OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf-hppa.h] - Diff between revs 157 and 225

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 157 Rev 225
Line 1... Line 1...
/* Common code for PA ELF implementations.
/* Common code for PA ELF implementations.
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
Line 743... Line 743...
            default:
            default:
              return R_PARISC_NONE;
              return R_PARISC_NONE;
            }
            }
          break;
          break;
 
 
 
        case 64:
 
          switch (field)
 
            {
 
            case e_fsel:
 
              final_type = R_PARISC_GPREL64;
 
              break;
 
            default:
 
              return R_PARISC_NONE;
 
            }
 
          break;
 
 
        default:
        default:
          return R_PARISC_NONE;
          return R_PARISC_NONE;
        }
        }
      break;
      break;
 
 
Line 928... Line 939...
          default:
          default:
            return R_PARISC_NONE;
            return R_PARISC_NONE;
        }
        }
      break;
      break;
 
 
 
    case R_PARISC_SEGREL32:
 
      switch (format)
 
        {
 
        case 32:
 
          switch (field)
 
            {
 
            case e_fsel:
 
              final_type = R_PARISC_SEGREL32;
 
              break;
 
            default:
 
              return R_PARISC_NONE;
 
            }
 
          break;
 
 
 
        case 64:
 
          switch (field)
 
            {
 
            case e_fsel:
 
              final_type = R_PARISC_SEGREL64;
 
              break;
 
            default:
 
              return R_PARISC_NONE;
 
            }
 
          break;
 
 
 
        default:
 
          return R_PARISC_NONE;
 
        }
 
      break;
 
 
    case R_PARISC_GNU_VTENTRY:
    case R_PARISC_GNU_VTENTRY:
    case R_PARISC_GNU_VTINHERIT:
    case R_PARISC_GNU_VTINHERIT:
    case R_PARISC_SEGREL32:
 
    case R_PARISC_SEGBASE:
    case R_PARISC_SEGBASE:
      /* The defaults are fine for these cases.  */
      /* The defaults are fine for these cases.  */
      break;
      break;
 
 
    default:
    default:
Line 1177... Line 1217...
    return 0;
    return 0;
 
 
  return _bfd_elf_default_action_discarded (sec);
  return _bfd_elf_default_action_discarded (sec);
}
}
 
 
#if ARCH_SIZE == 64
 
/* Hook called by the linker routine which adds symbols from an object
 
   file.  HP's libraries define symbols with HP specific section
 
   indices, which we have to handle.  */
 
 
 
static bfd_boolean
 
elf_hppa_add_symbol_hook (bfd *abfd,
 
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
 
                          Elf_Internal_Sym *sym,
 
                          const char **namep ATTRIBUTE_UNUSED,
 
                          flagword *flagsp ATTRIBUTE_UNUSED,
 
                          asection **secp,
 
                          bfd_vma *valp)
 
{
 
  int index = sym->st_shndx;
 
 
 
  switch (index)
 
    {
 
    case SHN_PARISC_ANSI_COMMON:
 
      *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
 
      (*secp)->flags |= SEC_IS_COMMON;
 
      *valp = sym->st_size;
 
      break;
 
 
 
    case SHN_PARISC_HUGE_COMMON:
 
      *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
 
      (*secp)->flags |= SEC_IS_COMMON;
 
      *valp = sym->st_size;
 
      break;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
 
                                         void *data)
 
{
 
  struct bfd_link_info *info = data;
 
 
 
  if (h->root.type == bfd_link_hash_warning)
 
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
  /* If we are not creating a shared library, and this symbol is
 
     referenced by a shared library but is not defined anywhere, then
 
     the generic code will warn that it is undefined.
 
 
 
     This behavior is undesirable on HPs since the standard shared
 
     libraries contain references to undefined symbols.
 
 
 
     So we twiddle the flags associated with such symbols so that they
 
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
 
     Ultimately we should have better controls over the generic ELF BFD
 
     linker code.  */
 
  if (! info->relocatable
 
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
 
      && h->root.type == bfd_link_hash_undefined
 
      && h->ref_dynamic
 
      && !h->ref_regular)
 
    {
 
      h->ref_dynamic = 0;
 
      h->pointer_equality_needed = 1;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
 
                                         void *data)
 
{
 
  struct bfd_link_info *info = data;
 
 
 
  if (h->root.type == bfd_link_hash_warning)
 
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
  /* If we are not creating a shared library, and this symbol is
 
     referenced by a shared library but is not defined anywhere, then
 
     the generic code will warn that it is undefined.
 
 
 
     This behavior is undesirable on HPs since the standard shared
 
     libraries contain references to undefined symbols.
 
