Line 1... |
Line 1... |
/* Common code for PA ELF implementations.
|
/* Common code for PA ELF implementations.
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
Free Software Foundation, Inc.
|
Free Software Foundation, Inc.
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
Line 743... |
Line 743... |
default:
|
default:
|
return R_PARISC_NONE;
|
return R_PARISC_NONE;
|
}
|
}
|
break;
|
break;
|
|
|
|
case 64:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_GPREL64;
|
|
break;
|
|
default:
|
|
return R_PARISC_NONE;
|
|
}
|
|
break;
|
|
|
default:
|
default:
|
return R_PARISC_NONE;
|
return R_PARISC_NONE;
|
}
|
}
|
break;
|
break;
|
|
|
Line 928... |
Line 939... |
default:
|
default:
|
return R_PARISC_NONE;
|
return R_PARISC_NONE;
|
}
|
}
|
break;
|
break;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
switch (format)
|
|
{
|
|
case 32:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_SEGREL32;
|
|
break;
|
|
default:
|
|
return R_PARISC_NONE;
|
|
}
|
|
break;
|
|
|
|
case 64:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_SEGREL64;
|
|
break;
|
|
default:
|
|
return R_PARISC_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return R_PARISC_NONE;
|
|
}
|
|
break;
|
|
|
case R_PARISC_GNU_VTENTRY:
|
case R_PARISC_GNU_VTENTRY:
|
case R_PARISC_GNU_VTINHERIT:
|
case R_PARISC_GNU_VTINHERIT:
|
case R_PARISC_SEGREL32:
|
|
case R_PARISC_SEGBASE:
|
case R_PARISC_SEGBASE:
|
/* The defaults are fine for these cases. */
|
/* The defaults are fine for these cases. */
|
break;
|
break;
|
|
|
default:
|
default:
|
Line 1177... |
Line 1217... |
return 0;
|
return 0;
|
|
|
return _bfd_elf_default_action_discarded (sec);
|
return _bfd_elf_default_action_discarded (sec);
|
}
|
}
|
|
|
#if ARCH_SIZE == 64
|
|
/* Hook called by the linker routine which adds symbols from an object
|
|
file. HP's libraries define symbols with HP specific section
|
|
indices, which we have to handle. */
|
|
|
|
static bfd_boolean
|
|
elf_hppa_add_symbol_hook (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Sym *sym,
|
|
const char **namep ATTRIBUTE_UNUSED,
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
|
asection **secp,
|
|
bfd_vma *valp)
|
|
{
|
|
int index = sym->st_shndx;
|
|
|
|
switch (index)
|
|
{
|
|
case SHN_PARISC_ANSI_COMMON:
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
|
*valp = sym->st_size;
|
|
break;
|
|
|
|
case SHN_PARISC_HUGE_COMMON:
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
|
*valp = sym->st_size;
|
|
break;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
|
void *data)
|
|
{
|
|
struct bfd_link_info *info = data;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* If we are not creating a shared library, and this symbol is
|
|
referenced by a shared library but is not defined anywhere, then
|
|
the generic code will warn that it is undefined.
|
|
|
|
This behavior is undesirable on HPs since the standard shared
|
|
libraries contain references to undefined symbols.
|
|
|
|
So we twiddle the flags associated with such symbols so that they
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
|
|
|
Ultimately we should have better controls over the generic ELF BFD
|
|
linker code. */
|
|
if (! info->relocatable
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
|
&& h->root.type == bfd_link_hash_undefined
|
|
&& h->ref_dynamic
|
|
&& !h->ref_regular)
|
|
{
|
|
h->ref_dynamic = 0;
|
|
h->pointer_equality_needed = 1;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
|
void *data)
|
|
{
|
|
struct bfd_link_info *info = data;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* If we are not creating a shared library, and this symbol is
|
|
referenced by a shared library but is not defined anywhere, then
|
|
the generic code will warn that it is undefined.
|
|
|
|
This behavior is undesirable on HPs since the standard shared
|
|
libraries contain references to undefined symbols.
