OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf32-m68k.c] - Diff between revs 157 and 225

Show entire file | Details | Blame | View Log

Rev 157 Rev 225
Line 1... Line 1...
/* Motorola 68k series support for 32-bit ELF
/* Motorola 68k series support for 32-bit ELF
   Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
   Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
   2004, 2005, 2006, 2007 Free Software Foundation, Inc.
   2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
Line 112... Line 112...
         "R_68K_GNU_VTENTRY",   /* name */
         "R_68K_GNU_VTENTRY",   /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE),
         FALSE),
 
 
 
  /* TLS general dynamic variable reference.  */
 
  HOWTO (R_68K_TLS_GD32,        /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_bitfield, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_GD32",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_GD16,        /* type */
 
         0,                      /* rightshift */
 
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         16,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_GD16",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x0000ffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_GD8,         /* type */
 
         0,                      /* rightshift */
 
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
 
         8,                     /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_GD8",       /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x000000ff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  /* TLS local dynamic variable reference.  */
 
  HOWTO (R_68K_TLS_LDM32,       /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_bitfield, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDM32",     /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LDM16,       /* type */
 
         0,                      /* rightshift */
 
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         16,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDM16",     /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x0000ffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LDM8,                /* type */
 
         0,                      /* rightshift */
 
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
 
         8,                     /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDM8",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x000000ff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LDO32,       /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_bitfield, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDO32",     /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LDO16,       /* type */
 
         0,                      /* rightshift */
 
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         16,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDO16",     /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x0000ffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LDO8,                /* type */
 
         0,                      /* rightshift */
 
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
 
         8,                     /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LDO8",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x000000ff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  /* TLS initial execution variable reference.  */
 
  HOWTO (R_68K_TLS_IE32,        /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_bitfield, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_IE32",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_IE16,        /* type */
 
         0,                      /* rightshift */
 
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         16,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_IE16",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x0000ffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_IE8,         /* type */
 
         0,                      /* rightshift */
 
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
 
         8,                     /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_IE8",       /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x000000ff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  /* TLS local execution variable reference.  */
 
  HOWTO (R_68K_TLS_LE32,        /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_bitfield, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LE32",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LE16,        /* type */
 
         0,                      /* rightshift */
 
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         16,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LE16",      /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x0000ffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_LE8,         /* type */
 
         0,                      /* rightshift */
 
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
 
         8,                     /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_signed, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_LE8",       /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0x000000ff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  /* TLS GD/LD dynamic relocations.  */
 
  HOWTO (R_68K_TLS_DTPMOD32,    /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_dont, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_DTPMOD32",  /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_DTPREL32,    /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_dont, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_DTPREL32",  /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
 
 
 
  HOWTO (R_68K_TLS_TPREL32,     /* type */
 
         0,                      /* rightshift */
 
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
 
         32,                    /* bitsize */
 
         FALSE,                 /* pc_relative */
 
         0,                      /* bitpos */
 
         complain_overflow_dont, /* complain_on_overflow */
 
         bfd_elf_generic_reloc, /* special_function */
 
         "R_68K_TLS_TPREL32",   /* name */
 
         FALSE,                 /* partial_inplace */
 
         0,                      /* src_mask */
 
         0xffffffff,            /* dst_mask */
 
         FALSE),                /* pcrel_offset */
};
};
 
 
static void
static void
rtype_to_howto (abfd, cache_ptr, dst)
rtype_to_howto (abfd, cache_ptr, dst)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
Line 130... Line 387...
 