 
 
     So we twiddle the flags associated with such symbols so that they
 
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
 
     Ultimately we should have better controls over the generic ELF BFD
 
     linker code.  */
 
  if (! info->relocatable
 
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
 
      && h->root.type == bfd_link_hash_undefined
 
      && !h->ref_dynamic
 
      && !h->ref_regular
 
      && h->pointer_equality_needed)
 
    {
 
      h->ref_dynamic = 1;
 
      h->pointer_equality_needed = 0;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_is_dynamic_loader_symbol (const char *name)
 
{
 
  return (! strcmp (name, "__CPU_REVISION")
 
          || ! strcmp (name, "__CPU_KEYBITS_1")
 
          || ! strcmp (name, "__SYSTEM_ID_D")
 
          || ! strcmp (name, "__FPU_MODEL")
 
          || ! strcmp (name, "__FPU_REVISION")
 
          || ! strcmp (name, "__ARGC")
 
          || ! strcmp (name, "__ARGV")
 
          || ! strcmp (name, "__ENVP")
 
          || ! strcmp (name, "__TLS_SIZE_D")
 
          || ! strcmp (name, "__LOAD_INFO")
 
          || ! strcmp (name, "__systab"));
 
}
 
 
 
/* Record the lowest address for the data and text segments.  */
 
static void
 
elf_hppa_record_segment_addrs (bfd *abfd,
 
                               asection *section,
 
                               void *data)
 
{
 
  struct elf64_hppa_link_hash_table *hppa_info = data;
 
 
 
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
 
    {
 
      bfd_vma value;
 
      Elf_Internal_Phdr *p;
 
 
 
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
 
      BFD_ASSERT (p != NULL);
 
      value = p->p_vaddr;
 
 
 
      if (section->flags & SEC_READONLY)
 
        {
 
          if (value < hppa_info->text_segment_base)
 
            hppa_info->text_segment_base = value;
 
        }
 
      else
 
        {
 
          if (value < hppa_info->data_segment_base)
 
            hppa_info->data_segment_base = value;
 
        }
 
    }
 
}
 
 
 
/* Called after we have seen all the input files/sections, but before
 
   final symbol resolution and section placement has been determined.
 
 
 
   We use this hook to (possibly) provide a value for __gp, then we
 
   fall back to the generic ELF final link routine.  */
 
 
 
static bfd_boolean
 
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
 
{
 
  bfd_boolean retval;
 
  struct elf64_hppa_link_hash_table *hppa_info = elf64_hppa_hash_table (info);
 
 
 
  if (! info->relocatable)
 
    {
 
      struct elf_link_hash_entry *gp;
 
      bfd_vma gp_val;
 
 
 
      /* The linker script defines a value for __gp iff it was referenced
 
         by one of the objects being linked.  First try to find the symbol
 
         in the hash table.  If that fails, just compute the value __gp
 
         should have had.  */
 
      gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
 
                                 FALSE, FALSE);
 
 
 
      if (gp)
 
        {
 
 
 
          /* Adjust the value of __gp as we may want to slide it into the
 
             .plt section so that the stubs can access PLT entries without
 
             using an addil sequence.  */
 
          gp->root.u.def.value += hppa_info->gp_offset;
 
 
 
          gp_val = (gp->root.u.def.section->output_section->vma
 
                    + gp->root.u.def.section->output_offset
 
                    + gp->root.u.def.value);
 
        }
 
      else
 
        {
 
          asection *sec;
 
 
 
          /* First look for a .plt section.  If found, then __gp is the
 
             address of the .plt + gp_offset.
 
 
 
             If no .plt is found, then look for .dlt, .opd and .data (in
 
             that order) and set __gp to the base address of whichever
 
             section is found first.  */
 
 
 
          sec = hppa_info->plt_sec;
 
          if (sec && ! (sec->flags & SEC_EXCLUDE))
 
            gp_val = (sec->output_offset
 
                      + sec->output_section->vma
 
                      + hppa_info->gp_offset);
 
          else
 
            {
 
              sec = hppa_info->dlt_sec;
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                sec = hppa_info->opd_sec;
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                sec = bfd_get_section_by_name (abfd, ".data");
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                gp_val = 0;
 
              else
 
                gp_val = sec->output_offset + sec->output_section->vma;
 
            }
 
        }
 
 
 
      /* Install whatever value we found/computed for __gp.  */
 
      _bfd_set_gp_value (abfd, gp_val);
 
    }
 
 
 
  /* We need to know the base of the text and data segments so that we
 
     can perform SEGREL relocations.  We will record the base addresses
 
     when we encounter the first SEGREL relocation.  */
 
  hppa_info->text_segment_base = (bfd_vma)-1;
 
  hppa_info->data_segment_base = (bfd_vma)-1;
 
 
 
  /* HP's shared libraries have references to symbols that are not
 
     defined anywhere.  The generic ELF BFD linker code will complain
 
     about such symbols.
 