|
|
|
|
So we twiddle the flags associated with such symbols so that they
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
|
|
|
Ultimately we should have better controls over the generic ELF BFD
|
|
linker code. */
|
|
if (! info->relocatable
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
|
&& h->root.type == bfd_link_hash_undefined
|
|
&& !h->ref_dynamic
|
|
&& !h->ref_regular
|
|
&& h->pointer_equality_needed)
|
|
{
|
|
h->ref_dynamic = 1;
|
|
h->pointer_equality_needed = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_is_dynamic_loader_symbol (const char *name)
|
|
{
|
|
return (! strcmp (name, "__CPU_REVISION")
|
|
|| ! strcmp (name, "__CPU_KEYBITS_1")
|
|
|| ! strcmp (name, "__SYSTEM_ID_D")
|
|
|| ! strcmp (name, "__FPU_MODEL")
|
|
|| ! strcmp (name, "__FPU_REVISION")
|
|
|| ! strcmp (name, "__ARGC")
|
|
|| ! strcmp (name, "__ARGV")
|
|
|| ! strcmp (name, "__ENVP")
|
|
|| ! strcmp (name, "__TLS_SIZE_D")
|
|
|| ! strcmp (name, "__LOAD_INFO")
|
|
|| ! strcmp (name, "__systab"));
|
|
}
|
|
|
|
/* Record the lowest address for the data and text segments. */
|
|
static void
|
|
elf_hppa_record_segment_addrs (bfd *abfd,
|
|
asection *section,
|
|
void *data)
|
|
{
|
|
struct elf64_hppa_link_hash_table *hppa_info = data;
|
|
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
|
{
|
|
bfd_vma value;
|
|
Elf_Internal_Phdr *p;
|
|
|
|
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
|
|
BFD_ASSERT (p != NULL);
|
|
value = p->p_vaddr;
|
|
|
|
if (section->flags & SEC_READONLY)
|
|
{
|
|
if (value < hppa_info->text_segment_base)
|
|
hppa_info->text_segment_base = value;
|
|
}
|
|
else
|
|
{
|
|
if (value < hppa_info->data_segment_base)
|
|
hppa_info->data_segment_base = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called after we have seen all the input files/sections, but before
|
|
final symbol resolution and section placement has been determined.
|
|
|
|
We use this hook to (possibly) provide a value for __gp, then we
|
|
fall back to the generic ELF final link routine. */
|
|
|
|
static bfd_boolean
|
|
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
bfd_boolean retval;
|
|
struct elf64_hppa_link_hash_table *hppa_info = elf64_hppa_hash_table (info);
|
|
|
|
if (! info->relocatable)
|
|
{
|
|
struct elf_link_hash_entry *gp;
|
|
bfd_vma gp_val;
|
|
|
|
/* The linker script defines a value for __gp iff it was referenced
|
|
by one of the objects being linked. First try to find the symbol
|
|
in the hash table. If that fails, just compute the value __gp
|
|
should have had. */
|
|
gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
|
|
FALSE, FALSE);
|
|
|
|
if (gp)
|
|
{
|
|
|
|
/* Adjust the value of __gp as we may want to slide it into the
|
|
.plt section so that the stubs can access PLT entries without
|
|
using an addil sequence. */
|
|
gp->root.u.def.value += hppa_info->gp_offset;
|
|
|
|
gp_val = (gp->root.u.def.section->output_section->vma
|
|
+ gp->root.u.def.section->output_offset
|
|
+ gp->root.u.def.value);
|
|
}
|
|
else
|
|
{
|
|
asection *sec;
|
|
|
|
/* First look for a .plt section. If found, then __gp is the
|
|
address of the .plt + gp_offset.