 
static const struct
static const struct
{
{
  bfd_reloc_code_real_type bfd_val;
  bfd_reloc_code_real_type bfd_val;
  int elf_val;
  int elf_val;
} reloc_map[] = {
}
 
  reloc_map[] =
 
{
  { BFD_RELOC_NONE, R_68K_NONE },
  { BFD_RELOC_NONE, R_68K_NONE },
  { BFD_RELOC_32, R_68K_32 },
  { BFD_RELOC_32, R_68K_32 },
  { BFD_RELOC_16, R_68K_16 },
  { BFD_RELOC_16, R_68K_16 },
  { BFD_RELOC_8, R_68K_8 },
  { BFD_RELOC_8, R_68K_8 },
  { BFD_RELOC_32_PCREL, R_68K_PC32 },
  { BFD_RELOC_32_PCREL, R_68K_PC32 },
Line 157... Line 416...
  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
  { BFD_RELOC_CTOR, R_68K_32 },
  { BFD_RELOC_CTOR, R_68K_32 },
  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
 
  { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
 
  { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
 
  { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
 
  { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
 
  { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
 
  { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
 
  { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
 
  { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
 
  { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
 
  { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
 
  { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
 
  { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
 
  { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
 
  { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
 
  { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
};
};
 
 
static reloc_howto_type *
static reloc_howto_type *
reloc_type_lookup (abfd, code)
reloc_type_lookup (abfd, code)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
Line 383... Line 657...
  asection *section;
  asection *section;
  /* Number of relocs copied in this section.  */
  /* Number of relocs copied in this section.  */
  bfd_size_type count;
  bfd_size_type count;
};
};
 
 
 
/* Forward declaration.  */
 
struct elf_m68k_got_entry;
 
 
/* m68k ELF linker hash entry.  */
/* m68k ELF linker hash entry.  */
 
 
struct elf_m68k_link_hash_entry
struct elf_m68k_link_hash_entry
{
{
  struct elf_link_hash_entry root;
  struct elf_link_hash_entry root;
 
 
  /* Number of PC relative relocs copied for this symbol.  */
  /* Number of PC relative relocs copied for this symbol.  */
  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
 
 
 
  /* Key to got_entries.  */
 
  unsigned long got_entry_key;
 
 
 
  /* List of GOT entries for this symbol.  This list is build during
 
     offset finalization and is used within elf_m68k_finish_dynamic_symbol
 
     to traverse all GOT entries for a particular symbol.
 
 
 
     ??? We could've used root.got.glist field instead, but having
 
     a separate field is cleaner.  */
 
  struct elf_m68k_got_entry *glist;
};
};
 
 
#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
 
 
 
/* Key part of GOT entry in hashtable.  */
 
struct elf_m68k_got_entry_key
 
{
 
  /* BFD in which this symbol was defined.  NULL for global symbols.  */
 
  const bfd *bfd;
 
 
 
  /* Symbol index.  Either local symbol index or h->got_entry_key.  */
 
  unsigned long symndx;
 
 
 
  /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
 
     R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
 
 
 
     From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
 
     matters.  That is, we distinguish between, say, R_68K_GOT16O
 
     and R_68K_GOT32O when allocating offsets, but they are considered to be
 
     the same when searching got->entries.  */
 
  enum elf_m68k_reloc_type type;
 
};
 
 
 
/* Size of the GOT offset suitable for relocation.  */
 
enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
 
 
 
/* Entry of the GOT.  */
 
struct elf_m68k_got_entry
 
{
 
  /* GOT entries are put into a got->entries hashtable.  This is the key.  */
 
  struct elf_m68k_got_entry_key key_;
 
 
 
  /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
 
  union
 
  {
 
    struct
 
    {
 
      /* Number of times this entry is referenced.  It is used to
 
         filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook.  */
 
      bfd_vma refcount;
 
    } s1;
 
 
 
    struct
 
    {
 
      /* Offset from the start of .got section.  To calculate offset relative
 
         to GOT pointer one should substract got->offset from this value.  */
 
      bfd_vma offset;
 
 
 
      /* Pointer to the next GOT entry for this global symbol.
 
         Symbols have at most one entry in one GOT, but might
 
         have entries in more than one GOT.
 
         Root of this list is h->glist.
 