 
 
     So we detect the losing case and arrange for the flags on the symbol
 
     to indicate that it was never referenced.  This keeps the generic
 
     ELF BFD link code happy and appears to not create any secondary
 
     problems.  Ultimately we need a way to control the behavior of the
 
     generic ELF BFD link code better.  */
 
  elf_link_hash_traverse (elf_hash_table (info),
 
                          elf_hppa_unmark_useless_dynamic_symbols,
 
                          info);
 
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
 
  retval = bfd_elf_final_link (abfd, info);
 
 
 
  elf_link_hash_traverse (elf_hash_table (info),
 
                          elf_hppa_remark_useless_dynamic_symbols,
 
                          info);
 
 
 
  /* If we're producing a final executable, sort the contents of the
 
     unwind section. */
 
  if (retval)
 
    retval = elf_hppa_sort_unwind (abfd);
 
 
 
  return retval;
 
}
 
 
 
/* Relocate the given INSN.  VALUE should be the actual value we want
 
   to insert into the instruction, ie by this point we should not be
 
   concerned with computing an offset relative to the DLT, PC, etc.
 
   Instead this routine is meant to handle the bit manipulations needed
 
   to insert the relocation into the given instruction.  */
 
 
 
static int
 
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
 
{
 
  switch (r_type)
 
    {
 
    /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
 
       the "B" instruction.  */
 
    case R_PARISC_PCREL22F:
 
    case R_PARISC_PCREL22C:
 
      return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
 
 
 
      /* This is any 12 bit branch.  */
 
    case R_PARISC_PCREL12F:
 
      return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
 
 
 
    /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
 
       to the "B" instruction as well as BE.  */
 
    case R_PARISC_PCREL17F:
 
    case R_PARISC_DIR17F:
 
    case R_PARISC_DIR17R:
 
    case R_PARISC_PCREL17C:
 
    case R_PARISC_PCREL17R:
 
      return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
 
 
 
    /* ADDIL or LDIL instructions.  */
 
    case R_PARISC_DLTREL21L:
 
    case R_PARISC_DLTIND21L:
 
    case R_PARISC_LTOFF_FPTR21L:
 
    case R_PARISC_PCREL21L:
 
    case R_PARISC_LTOFF_TP21L:
 
    case R_PARISC_DPREL21L:
 
    case R_PARISC_PLTOFF21L:
 
    case R_PARISC_DIR21L:
 
      return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
 
 
 
    /* LDO and integer loads/stores with 14 bit displacements.  */
 
    case R_PARISC_DLTREL14R:
 
    case R_PARISC_DLTREL14F:
 
    case R_PARISC_DLTIND14R:
 
    case R_PARISC_DLTIND14F:
 
    case R_PARISC_LTOFF_FPTR14R:
 
    case R_PARISC_PCREL14R:
 
    case R_PARISC_PCREL14F:
 
    case R_PARISC_LTOFF_TP14R:
 
    case R_PARISC_LTOFF_TP14F:
 
    case R_PARISC_DPREL14R:
 
    case R_PARISC_DPREL14F:
 
    case R_PARISC_PLTOFF14R:
 
    case R_PARISC_PLTOFF14F:
 
    case R_PARISC_DIR14R:
 
    case R_PARISC_DIR14F:
 
      return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
 
 
 
    /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
 
    case R_PARISC_LTOFF_FPTR16F:
 
    case R_PARISC_PCREL16F:
 
    case R_PARISC_LTOFF_TP16F:
 
    case R_PARISC_GPREL16F:
 
    case R_PARISC_PLTOFF16F:
 
    case R_PARISC_DIR16F:
 
    case R_PARISC_LTOFF16F:
 
      return (insn & ~0xffff) | re_assemble_16 (sym_value);
 
 
 
    /* Doubleword loads and stores with a 14 bit displacement.  */
 
    case R_PARISC_DLTREL14DR:
 
    case R_PARISC_DLTIND14DR:
 
    case R_PARISC_LTOFF_FPTR14DR:
 
    case R_PARISC_LTOFF_FPTR16DF:
 
    case R_PARISC_PCREL14DR:
 
    case R_PARISC_PCREL16DF:
 
    case R_PARISC_LTOFF_TP14DR:
 
    case R_PARISC_LTOFF_TP16DF:
 
    case R_PARISC_DPREL14DR:
 
    case R_PARISC_GPREL16DF:
 
    case R_PARISC_PLTOFF14DR:
 
    case R_PARISC_PLTOFF16DF:
 
    case R_PARISC_DIR14DR:
 
    case R_PARISC_DIR16DF:
 
    case R_PARISC_LTOFF16DF:
 
      return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
 
                                 | ((sym_value & 0x1ff8) << 1));
 
 
 