|
|
|
|
If no .plt is found, then look for .dlt, .opd and .data (in
|
|
that order) and set __gp to the base address of whichever
|
|
section is found first. */
|
|
|
|
sec = hppa_info->plt_sec;
|
|
if (sec && ! (sec->flags & SEC_EXCLUDE))
|
|
gp_val = (sec->output_offset
|
|
+ sec->output_section->vma
|
|
+ hppa_info->gp_offset);
|
|
else
|
|
{
|
|
sec = hppa_info->dlt_sec;
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
sec = hppa_info->opd_sec;
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
gp_val = 0;
|
|
else
|
|
gp_val = sec->output_offset + sec->output_section->vma;
|
|
}
|
|
}
|
|
|
|
/* Install whatever value we found/computed for __gp. */
|
|
_bfd_set_gp_value (abfd, gp_val);
|
|
}
|
|
|
|
/* We need to know the base of the text and data segments so that we
|
|
can perform SEGREL relocations. We will record the base addresses
|
|
when we encounter the first SEGREL relocation. */
|
|
hppa_info->text_segment_base = (bfd_vma)-1;
|
|
hppa_info->data_segment_base = (bfd_vma)-1;
|
|
|
|
/* HP's shared libraries have references to symbols that are not
|
|
defined anywhere. The generic ELF BFD linker code will complain
|
|
about such symbols.
|
|
|
|
So we detect the losing case and arrange for the flags on the symbol
|
|
to indicate that it was never referenced. This keeps the generic
|
|
ELF BFD link code happy and appears to not create any secondary
|
|
problems. Ultimately we need a way to control the behavior of the
|
|
generic ELF BFD link code better. */
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
|
elf_hppa_unmark_useless_dynamic_symbols,
|
|
info);
|
|
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
|
retval = bfd_elf_final_link (abfd, info);
|
|
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
|
elf_hppa_remark_useless_dynamic_symbols,
|
|
info);
|
|
|
|
/* If we're producing a final executable, sort the contents of the
|
|
unwind section. */
|
|
if (retval)
|
|
retval = elf_hppa_sort_unwind (abfd);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Relocate the given INSN. VALUE should be the actual value we want
|
|
to insert into the instruction, ie by this point we should not be
|
|
concerned with computing an offset relative to the DLT, PC, etc.
|
|
Instead this routine is meant to handle the bit manipulations needed
|
|
to insert the relocation into the given instruction. */
|
|
|
|
static int
|
|
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
/* This is any 22 bit branch. In PA2.0 syntax it corresponds to
|
|
the "B" instruction. */
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_PCREL22C:
|
|
return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
|
|
|
|
/* This is any 12 bit branch. */
|
|
case R_PARISC_PCREL12F:
|
|
return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
|
|
|
|
/* This is any 17 bit branch. In PA2.0 syntax it also corresponds
|
|
to the "B" instruction as well as BE. */
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
|
|
|
|
/* ADDIL or LDIL instructions. */
|
|
case R_PARISC_DLTREL21L:
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_LTOFF_FPTR21L:
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_LTOFF_TP21L:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_PLTOFF21L:
|
|
case R_PARISC_DIR21L:
|
|
return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
|
|
|
|
/* LDO and integer loads/stores with 14 bit displacements. */
|
|
case R_PARISC_DLTREL14R:
|
|
case R_PARISC_DLTREL14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_LTOFF_FPTR14R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_LTOFF_TP14R:
|
|
case R_PARISC_LTOFF_TP14F:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_PLTOFF14R:
|
|
case R_PARISC_PLTOFF14F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR14F:
|
|
return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
|
|
|
|
/* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
|
|
case R_PARISC_LTOFF_FPTR16F:
|
|
case R_PARISC_PCREL16F:
|
|
case R_PARISC_LTOFF_TP16F:
|
|