         NULL for local symbols.  */
 
      struct elf_m68k_got_entry *next;
 
    } s2;
 
  } u;
 
};
 
 
 
/* Return representative type for relocation R_TYPE.
 
   This is used to avoid enumerating many relocations in comparisons,
 
   switches etc.  */
 
 
 
static enum elf_m68k_reloc_type
 
elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
 
{
 
  switch (r_type)
 
    {
 
      /* In most cases R_68K_GOTx relocations require the very same
 
         handling as R_68K_GOT32O relocation.  In cases when we need
 
         to distinguish between the two, we use explicitly compare against
 
         r_type.  */
 
    case R_68K_GOT32:
 
    case R_68K_GOT16:
 
    case R_68K_GOT8:
 
    case R_68K_GOT32O:
 
    case R_68K_GOT16O:
 
    case R_68K_GOT8O:
 
      return R_68K_GOT32O;
 
 
 
    case R_68K_TLS_GD32:
 
    case R_68K_TLS_GD16:
 
    case R_68K_TLS_GD8:
 
      return R_68K_TLS_GD32;
 
 
 
    case R_68K_TLS_LDM32:
 
    case R_68K_TLS_LDM16:
 
    case R_68K_TLS_LDM8:
 
      return R_68K_TLS_LDM32;
 
 
 
    case R_68K_TLS_IE32:
 
    case R_68K_TLS_IE16:
 
    case R_68K_TLS_IE8:
 
      return R_68K_TLS_IE32;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
      return 0;
 
    }
 
}
 
 
 
/* Return size of the GOT entry offset for relocation R_TYPE.  */
 
 
 
static enum elf_m68k_got_offset_size
 
elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
 
{
 
  switch (r_type)
 
    {
 
    case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
 
    case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
 
    case R_68K_TLS_IE32:
 
      return R_32;
 
 
 
    case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
 
    case R_68K_TLS_IE16:
 
      return R_16;
 
 
 
    case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
 
    case R_68K_TLS_IE8:
 
      return R_8;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
      return 0;
 
    }
 
}
 
 
 
/* Return number of GOT entries we need to allocate in GOT for
 
   relocation R_TYPE.  */
 
 
 
static bfd_vma
 
elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
 
{
 
  switch (elf_m68k_reloc_got_type (r_type))
 
    {
 
    case R_68K_GOT32O:
 
    case R_68K_TLS_IE32:
 
      return 1;
 
 
 
    case R_68K_TLS_GD32:
 
    case R_68K_TLS_LDM32:
 
      return 2;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
      return 0;
 
    }
 
}
 
 
 
/* Return TRUE if relocation R_TYPE is a TLS one.  */
 
 
 
static bfd_boolean
 
elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
 
{
 
  switch (r_type)
 
    {
 
    case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
 
    case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
 
    case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
 
    case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
 
    case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
 
    case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
 
      return TRUE;
 
 
 
    default:
 
      return FALSE;
 
    }
 
}
 
 
 
/* Data structure representing a single GOT.  */
 
struct elf_m68k_got
 
{
 
  /* Hashtable of 'struct elf_m68k_got_entry's.
 
     Starting size of this table is the maximum number of
 
     R_68K_GOT8O entries.  */
 
  htab_t entries;
 
 
 
  /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
 
     several GOT slots.
 
 
 
     n_slots[R_8] is the count of R_8 slots in this GOT.
 
     n_slots[R_16] is the cumulative count of R_8 and R_16 slots
 
     in this GOT.
 
     n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
 
     in this GOT.  This is the total number of slots.  */
 
  bfd_vma n_slots[R_LAST];
 
 
 
  /* Number of local (entry->key_.h == NULL) slots in this GOT.
 