    /* Floating point single word load/store instructions.  */
 
    case R_PARISC_DLTREL14WR:
 
    case R_PARISC_DLTIND14WR:
 
    case R_PARISC_LTOFF_FPTR14WR:
 
    case R_PARISC_LTOFF_FPTR16WF:
 
    case R_PARISC_PCREL14WR:
 
    case R_PARISC_PCREL16WF:
 
    case R_PARISC_LTOFF_TP14WR:
 
    case R_PARISC_LTOFF_TP16WF:
 
    case R_PARISC_DPREL14WR:
 
    case R_PARISC_GPREL16WF:
 
    case R_PARISC_PLTOFF14WR:
 
    case R_PARISC_PLTOFF16WF:
 
    case R_PARISC_DIR16WF:
 
    case R_PARISC_DIR14WR:
 
    case R_PARISC_LTOFF16WF:
 
      return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
 
                                 | ((sym_value & 0x1ffc) << 1));
 
 
 
    default:
 
      return insn;
 
    }
 
}
 
 
 
/* Compute the value for a relocation (REL) during a final link stage,
 
   then insert the value into the proper location in CONTENTS.
 
 
 
   VALUE is a tentative value for the relocation and may be overridden
 
   and modified here based on the specific relocation to be performed.
 
 
 
   For example we do conversions for PC-relative branches in this routine
 
   or redirection of calls to external routines to stubs.
 
 
 
   The work of actually applying the relocation is left to a helper
 
   routine in an attempt to reduce the complexity and size of this
 
   function.  */
 
 
 
static bfd_reloc_status_type
 
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
 
                              bfd *input_bfd,
 
                              bfd *output_bfd,
 
                              asection *input_section,
 
                              bfd_byte *contents,
 
                              bfd_vma value,
 
                              struct bfd_link_info *info,
 
                              asection *sym_sec,
 
                              struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
 
                              struct elf64_hppa_dyn_hash_entry *dyn_h)
 
{
 
  int insn;
 
  bfd_vma offset = rel->r_offset;
 
  bfd_signed_vma addend = rel->r_addend;
 
  reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
 
  unsigned int r_type = howto->type;
 
  bfd_byte *hit_data = contents + offset;
 
  struct elf64_hppa_link_hash_table *hppa_info = elf64_hppa_hash_table (info);
 
 
 
  insn = bfd_get_32 (input_bfd, hit_data);
 
 
 
  switch (r_type)
 
    {
 
    case R_PARISC_NONE:
 
      break;
 
 
 
    /* Basic function call support.
 
 
 
       Note for a call to a function defined in another dynamic library
 
       we want to redirect the call to a stub.  */
 
 
 
    /* Random PC relative relocs.  */
 
    case R_PARISC_PCREL21L:
 
    case R_PARISC_PCREL14R:
 
    case R_PARISC_PCREL14F:
 
    case R_PARISC_PCREL14WR:
 
    case R_PARISC_PCREL14DR:
 
    case R_PARISC_PCREL16F:
 
    case R_PARISC_PCREL16WF:
 
    case R_PARISC_PCREL16DF:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        /* Adjust for any field selectors.  */
 
        if (r_type == R_PARISC_PCREL21L)
 
          value = hppa_field_adjust (value, -8 + addend, e_lsel);
 
        else if (r_type == R_PARISC_PCREL14F
 
                 || r_type == R_PARISC_PCREL16F
 
                 || r_type == R_PARISC_PCREL16WF
 
                 || r_type == R_PARISC_PCREL16DF)
 
          value = hppa_field_adjust (value, -8 + addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, -8 + addend, e_rsel);
 
 
 
        /* Apply the relocation to the given instruction.  */
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_PCREL12F:
 
    case R_PARISC_PCREL22F:
 
    case R_PARISC_PCREL17F:
 
    case R_PARISC_PCREL22C:
 
    case R_PARISC_PCREL17C:
 
    case R_PARISC_PCREL17R:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        /* Adjust for any field selectors.  */
 
        if (r_type == R_PARISC_PCREL17R)
 
          value = hppa_field_adjust (value, -8 + addend, e_rsel);
 
        else
 
          value = hppa_field_adjust (value, -8 + addend, e_fsel);
 
 
 
        /* All branches are implicitly shifted by 2 places.  */
 
        value >>= 2;
 
 
 