case R_PARISC_GPREL16F:
|
|
case R_PARISC_PLTOFF16F:
|
|
case R_PARISC_DIR16F:
|
|
case R_PARISC_LTOFF16F:
|
|
return (insn & ~0xffff) | re_assemble_16 (sym_value);
|
|
|
|
/* Doubleword loads and stores with a 14 bit displacement. */
|
|
case R_PARISC_DLTREL14DR:
|
|
case R_PARISC_DLTIND14DR:
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
|
case R_PARISC_PCREL14DR:
|
|
case R_PARISC_PCREL16DF:
|
|
case R_PARISC_LTOFF_TP14DR:
|
|
case R_PARISC_LTOFF_TP16DF:
|
|
case R_PARISC_DPREL14DR:
|
|
case R_PARISC_GPREL16DF:
|
|
case R_PARISC_PLTOFF14DR:
|
|
case R_PARISC_PLTOFF16DF:
|
|
case R_PARISC_DIR14DR:
|
|
case R_PARISC_DIR16DF:
|
|
case R_PARISC_LTOFF16DF:
|
|
return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
|
|
| ((sym_value & 0x1ff8) << 1));
|
|
|
|
/* Floating point single word load/store instructions. */
|
|
case R_PARISC_DLTREL14WR:
|
|
case R_PARISC_DLTIND14WR:
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
|
case R_PARISC_PCREL14WR:
|
|
case R_PARISC_PCREL16WF:
|
|
case R_PARISC_LTOFF_TP14WR:
|
|
case R_PARISC_LTOFF_TP16WF:
|
|
case R_PARISC_DPREL14WR:
|
|
case R_PARISC_GPREL16WF:
|
|
case R_PARISC_PLTOFF14WR:
|
|
case R_PARISC_PLTOFF16WF:
|
|
case R_PARISC_DIR16WF:
|
|
case R_PARISC_DIR14WR:
|
|
case R_PARISC_LTOFF16WF:
|
|
return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
|
|
| ((sym_value & 0x1ffc) << 1));
|
|
|
|
default:
|
|
return insn;
|
|
}
|
|
}
|
|
|
|
/* Compute the value for a relocation (REL) during a final link stage,
|
|
then insert the value into the proper location in CONTENTS.
|
|
|
|
VALUE is a tentative value for the relocation and may be overridden
|
|
and modified here based on the specific relocation to be performed.
|
|
|
|
For example we do conversions for PC-relative branches in this routine
|
|
or redirection of calls to external routines to stubs.
|
|
|
|
The work of actually applying the relocation is left to a helper
|
|
routine in an attempt to reduce the complexity and size of this
|
|
function. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
|
|
bfd *input_bfd,
|
|
bfd *output_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
bfd_vma value,
|
|
struct bfd_link_info *info,
|
|
asection *sym_sec,
|
|
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h)
|
|
{
|
|
int insn;
|
|
bfd_vma offset = rel->r_offset;
|
|
bfd_signed_vma addend = rel->r_addend;
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
|
unsigned int r_type = howto->type;
|
|
bfd_byte *hit_data = contents + offset;
|
|
struct elf64_hppa_link_hash_table *hppa_info = elf64_hppa_hash_table (info);
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_NONE:
|
|
break;
|
|
|
|
/* Basic function call support.
|
|
|
|
Note for a call to a function defined in another dynamic library
|
|
we want to redirect the call to a stub. */
|
|
|
|
/* Random PC relative relocs. */
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_PCREL14WR:
|
|
case R_PARISC_PCREL14DR:
|
|
case R_PARISC_PCREL16F:
|
|
case R_PARISC_PCREL16WF:
|
|
case R_PARISC_PCREL16DF:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
/* Adjust for any field selectors. */
|
|
if (r_type == R_PARISC_PCREL21L)
|
|
value = hppa_field_adjust (value, -8 + addend, e_lsel);
|
|
else if (r_type == R_PARISC_PCREL14F
|
|
|| r_type == R_PARISC_PCREL16F
|
|
|| r_type == R_PARISC_PCREL16WF
|
|
|| r_type == R_PARISC_PCREL16DF)
|
|
value = hppa_field_adjust (value, -8 + addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, -8 + addend, e_rsel);
|
|
|
|
/* Apply the relocation to the given instruction. */
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22C:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
/* Adjust for any field selectors. */
|
|
if (r_type == R_PARISC_PCREL17R)
|
|
value = hppa_field_adjust (value, -8 + addend, e_rsel);
|
|
else
|
|
value = hppa_field_adjust (value, -8 + addend, e_fsel);
|
|
|
|
/* All branches are implicitly shifted by 2 places. */
|
|
value >>= 2;
|
|
|
|
/* Apply the relocation to the given instruction. */