     This is only used to properly calculate size of .rela.got section;
 
     see elf_m68k_partition_multi_got.  */
 
  bfd_vma local_n_slots;
 
 
 
  /* Offset of this GOT relative to beginning of .got section.  */
 
  bfd_vma offset;
 
};
 
 
 
/* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
 
struct elf_m68k_bfd2got_entry
 
{
 
  /* BFD.  */
 
  const bfd *bfd;
 
 
 
  /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
 
     GOT structure.  After partitioning several BFD's might [and often do]
 
     share a single GOT.  */
 
  struct elf_m68k_got *got;
 
};
 
 
 
/* The main data structure holding all the pieces.  */
 
struct elf_m68k_multi_got
 
{
 
  /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
 
     here, then it doesn't need a GOT (this includes the case of a BFD
 
     having an empty GOT).
 
 
 
     ??? This hashtable can be replaced by an array indexed by bfd->id.  */
 
  htab_t bfd2got;
 
 
 
  /* Next symndx to assign a global symbol.
 
     h->got_entry_key is initialized from this counter.  */
 
  unsigned long global_symndx;
 
};
 
 
/* m68k ELF linker hash table.  */
/* m68k ELF linker hash table.  */
 
 
struct elf_m68k_link_hash_table
struct elf_m68k_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  /* Small local sym to section mapping cache.  */
  /* Small local sym cache.  */
  struct sym_sec_cache sym_sec;
  struct sym_cache sym_cache;
 
 
  /* The PLT format used by this link, or NULL if the format has not
  /* The PLT format used by this link, or NULL if the format has not
     yet been chosen.  */
     yet been chosen.  */
  const struct elf_m68k_plt_info *plt_info;
  const struct elf_m68k_plt_info *plt_info;
 
 
 
  /* True, if GP is loaded within each function which uses it.
 
     Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
 
  bfd_boolean local_gp_p;
 
 
 
  /* Switch controlling use of negative offsets to double the size of GOTs.  */
 
  bfd_boolean use_neg_got_offsets_p;
 
 
 
  /* Switch controlling generation of multiple GOTs.  */
 
  bfd_boolean allow_multigot_p;
 
 
 
  /* Multi-GOT data structure.  */
 
  struct elf_m68k_multi_got multi_got_;
};
};
 
 
/* Get the m68k ELF linker hash table from a link_info structure.  */
/* Get the m68k ELF linker hash table from a link_info structure.  */
 
 
#define elf_m68k_hash_table(p) \
#define elf_m68k_hash_table(p) \
  ((struct elf_m68k_link_hash_table *) (p)->hash)
  ((struct elf_m68k_link_hash_table *) (p)->hash)
 
 
 
/* Shortcut to multi-GOT data.  */
 
#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
 
 
/* Create an entry in an m68k ELF linker hash table.  */
/* Create an entry in an m68k ELF linker hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
elf_m68k_link_hash_newfunc (entry, table, string)
elf_m68k_link_hash_newfunc (entry, table, string)
     struct bfd_hash_entry *entry;
     struct bfd_hash_entry *entry;
Line 435... Line 957...
    return ret;
    return ret;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
  if (ret != NULL)
  if (ret != NULL)
 
    {
    elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
    elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
 
      elf_m68k_hash_entry (ret)->got_entry_key = 0;
 
      elf_m68k_hash_entry (ret)->glist = NULL;
 
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Create an m68k ELF linker hash table.  */
/* Create an m68k ELF linker hash table.  */
Line 461... Line 987...
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  ret->sym_sec.abfd = NULL;
  ret->sym_cache.abfd = NULL;
  ret->plt_info = NULL;
  ret->plt_info = NULL;
 
  ret->local_gp_p = FALSE;
 
  ret->use_neg_got_offsets_p = FALSE;
 
  ret->allow_multigot_p = FALSE;
 
  ret->multi_got_.bfd2got = NULL;
 
  ret->multi_got_.global_symndx = 1;
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
 
/* Destruct local data.  */
 
 
 
static void
 
elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
 
{
 
  struct elf_m68k_link_hash_table *htab;
 
