;
 
`endif
 
 
// R12
// R12
 
//------------
reg [15:0] r12;
reg [15:0] r12;
wire       r12_wr  = inst_dest[12] & reg_dest_wr;
wire       r12_wr  = inst_dest[12] & reg_dest_wr;
wire       r12_inc = inst_src_in[12]  & reg_incr;
wire       r12_inc = inst_src_in[12]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r12_en  = r12_wr | r12_inc;
 
wire       mclk_r12;
 
omsp_clock_gate clock_gate_r12 (.gclk(mclk_r12),
 
                                .clk (mclk), .enable(r12_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r12 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r12 or posedge puc_rst)
  if (puc_rst)      r12 <= 16'h0000;
  if (puc_rst)      r12 <= 16'h0000;
  else if (r12_wr)  r12 <= reg_dest_val_in;
  else if (r12_wr)  r12 <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r12 <= reg_incr_val;
 
`else
  else if (r12_inc) r12 <= reg_incr_val;
  else if (r12_inc) r12 <= reg_incr_val;
 
`endif
 
 
// R13
// R13
 
//------------
reg [15:0] r13;
reg [15:0] r13;
wire       r13_wr  = inst_dest[13] & reg_dest_wr;
wire       r13_wr  = inst_dest[13] & reg_dest_wr;
wire       r13_inc = inst_src_in[13]  & reg_incr;
wire       r13_inc = inst_src_in[13]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r13_en  = r13_wr | r13_inc;
 
wire       mclk_r13;
 
omsp_clock_gate clock_gate_r13 (.gclk(mclk_r13),
 
                                .clk (mclk), .enable(r13_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r13 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r13 or posedge puc_rst)
  if (puc_rst)      r13 <= 16'h0000;
  if (puc_rst)      r13 <= 16'h0000;
  else if (r13_wr)  r13 <= reg_dest_val_in;
  else if (r13_wr)  r13 <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r13 <= reg_incr_val;
 
`else
  else if (r13_inc) r13 <= reg_incr_val;
  else if (r13_inc) r13 <= reg_incr_val;
 
`endif
 
 
// R14
// R14
 
//------------
reg [15:0] r14;
reg [15:0] r14;
wire       r14_wr  = inst_dest[14] & reg_dest_wr;
wire       r14_wr  = inst_dest[14] & reg_dest_wr;
wire       r14_inc = inst_src_in[14]  & reg_incr;
wire       r14_inc = inst_src_in[14]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r14_en  = r14_wr | r14_inc;
 
wire       mclk_r14;
 
omsp_clock_gate clock_gate_r14 (.gclk(mclk_r14),
 
                                .clk (mclk), .enable(r14_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r14 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r14 or posedge puc_rst)
  if (puc_rst)      r14 <= 16'h0000;
  if (puc_rst)      r14 <= 16'h0000;
  else if (r14_wr)  r14 <= reg_dest_val_in;
  else if (r14_wr)  r14 <= reg_dest_val_in;
 
`ifdef CLOCK_GATING
 
  else              r14 <= reg_incr_val;
 
`else
  else if (r14_inc) r14 <= reg_incr_val;
  else if (r14_inc) r14 <= reg_incr_val;
 
`endif
 
 
// R15
// R15
 
//------------
reg [15:0] r15;
reg [15:0] r15;
wire       r15_wr  = inst_dest[15] & reg_dest_wr;
wire       r15_wr  = inst_dest[15] & reg_dest_wr;
wire       r15_inc = inst_src_in[15]  & reg_incr;
wire       r15_inc = inst_src_in[15]  & reg_incr;
always @(posedge mclk or posedge puc_rst)
 
 
`ifdef CLOCK_GATING
 
wire       r15_en  = r15_wr | r15_inc;
 
wire       mclk_r15;
 
omsp_clock_gate clock_gate_r15 (.gclk(mclk_r15),
 
                                .clk (mclk), .enable(r15_en), .scan_enable(scan_enable));
 
`else
 
wire       mclk_r15 = mclk;
 
`endif
 
 
 
always @(posedge mclk_r15 or posedge puc_rst)
  if (puc_rst)      r15 <= 16'h0000;
  if (puc_rst)      r15 <= 16'h0000;
  else if (r15_wr)  r15 <= reg_dest_val_in;
  else if (r15_wr)  r15 <= reg_dest_val_in;
 
 `ifdef CLOCK_GATING
 
  else              r15 <= reg_incr_val;
 
`else
  else if (r15_inc) r15 <= reg_incr_val;
  else if (r15_inc) r15 <= reg_incr_val;
 
`endif
 
 
 
 
//=============================================================================
//=============================================================================
// 5)  READ MUX
// 5)  READ MUX
//=============================================================================
//=============================================================================

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.