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
/* Indirect references to data through the DLT. */
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14DR:
|
|
case R_PARISC_DLTIND14WR:
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_LTOFF_FPTR14R:
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
|
case R_PARISC_LTOFF_FPTR21L:
|
|
case R_PARISC_LTOFF_FPTR16F:
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
|
case R_PARISC_LTOFF_TP21L:
|
|
case R_PARISC_LTOFF_TP14R:
|
|
case R_PARISC_LTOFF_TP14F:
|
|
case R_PARISC_LTOFF_TP14WR:
|
|
case R_PARISC_LTOFF_TP14DR:
|
|
case R_PARISC_LTOFF_TP16F:
|
|
case R_PARISC_LTOFF_TP16WF:
|
|
case R_PARISC_LTOFF_TP16DF:
|
|
case R_PARISC_LTOFF16F:
|
|
case R_PARISC_LTOFF16WF:
|
|
case R_PARISC_LTOFF16DF:
|
|
{
|
|
/* If this relocation was against a local symbol, then we still
|
|
have not set up the DLT entry (it's not convenient to do so
|
|
in the "finalize_dlt" routine because it is difficult to get
|
|
to the local symbol's value).
|
|
|
|
So, if this is a local symbol (h == NULL), then we need to
|
|
fill in its DLT entry.
|
|
|
|
Similarly we may still need to set up an entry in .opd for
|
|
a local function which had its address taken. */
|
|
if (dyn_h->h == NULL)
|
|
{
|
|
/* Now do .opd creation if needed. */
|
|
if (r_type == R_PARISC_LTOFF_FPTR14R
|
|
|| r_type == R_PARISC_LTOFF_FPTR14DR
|
|
|| r_type == R_PARISC_LTOFF_FPTR14WR
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + dyn_h->opd_offset,
|
|
0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ dyn_h->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
(hppa_info->opd_sec->contents
|
|
+ dyn_h->opd_offset + 24));
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (dyn_h->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
addend = 0;
|
|
}
|
|
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value + addend,
|
|
hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
|
|
}
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (dyn_h->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All DLTIND relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_DLTIND21L
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
|
|| r_type == R_PARISC_LTOFF_TP21L)
|
|
value = hppa_field_adjust (value, 0, e_lsel);
|
|
else if (r_type == R_PARISC_DLTIND14F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF
|
|
|| r_type == R_PARISC_LTOFF16F
|
|
|| r_type == R_PARISC_LTOFF16DF
|
|
|| r_type == R_PARISC_LTOFF16WF
|
|
|| r_type == R_PARISC_LTOFF_TP16F
|
|
|| r_type == R_PARISC_LTOFF_TP16WF
|
|
|| r_type == R_PARISC_LTOFF_TP16DF)
|
|
value = hppa_field_adjust (value, 0, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, 0, e_rsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_DLTREL14R:
|
|
case R_PARISC_DLTREL14F:
|
|
case R_PARISC_DLTREL14DR:
|
|
case R_PARISC_DLTREL14WR:
|
|
case R_PARISC_DLTREL21L:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DPREL14WR:
|
|
case R_PARISC_DPREL14DR:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_GPREL16F:
|
|
case R_PARISC_GPREL16WF:
|
|
case R_PARISC_GPREL16DF:
|
|
{
|
|
/* Subtract out the global pointer value to make value a DLT
|
|
relative address. */
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All DLTREL relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_DLTREL21L
|
|
|| r_type == R_PARISC_DPREL21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_DLTREL14F
|
|
|| r_type == R_PARISC_DPREL14F
|
|
|| r_type == R_PARISC_GPREL16F
|
|
|| r_type == R_PARISC_GPREL16WF
|
|
|| r_type == R_PARISC_GPREL16DF)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR14WR:
|
|
case R_PARISC_DIR14DR:
|
|
case R_PARISC_DIR16F:
|
|
case R_PARISC_DIR16WF:
|
|
case R_PARISC_DIR16DF:
|
|
{
|
|
/* All DIR relocations are basically the same at this point,
|
|
except that branch offsets need to be divided by four, and
|
|
we need different field selectors. Note that we don't
|
|
redirect absolute calls to local stubs. */
|
|
|
|