 
 
  htab = (struct elf_m68k_link_hash_table *) _htab;
 
 
 
  if (htab->multi_got_.bfd2got != NULL)
 
    {
 
      htab_delete (htab->multi_got_.bfd2got);
 
      htab->multi_got_.bfd2got = NULL;
 
    }
 
}
 
 
/* Set the right machine number.  */
/* Set the right machine number.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_m68k_object_p (bfd *abfd)
elf32_m68k_object_p (bfd *abfd)
{
{
Line 602... Line 1149...
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Display the flags field.  */
/* Display the flags field.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_m68k_print_private_bfd_data (abfd, ptr)
elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
     bfd *abfd;
 
     PTR ptr;
 
{
{
  FILE *file = (FILE *) ptr;
  FILE *file = (FILE *) ptr;
  flagword eflags = elf_elfheader (abfd)->e_flags;
  flagword eflags = elf_elfheader (abfd)->e_flags;
 
 
  BFD_ASSERT (abfd != NULL && ptr != NULL);
  BFD_ASSERT (abfd != NULL && ptr != NULL);
Line 665... Line 1211...
              isa = "C";
              isa = "C";
              additional = " [nodiv]";
              additional = " [nodiv]";
              break;
              break;
            }
            }
          fprintf (file, " [isa %s]%s", isa, additional);
          fprintf (file, " [isa %s]%s", isa, additional);
 
 
          if (eflags & EF_M68K_CF_FLOAT)
          if (eflags & EF_M68K_CF_FLOAT)
            fprintf (file, " [float]");
            fprintf (file, " [float]");
 
 
          switch (eflags & EF_M68K_CF_MAC_MASK)
          switch (eflags & EF_M68K_CF_MAC_MASK)
            {
            {
            case 0:
            case 0:
              mac = NULL;
              mac = NULL;
              break;
              break;
Line 688... Line 1236...
 
 
  fputc ('\n', file);
  fputc ('\n', file);
 
 
  return TRUE;
  return TRUE;
}
}
/* Look through the relocs for a section during the first phase, and
 
   allocate space in the global offset table or procedure linkage
 
   table.  */
 
 
 
static bfd_boolean
 
elf_m68k_check_relocs (abfd, info, sec, relocs)
 
     bfd *abfd;
 
     struct bfd_link_info *info;
 
     asection *sec;
 
     const Elf_Internal_Rela *relocs;
 
{
 
  bfd *dynobj;
 
  Elf_Internal_Shdr *symtab_hdr;
 
  struct elf_link_hash_entry **sym_hashes;
 
  bfd_signed_vma *local_got_refcounts;
 
  const Elf_Internal_Rela *rel;
 
  const Elf_Internal_Rela *rel_end;
 
  asection *sgot;
 
  asection *srelgot;
 
  asection *sreloc;
 
 
 
  if (info->relocatable)
/* Multi-GOT support implementation design:
    return TRUE;
 
 
 
  dynobj = elf_hash_table (info)->dynobj;
   Multi-GOT starts in check_relocs hook.  There we scan all
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
   relocations of a BFD and build a local GOT (struct elf_m68k_got)
  sym_hashes = elf_sym_hashes (abfd);
   for it.  If a single BFD appears to require too many GOT slots with
  local_got_refcounts = elf_local_got_refcounts (abfd);
   R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
 
   to user.
 
   After check_relocs has been invoked for each input BFD, we have
 
   constructed a GOT for each input BFD.
 
 
 
   To minimize total number of GOTs required for a particular output BFD
 
   (as some environments support only 1 GOT per output object) we try
 
   to merge some of the GOTs to share an offset space.  Ideally [and in most
 
   cases] we end up with a single GOT.  In cases when there are too many
 
   restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
 
   several GOTs, assuming the environment can handle them.
 