        /* Apply the relocation to the given instruction.  */
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    /* Indirect references to data through the DLT.  */
 
    case R_PARISC_DLTIND14R:
 
    case R_PARISC_DLTIND14F:
 
    case R_PARISC_DLTIND14DR:
 
    case R_PARISC_DLTIND14WR:
 
    case R_PARISC_DLTIND21L:
 
    case R_PARISC_LTOFF_FPTR14R:
 
    case R_PARISC_LTOFF_FPTR14DR:
 
    case R_PARISC_LTOFF_FPTR14WR:
 
    case R_PARISC_LTOFF_FPTR21L:
 
    case R_PARISC_LTOFF_FPTR16F:
 
    case R_PARISC_LTOFF_FPTR16WF:
 
    case R_PARISC_LTOFF_FPTR16DF:
 
    case R_PARISC_LTOFF_TP21L:
 
    case R_PARISC_LTOFF_TP14R:
 
    case R_PARISC_LTOFF_TP14F:
 
    case R_PARISC_LTOFF_TP14WR:
 
    case R_PARISC_LTOFF_TP14DR:
 
    case R_PARISC_LTOFF_TP16F:
 
    case R_PARISC_LTOFF_TP16WF:
 
    case R_PARISC_LTOFF_TP16DF:
 
    case R_PARISC_LTOFF16F:
 
    case R_PARISC_LTOFF16WF:
 
    case R_PARISC_LTOFF16DF:
 
      {
 
        /* If this relocation was against a local symbol, then we still
 
           have not set up the DLT entry (it's not convenient to do so
 
           in the "finalize_dlt" routine because it is difficult to get
 
           to the local symbol's value).
 
 
 
           So, if this is a local symbol (h == NULL), then we need to
 
           fill in its DLT entry.
 
 
 
           Similarly we may still need to set up an entry in .opd for
 
           a local function which had its address taken.  */
 
        if (dyn_h->h == NULL)
 
          {
 
            /* Now do .opd creation if needed.  */
 
            if (r_type == R_PARISC_LTOFF_FPTR14R
 
                || r_type == R_PARISC_LTOFF_FPTR14DR
 
                || r_type == R_PARISC_LTOFF_FPTR14WR
 
                || r_type == R_PARISC_LTOFF_FPTR21L
 
                || r_type == R_PARISC_LTOFF_FPTR16F
 
                || r_type == R_PARISC_LTOFF_FPTR16WF
 
                || r_type == R_PARISC_LTOFF_FPTR16DF)
 
              {
 
                /* The first two words of an .opd entry are zero.  */
 
                memset (hppa_info->opd_sec->contents + dyn_h->opd_offset,
 
                        0, 16);
 
 
 
                /* The next word is the address of the function.  */
 
                bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                            (hppa_info->opd_sec->contents
 
                             + dyn_h->opd_offset + 16));
 
 
 
                /* The last word is our local __gp value.  */
 
                value = _bfd_get_gp_value
 
                          (hppa_info->opd_sec->output_section->owner);
 
                bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                            (hppa_info->opd_sec->contents
 
                             + dyn_h->opd_offset + 24));
 
 
 
                /* The DLT value is the address of the .opd entry.  */
 
                value = (dyn_h->opd_offset
 
                         + hppa_info->opd_sec->output_offset
 
                         + hppa_info->opd_sec->output_section->vma);
 
                addend = 0;
 
              }
 
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
 
                        value + addend,
 
                        hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
 
          }
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (dyn_h->dlt_offset
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All DLTIND relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_DLTIND21L
 
            || r_type == R_PARISC_LTOFF_FPTR21L
 
            || r_type == R_PARISC_LTOFF_TP21L)
 
          value = hppa_field_adjust (value, 0, e_lsel);
 
        else if (r_type == R_PARISC_DLTIND14F
 
                 || r_type == R_PARISC_LTOFF_FPTR16F
 
                 || r_type == R_PARISC_LTOFF_FPTR16WF
 
                 || r_type == R_PARISC_LTOFF_FPTR16DF
 
                 || r_type == R_PARISC_LTOFF16F
 
                 || r_type == R_PARISC_LTOFF16DF
 
                 || r_type == R_PARISC_LTOFF16WF
 
                 || r_type == R_PARISC_LTOFF_TP16F
 
                 || r_type == R_PARISC_LTOFF_TP16WF
 
                 || r_type == R_PARISC_LTOFF_TP16DF)
 
          value = hppa_field_adjust (value, 0, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, 0, e_rsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_DLTREL14R:
 
    case R_PARISC_DLTREL14F:
 
    case R_PARISC_DLTREL14DR:
 
    case R_PARISC_DLTREL14WR:
 
    case R_PARISC_DLTREL21L:
 
    case R_PARISC_DPREL21L:
 
    case R_PARISC_DPREL14WR:
 
    case R_PARISC_DPREL14DR:
 
    case R_PARISC_DPREL14R:
 
    case R_PARISC_DPREL14F:
 
    case R_PARISC_GPREL16F:
 
    case R_PARISC_GPREL16WF:
 
    case R_PARISC_GPREL16DF:
 