if (r_type == R_PARISC_DIR21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_DIR17F
|
|
|| r_type == R_PARISC_DIR16F
|
|
|| r_type == R_PARISC_DIR16WF
|
|
|| r_type == R_PARISC_DIR16DF
|
|
|| r_type == R_PARISC_DIR14F)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
|
|
/* All branches are implicitly shifted by 2 places. */
|
|
value >>= 2;
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_PLTOFF21L:
|
|
case R_PARISC_PLTOFF14R:
|
|
case R_PARISC_PLTOFF14F:
|
|
case R_PARISC_PLTOFF14WR:
|
|
case R_PARISC_PLTOFF14DR:
|
|
case R_PARISC_PLTOFF16F:
|
|
case R_PARISC_PLTOFF16WF:
|
|
case R_PARISC_PLTOFF16DF:
|
|
{
|
|
/* We want the value of the PLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (dyn_h->plt_offset
|
|
+ hppa_info->plt_sec->output_offset
|
|
+ hppa_info->plt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All PLTOFF relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_PLTOFF21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_PLTOFF14F
|
|
|| r_type == R_PARISC_PLTOFF16F
|
|
|| r_type == R_PARISC_PLTOFF16WF
|
|
|| r_type == R_PARISC_PLTOFF16DF)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_LTOFF_FPTR32:
|
|
{
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (dyn_h->h == NULL)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ dyn_h->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (dyn_h->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value,
|
|
hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
|
|
}
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (dyn_h->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_LTOFF_FPTR64:
|
|
case R_PARISC_LTOFF_TP64:
|
|
{
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (dyn_h->h == NULL && r_type == R_PARISC_LTOFF_FPTR64)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ dyn_h->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (dyn_h->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value,
|
|
hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
|
|
}
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (dyn_h->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_DIR32:
|
|
bfd_put_32 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_DIR64:
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_GPREL64:
|
|
/* Subtract out the global pointer value to make value a DLT
|
|
relative address. */
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_LTOFF64:
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (dyn_h->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_PCREL32:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
value += addend;
|
|
value -= 8;
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_PCREL64:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
value += addend;
|
|
value -= 8;
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_FPTR64:
|
|
{
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (dyn_h->h == NULL)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ dyn_h->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
|
|
}
|
|
|
|
if (dyn_h->want_opd)
|
|
/* We want the value of the OPD offset for this symbol. */
|
|
value = (dyn_h->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
else
|
|
/* We want the address of the symbol. */
|
|
value += addend;
|
|
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_SECREL32:
|
|
bfd_put_32 (input_bfd,
|
|
value + addend - sym_sec->output_section->vma,
|
|
hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
case R_PARISC_SEGREL64:
|
|
{
|
|
/* If this is the first SEGREL relocation, then initialize
|
|
the segment base values. */
|
|
if (hppa_info->text_segment_base == (bfd_vma) -1)
|
|
bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
|
|
hppa_info);
|
|
|
|
/* VALUE holds the absolute address. We want to include the
|
|
addend, then turn it into a segment relative address.
|
|
|
|
The segment is derived from SYM_SEC. We assume that there are
|
|
only two segments of note in the resulting executable/shlib.