 
 
   Partitioning is done in elf_m68k_partition_multi_got.  We start with
 
   an empty GOT and traverse bfd2got hashtable putting got_entries from
 
   local GOTs to the new 'big' one.  We do that by constructing an
 
   intermediate GOT holding all the entries the local GOT has and the big
 
   GOT lacks.  Then we check if there is room in the big GOT to accomodate
 
   all the entries from diff.  On success we add those entries to the big
 
   GOT; on failure we start the new 'big' GOT and retry the adding of
 
   entries from the local GOT.  Note that this retry will always succeed as
 
   each local GOT doesn't overflow the limits.  After partitioning we
 
   end up with each bfd assigned one of the big GOTs.  GOT entries in the
 
   big GOTs are initialized with GOT offsets.  Note that big GOTs are
 
   positioned consequently in program space and represent a single huge GOT
 
   to the outside world.
 
 
 
   After that we get to elf_m68k_relocate_section.  There we
 
   adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
 
   relocations to refer to appropriate [assigned to current input_bfd]
 
   big GOT.
 
 
 
   Notes:
 
 
 
   GOT entry type: We have several types of GOT entries.
 
   * R_8 type is used in entries for symbols that have at least one
 
   R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
 
   such entries in one GOT.
 
   * R_16 type is used in entries for symbols that have at least one
 
   R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
 
   We can have at most 0x4000 such entries in one GOT.
 
   * R_32 type is used in all other cases.  We can have as many
 
   such entries in one GOT as we'd like.
 
   When counting relocations we have to include the count of the smaller
 
   ranged relocations in the counts of the larger ranged ones in order
 
   to correctly detect overflow.
 
 
 
   Sorting the GOT: In each GOT starting offsets are assigned to
 
   R_8 entries, which are followed by R_16 entries, and
 
   R_32 entries go at the end.  See finalize_got_offsets for details.
 
 
 
   Negative GOT offsets: To double usable offset range of GOTs we use
 
   negative offsets.  As we assign entries with GOT offsets relative to
 
   start of .got section, the offset values are positive.  They become
 
   negative only in relocate_section where got->offset value is
 
   subtracted from them.
 
 
 
   3 special GOT entries: There are 3 special GOT entries used internally
 
   by loader.  These entries happen to be placed to .got.plt section,
 
   so we don't do anything about them in multi-GOT support.
 
 
 
   Memory management: All data except for hashtables
 
   multi_got->bfd2got and got->entries are allocated on
 
   elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
 
   to most functions), so we don't need to care to free them.  At the
 
   moment of allocation hashtables are being linked into main data
 
   structure (multi_got), all pieces of which are reachable from
 
   elf_m68k_multi_got (info).  We deallocate them in
 
   elf_m68k_link_hash_table_free.  */
 
 
  sgot = NULL;
/* Initialize GOT.  */
  srelgot = NULL;
 
  sreloc = NULL;
 
 
 
  rel_end = relocs + sec->reloc_count;
static void
  for (rel = relocs; rel < rel_end; rel++)
elf_m68k_init_got (struct elf_m68k_got *got)
    {
    {
      unsigned long r_symndx;
  got->entries = NULL;
      struct elf_link_hash_entry *h;
  got->n_slots[R_8] = 0;
 
  got->n_slots[R_16] = 0;
 
  got->n_slots[R_32] = 0;
 
  got->local_n_slots = 0;
 
  got->offset = (bfd_vma) -1;
 
}
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
/* Destruct GOT.  */
 
 
      if (r_symndx < symtab_hdr->sh_info)
static void
        h = NULL;
elf_m68k_clear_got (struct elf_m68k_got *got)
      else
 
        {
        {
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
  if (got->entries != NULL)
 
    {
 
      htab_delete (got->entries);
 
      got->entries = NULL;
 
    }
 
}
 
 
 