      {
 
        /* Subtract out the global pointer value to make value a DLT
 
           relative address.  */
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All DLTREL relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_DLTREL21L
 
            || r_type == R_PARISC_DPREL21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_DLTREL14F
 
                 || r_type == R_PARISC_DPREL14F
 
                 || r_type == R_PARISC_GPREL16F
 
                 || r_type == R_PARISC_GPREL16WF
 
                 || r_type == R_PARISC_GPREL16DF)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_DIR21L:
 
    case R_PARISC_DIR17R:
 
    case R_PARISC_DIR17F:
 
    case R_PARISC_DIR14R:
 
    case R_PARISC_DIR14F:
 
    case R_PARISC_DIR14WR:
 
    case R_PARISC_DIR14DR:
 
    case R_PARISC_DIR16F:
 
    case R_PARISC_DIR16WF:
 
    case R_PARISC_DIR16DF:
 
      {
 
        /* All DIR relocations are basically the same at this point,
 
           except that branch offsets need to be divided by four, and
 
           we need different field selectors.  Note that we don't
 
           redirect absolute calls to local stubs.  */
 
 
 
        if (r_type == R_PARISC_DIR21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_DIR17F
 
                 || r_type == R_PARISC_DIR16F
 
                 || r_type == R_PARISC_DIR16WF
 
                 || r_type == R_PARISC_DIR16DF
 
                 || r_type == R_PARISC_DIR14F)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
 
          /* All branches are implicitly shifted by 2 places.  */
 
          value >>= 2;
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_PLTOFF21L:
 
    case R_PARISC_PLTOFF14R:
 
    case R_PARISC_PLTOFF14F:
 
    case R_PARISC_PLTOFF14WR:
 
    case R_PARISC_PLTOFF14DR:
 
    case R_PARISC_PLTOFF16F:
 
    case R_PARISC_PLTOFF16WF:
 
    case R_PARISC_PLTOFF16DF:
 
      {
 
        /* We want the value of the PLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (dyn_h->plt_offset
 
                 + hppa_info->plt_sec->output_offset
 
                 + hppa_info->plt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All PLTOFF relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_PLTOFF21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_PLTOFF14F
 
                 || r_type == R_PARISC_PLTOFF16F
 
                 || r_type == R_PARISC_PLTOFF16WF
 
                 || r_type == R_PARISC_PLTOFF16DF)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_LTOFF_FPTR32:
 
      {
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (dyn_h->h == NULL)
 
          {
 
            /* The first two words of an .opd entry are zero.  */
 
            memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
 
 
 
            /* The next word is the address of the function.  */
 
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                        (hppa_info->opd_sec->contents
 
                         + dyn_h->opd_offset + 16));
 
 
 
            /* The last word is our local __gp value.  */
 
            value = _bfd_get_gp_value
 
                      (hppa_info->opd_sec->output_section->owner);
 
            bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                        hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
 
 
 
            /* The DLT value is the address of the .opd entry.  */
 
            value = (dyn_h->opd_offset
 
                     + hppa_info->opd_sec->output_offset
 
                     + hppa_info->opd_sec->output_section->vma);
 
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
 
                        value,
 
                        hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
 
          }
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (dyn_h->dlt_offset
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
        bfd_put_32 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_LTOFF_FPTR64:
 
    case R_PARISC_LTOFF_TP64:
 
      {
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (dyn_h->h == NULL && r_type == R_PARISC_LTOFF_FPTR64)
 
          {
 
            /* The first two words of an .opd entry are zero.  */
 
            memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
 
 
 
            /* The next word is the address of the function.  */
 
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                        (hppa_info->opd_sec->contents
 
                         + dyn_h->opd_offset + 16));
 
 
 
            /* The last word is our local __gp value.  */
 
            value = _bfd_get_gp_value
 
                      (hppa_info->opd_sec->output_section->owner);
 
            bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                        hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
 
 
 
            /* The DLT value is the address of the .opd entry.  */
 
            value = (dyn_h->opd_offset
 
                     + hppa_info->opd_sec->output_offset
 
                     + hppa_info->opd_sec->output_section->vma);
 
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
 
                        value,
 
                        hppa_info->dlt_sec->contents + dyn_h->dlt_offset);
 
          }
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (dyn_h->dlt_offset
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_DIR32:
 
      bfd_put_32 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_DIR64:
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_GPREL64:
 
      /* Subtract out the global pointer value to make value a DLT
 
         relative address.  */
 
      value -= _bfd_get_gp_value (output_bfd);
 
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_LTOFF64:
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
      value = (dyn_h->dlt_offset
 
               + hppa_info->dlt_sec->output_offset
 
               + hppa_info->dlt_sec->output_section->vma);
 
      value -= _bfd_get_gp_value (output_bfd);
 
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_PCREL32:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        value += addend;
 
        value -= 8;
 
        bfd_put_32 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_PCREL64:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (dyn_h->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        value += addend;
 
        value -= 8;
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_FPTR64:
 
      {
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (dyn_h->h == NULL)
 