|
|
A readonly segment (.text) and a readwrite segment (.data). */
|
|
value += addend;
|
|
|
|
if (sym_sec->flags & SEC_CODE)
|
|
value -= hppa_info->text_segment_base;
|
|
else
|
|
value -= hppa_info->data_segment_base;
|
|
|
|
if (r_type == R_PARISC_SEGREL32)
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
else
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static bfd_boolean
|
|
elf_hppa_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char *dyn_name;
|
|
char *dynh_buf = NULL;
|
|
size_t dynh_buflen = 0;
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h = NULL;
|
|
|
|
r_type = ELF_R_TYPE (rel->r_info);
|
|
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
/* This is a final link. */
|
|
r_symndx = ELF_R_SYM (rel->r_info);
|
|
h = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* This is a local symbol. */
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
|
|
|
|
/* If this symbol has an entry in the PA64 dynamic hash
|
|
table, then get it. */
|
|
dyn_name = get_dyn_name (input_bfd, h, rel,
|
|
&dynh_buf, &dynh_buflen);
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
dyn_name, FALSE, FALSE);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* This is not a local symbol. */
|
|
long indx;
|
|
|
|
relocation = 0;
|
|
indx = r_symndx - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (input_bfd)[indx];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = h->root.u.def.section;
|
|
|
|
/* If this symbol has an entry in the PA64 dynamic hash
|
|
table, then get it. */
|
|
dyn_name = get_dyn_name (input_bfd, h, rel,
|
|
&dynh_buf, &dynh_buflen);
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
dyn_name, FALSE, FALSE);
|
|
|
|
/* If we have a relocation against a symbol defined in a
|
|
shared library and we have not created an entry in the
|
|
PA64 dynamic symbol hash table for it, then we lose. */
|
|
if (!info->relocatable
|
|
&& sym_sec->output_section == NULL && dyn_h == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
|
input_bfd,
|
|
input_section,
|
|
(long) rel->r_offset,
|
|
howto->name,
|
|
h->root.root.string);
|
|
}
|
|
else if (sym_sec->output_section)
|
|
relocation = (h->root.u.def.value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
|
{
|
|
/* If this symbol has an entry in the PA64 dynamic hash
|
|
table, then get it. */
|
|
dyn_name = get_dyn_name (input_bfd, h, rel,
|
|
&dynh_buf, &dynh_buflen);
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
dyn_name, FALSE, FALSE);
|
|
|
|
if (!info->relocatable && dyn_h == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A): warning: unresolvable relocation against symbol `%s'"),
|
|
input_bfd, input_section, h->root.root.string);
|
|
}
|
|
}
|
|
else if (h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
dyn_name = get_dyn_name (input_bfd, h, rel,
|
|
&dynh_buf, &dynh_buflen);
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
dyn_name, FALSE, FALSE);
|
|
|
|
if (!info->relocatable && dyn_h == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A): warning: unresolvable relocation against symbol `%s'"),
|
|
input_bfd, input_section, h->root.root.string);
|
|
}
|
|
}
|
|
else if (!info->relocatable)
|
|
{
|
|
/* Ignore dynamic loader defined symbols. */
|
|
if (!elf_hppa_is_dynamic_loader_symbol (h->root.root.string))
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->root.root.string, input_bfd,
|
|
input_section, rel->r_offset,
|
|
(info->unresolved_syms_in_objects == RM_GENERATE_ERROR
|
|
|| ELF_ST_VISIBILITY (h->other)))))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sym_sec != NULL && elf_discarded_section (sym_sec))
|
|
{
|
|
/* For relocs against symbols from removed linkonce sections,
|
|
or sections discarded by a linker script, we just want the
|
|
section contents zeroed. Avoid any special processing. */
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
|
rel->r_info = 0;
|
|
rel->r_addend = 0;
|
|
continue;
|
|
}
|
|
|
|
if (info->relocatable)
|
|
continue;
|
|
|
|
r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
|
|
input_section, contents,
|
|
relocation, info, sym_sec,
|
|
h, dyn_h);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
switch (r)
|
|
{
|
|
default:
|
|
abort ();
|
|
case bfd_reloc_overflow:
|
|
{
|
|
const char *sym_name;
|
|
|
|
if (h != NULL)
|
|
sym_name = NULL;
|
|
else
|
|
{
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return FALSE;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, (h ? &h->root : NULL), sym_name,
|
|
howto->name, (bfd_vma) 0, input_bfd,
|
|
input_section, rel->r_offset)))
|
|
return FALSE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
#endif /* ARCH_SIZE == 64 */
|
|
|
|
No newline at end of file
|
No newline at end of file
|