/* Create and empty GOT structure.  INFO is the context where memory
 
   should be allocated.  */
 
 
 
static struct elf_m68k_got *
 
elf_m68k_create_empty_got (struct bfd_link_info *info)
 
{
 
  struct elf_m68k_got *got;
 
 
 
  got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
 
  if (got == NULL)
 
    return NULL;
 
 
 
  elf_m68k_init_got (got);
 
 
 
  return got;
 
}
 
 
 
/* Initialize KEY.  */
 
 
 
static void
 
elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
 
                             struct elf_link_hash_entry *h,
 
                             const bfd *abfd, unsigned long symndx,
 
                             enum elf_m68k_reloc_type reloc_type)
 
{
 
  if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
 
    /* All TLS_LDM relocations share a single GOT entry.  */
 
    {
 
      key->bfd = NULL;
 
      key->symndx = 0;
 
    }
 
  else if (h != NULL)
 
    /* Global symbols are identified with their got_entry_key.  */
 
    {
 
      key->bfd = NULL;
 
      key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
 
      BFD_ASSERT (key->symndx != 0);
 
    }
 
  else
 
    /* Local symbols are identified by BFD they appear in and symndx.  */
 
    {
 
      key->bfd = abfd;
 
      key->symndx = symndx;
 
    }
 
 
 
  key->type = reloc_type;
 
}
 
 
 
/* Calculate hash of got_entry.
 
   ??? Is it good?  */
 
 
 
static hashval_t
 
elf_m68k_got_entry_hash (const void *_entry)
 
{
 
  const struct elf_m68k_got_entry_key *key;
 
 
 
  key = &((const struct elf_m68k_got_entry *) _entry)->key_;
 
 
 
  return (key->symndx
 
          + (key->bfd != NULL ? (int) key->bfd->id : -1)
 
          + elf_m68k_reloc_got_type (key->type));
 
}
 
 
 
/* Check if two got entries are equal.  */
 
 
 
static int
 
elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
 
{
 
  const struct elf_m68k_got_entry_key *key1;
 
  const struct elf_m68k_got_entry_key *key2;
 
 
 
  key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
 
  key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
 
 
 
  return (key1->bfd == key2->bfd
 
          && key1->symndx == key2->symndx
 
          && (elf_m68k_reloc_got_type (key1->type)
 
              == elf_m68k_reloc_got_type (key2->type)));
 
}
 
 
 
/* When using negative offsets, we allocate one extra R_8, one extra R_16
 
   and one extra R_32 slots to simplify handling of 2-slot entries during
 
   offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
 
 
 
/* Maximal number of R_8 slots in a single GOT.  */
 
#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)           \
 
  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p            \
 
   ? (0x40 - 1)                                                 \
 
   : 0x20)
 
 
 
/* Maximal number of R_8 and R_16 slots in a single GOT.  */
 
#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)                \
 
  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p            \
 
   ? (0x4000 - 2)                                               \
 
   : 0x2000)
 
 
 
/* SEARCH - simply search the hashtable, don't insert new entries or fail when
 
   the entry cannot be found.
 
   FIND_OR_CREATE - search for an existing entry, but create new if there's
 
   no such.
 
   MUST_FIND - search for an existing entry and assert that it exist.
 
   MUST_CREATE - assert that there's no such entry and create new one.  */
 
enum elf_m68k_get_entry_howto
 
  {
 
    SEARCH,
 
    FIND_OR_CREATE,
 
    MUST_FIND,
 
    MUST_CREATE
 
  };
 
 
 
/* Get or create (depending on HOWTO) entry with KEY in GOT.
 