          {
 
            /* The first two words of an .opd entry are zero.  */
 
            memset (hppa_info->opd_sec->contents + dyn_h->opd_offset, 0, 16);
 
 
 
            /* The next word is the address of the function.  */
 
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                        (hppa_info->opd_sec->contents
 
                         + dyn_h->opd_offset + 16));
 
 
 
            /* The last word is our local __gp value.  */
 
            value = _bfd_get_gp_value
 
                      (hppa_info->opd_sec->output_section->owner);
 
            bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                        hppa_info->opd_sec->contents + dyn_h->opd_offset + 24);
 
          }
 
 
 
        if (dyn_h->want_opd)
 
          /* We want the value of the OPD offset for this symbol.  */
 
          value = (dyn_h->opd_offset
 
                   + hppa_info->opd_sec->output_offset
 
                   + hppa_info->opd_sec->output_section->vma);
 
        else
 
          /* We want the address of the symbol.  */
 
          value += addend;
 
 
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_SECREL32:
 
      bfd_put_32 (input_bfd,
 
                  value + addend - sym_sec->output_section->vma,
 
                  hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_SEGREL32:
 
    case R_PARISC_SEGREL64:
 
      {
 
        /* If this is the first SEGREL relocation, then initialize
 
           the segment base values.  */
 
        if (hppa_info->text_segment_base == (bfd_vma) -1)
 
          bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
 
                                 hppa_info);
 
 
 
        /* VALUE holds the absolute address.  We want to include the
 
           addend, then turn it into a segment relative address.
 
 
 
           The segment is derived from SYM_SEC.  We assume that there are
 
           only two segments of note in the resulting executable/shlib.
 
           A readonly segment (.text) and a readwrite segment (.data).  */
 
        value += addend;
 
 
 
        if (sym_sec->flags & SEC_CODE)
 
          value -= hppa_info->text_segment_base;
 
        else
 
          value -= hppa_info->data_segment_base;
 
 
 
        if (r_type == R_PARISC_SEGREL32)
 
          bfd_put_32 (input_bfd, value, hit_data);
 
        else
 
          bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    /* Something we don't know how to handle.  */
 
    default:
 
      return bfd_reloc_notsupported;
 
    }
 
 
 
  /* Update the instruction word.  */
 
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
 
  return bfd_reloc_ok;
 
}
 
 
 
/* Relocate an HPPA ELF section.  */
 
 
 
static bfd_boolean
 
elf_hppa_relocate_section (bfd *output_bfd,
 
                           struct bfd_link_info *info,
 
                           bfd *input_bfd,
 
                           asection *input_section,
 
                           bfd_byte *contents,
 
                           Elf_Internal_Rela *relocs,
 
                           Elf_Internal_Sym *local_syms,
 
                           asection **local_sections)
 
{
 
  Elf_Internal_Shdr *symtab_hdr;
 
  Elf_Internal_Rela *rel;
 
  Elf_Internal_Rela *relend;
 
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
 
  hppa_info = elf64_hppa_hash_table (info);
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
 
 
 
  rel = relocs;
 
  relend = relocs + input_section->reloc_count;
 
  for (; rel < relend; rel++)
 
    {
 
      int r_type;
 
      reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
 
      unsigned long r_symndx;
 
      struct elf_link_hash_entry *h;
 
      Elf_Internal_Sym *sym;
 
      asection *sym_sec;
 
      bfd_vma relocation;
 
      bfd_reloc_status_type r;
 
      const char *dyn_name;
 
      char *dynh_buf = NULL;
 
      size_t dynh_buflen = 0;
 
      struct elf64_hppa_dyn_hash_entry *dyn_h = NULL;
 
 
 
      r_type = ELF_R_TYPE (rel->r_info);
 
      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
 
        {
 
          bfd_set_error (bfd_error_bad_value);
 
          return FALSE;
 
        }
 
 
 
      /* This is a final link.  */
 
      r_symndx = ELF_R_SYM (rel->r_info);
 
      h = NULL;
 
      sym = NULL;
 
      sym_sec = NULL;
 
      if (r_symndx < symtab_hdr->sh_info)
 
        {
 
          /* This is a local symbol.  */
 
          sym = local_syms + r_symndx;
 
          sym_sec = local_sections[r_symndx];
 
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
 
 
 
          /* If this symbol has an entry in the PA64 dynamic hash
 
             table, then get it.  */
 
          dyn_name = get_dyn_name (input_bfd, h, rel,
 
                                   &dynh_buf, &dynh_buflen);
 
          dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                              dyn_name, FALSE, FALSE);
 
 
 
        }
 
      else
 
        {
 
          /* This is not a local symbol.  */
 
          long indx;
 
 
 
          relocation = 0;
 
          indx = r_symndx - symtab_hdr->sh_info;
 
          h = elf_sym_hashes (input_bfd)[indx];
 
          while (h->root.type == bfd_link_hash_indirect
 
                 || h->root.type == bfd_link_hash_warning)
 
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
          if (h->root.type == bfd_link_hash_defined
 
              || h->root.type == bfd_link_hash_defweak)
 
            {
 
              sym_sec = h->root.u.def.section;
 
 
 
              /* If this symbol has an entry in the PA64 dynamic hash
 
                 table, then get it.  */
 
              dyn_name = get_dyn_name (input_bfd, h, rel,
 
                                       &dynh_buf, &dynh_buflen);
 
              dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                                  dyn_name, FALSE, FALSE);
 
 
 
              /* If we have a relocation against a symbol defined in a
 
                 shared library and we have not created an entry in the
 
                 PA64 dynamic symbol hash table for it, then we lose.  */
 
              if (!info->relocatable
 
                  && sym_sec->output_section == NULL && dyn_h == NULL)
 
                {
 
                  (*_bfd_error_handler)
 
                    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
 
                     input_bfd,
 
                     input_section,
 
                     (long) rel->r_offset,
 
                     howto->name,
 
                     h->root.root.string);
 
                }
 
              else if (sym_sec->output_section)
 
                relocation = (h->root.u.def.value
 
                              + sym_sec->output_offset
 
                              + sym_sec->output_section->vma);
 
            }
 
          else if (info->unresolved_syms_in_objects == RM_IGNORE
 
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
 
            {
 
              /* If this symbol has an entry in the PA64 dynamic hash
 
                 table, then get it.  */
 
              dyn_name = get_dyn_name (input_bfd, h, rel,
 
                                       &dynh_buf, &dynh_buflen);
 
              dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                                  dyn_name, FALSE, FALSE);
 
 
 
              if (!info->relocatable && dyn_h == NULL)
 
                {
 
                  (*_bfd_error_handler)
 
                    (_("%B(%A): warning: unresolvable relocation against symbol `%s'"),
 
                     input_bfd, input_section, h->root.root.string);
 
                }
 
            }
 
          else if (h->root.type == bfd_link_hash_undefweak)
 
            {
 
              dyn_name = get_dyn_name (input_bfd, h, rel,
 
                                       &dynh_buf, &dynh_buflen);
 
              dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                                  dyn_name, FALSE, FALSE);
 
 
 
              if (!info->relocatable && dyn_h == NULL)
 
                {
 
                  (*_bfd_error_handler)
 
                    (_("%B(%A): warning: unresolvable relocation against symbol `%s'"),
 
                     input_bfd, input_section, h->root.root.string);
 
                }
 
            }
 
          else if (!info->relocatable)
 
            {
 
              /* Ignore dynamic loader defined symbols.  */
 
              if (!elf_hppa_is_dynamic_loader_symbol (h->root.root.string))
 
                {
 
                  if (!((*info->callbacks->undefined_symbol)
 
                        (info, h->root.root.string, input_bfd,
 
                         input_section, rel->r_offset,
 
                         (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
 
                          || ELF_ST_VISIBILITY (h->other)))))
 
                    return FALSE;
 
                  break;
 
                }
 
            }
 
        }
 
 
 
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
 
        {
 
          /* For relocs against symbols from removed linkonce sections,
 
             or sections discarded by a linker script, we just want the
 
             section contents zeroed.  Avoid any special processing.  */
 
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
 
          rel->r_info = 0;
 
          rel->r_addend = 0;
 
          continue;
 
        }
 
 
 
      if (info->relocatable)
 
        continue;
 
 
 
      r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
 
                                        input_section, contents,
 
                                        relocation, info, sym_sec,
 
                                        h, dyn_h);
 
 
 
      if (r != bfd_reloc_ok)
 
        {
 
          switch (r)
 
            {
 
            default:
 
              abort ();
 
            case bfd_reloc_overflow:
 
              {
 
                const char *sym_name;
 
 
 
                if (h != NULL)
 
                  sym_name = NULL;
 
                else
 
                  {
 
                    sym_name = bfd_elf_string_from_elf_section (input_bfd,
 
                                                                symtab_hdr->sh_link,
 
                                                                sym->st_name);
 
                    if (sym_name == NULL)
 
                      return FALSE;
 
                    if (*sym_name == '\0')
 
                      sym_name = bfd_section_name (input_bfd, sym_sec);
 
                  }
 
 
 
                if (!((*info->callbacks->reloc_overflow)
 
                      (info, (h ? &h->root : NULL), sym_name,
 
                       howto->name, (bfd_vma) 0, input_bfd,
 
                       input_section, rel->r_offset)))
 
                  return FALSE;
 
              }
 
              break;
 
            }
 
        }
 
    }
 
  return TRUE;
 
}
 
 
 
#endif /* ARCH_SIZE == 64 */
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.