   INFO is context in which memory should be allocated (can be NULL if
 
   HOWTO is SEARCH or MUST_FIND).  */
 
 
 
static struct elf_m68k_got_entry *
 
elf_m68k_get_got_entry (struct elf_m68k_got *got,
 
                        const struct elf_m68k_got_entry_key *key,
 
                        enum elf_m68k_get_entry_howto howto,
 
                        struct bfd_link_info *info)
 
{
 
  struct elf_m68k_got_entry entry_;
 
  struct elf_m68k_got_entry *entry;
 
  void **ptr;
 
 
 
  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
 
 
 
  if (got->entries == NULL)
 
    /* This is the first entry in ABFD.  Initialize hashtable.  */
 
    {
 
      if (howto == SEARCH)
 
        return NULL;
 
 
 
      got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
 
                                      (info),
 
                                      elf_m68k_got_entry_hash,
 
                                      elf_m68k_got_entry_eq, NULL);
 
      if (got->entries == NULL)
 
        {
 
          bfd_set_error (bfd_error_no_memory);
 
          return NULL;
 
        }
 
    }
 
 
 
  entry_.key_ = *key;
 
  ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
 
                                                ? INSERT : NO_INSERT));
 
  if (ptr == NULL)
 
    {
 
      if (howto == SEARCH)
 
        /* Entry not found.  */
 
        return NULL;
 
 
 
      /* We're out of memory.  */
 
      bfd_set_error (bfd_error_no_memory);
 
      return NULL;
 
    }
 
 
 
  if (*ptr == NULL)
 
    /* We didn't find the entry and we're asked to create a new one.  */
 
    {
 
      BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
 
 
 
      entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
 
      if (entry == NULL)
 
        return NULL;
 
 
 
      /* Initialize new entry.  */
 
      entry->key_ = *key;
 
 
 
      entry->u.s1.refcount = 0;
 
 
 
      /* Mark the entry as not initialized.  */
 
      entry->key_.type = R_68K_max;
 
 
 
      *ptr = entry;
 
    }
 
  else
 
    /* We found the entry.  */
 
    {
 
      BFD_ASSERT (howto != MUST_CREATE);
 
 
 
      entry = *ptr;
 
    }
 
 
 
  return entry;
 
}
 
 
 
/* Update GOT counters when merging entry of WAS type with entry of NEW type.
 
   Return the value to which ENTRY's type should be set.  */
 
 
 
static enum elf_m68k_reloc_type
 
elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
 
                                enum elf_m68k_reloc_type was,
 
                                enum elf_m68k_reloc_type new_reloc)
 
{
 
  enum elf_m68k_got_offset_size was_size;
 
  enum elf_m68k_got_offset_size new_size;
 
  bfd_vma n_slots;
 
 
 
  if (was == R_68K_max)
 
    /* The type of the entry is not initialized yet.  */
 
    {
 
      /* Update all got->n_slots counters, including n_slots[R_32].  */
 
      was_size = R_LAST;
 
 
 
      was = new_reloc;
 
    }
 
  else
 
    {
 
      /* !!! We, probably, should emit an error rather then fail on assert
 
         in such a case.  */
 
      BFD_ASSERT (elf_m68k_reloc_got_type (was)
 
                  == elf_m68k_reloc_got_type (new_reloc));
 
 
 
      was_size = elf_m68k_reloc_got_offset_size (was);
 
    }
 
 
 
  new_size = elf_m68k_reloc_got_offset_size (new_reloc);
 
  n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
 
 
 
  while (was_size > new_size)
 
    {
 
      --was_size;
 
      got->n_slots[was_size] += n_slots;
 
    }
 
 
 
  if (new_reloc > was)
 
    /* Relocations are ordered from bigger got offset size to lesser,
 
       so choose the relocation type with lesser offset size.  */
 
    was = new_reloc;
 
 
 
  return was;
 
}
 
 
 
/* Update GOT counters when removing an entry of type TYPE.  */
 
 
 
static void
 
elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
 
                                enum elf_m68k_reloc_type type)
 
{
 
  enum elf_m68k_got_offset_size os;
 
  bfd_vma n_slots;
 
 
 
  n_slots = elf_m68k_reloc_got_n_slots (type);
 
 
 
  /* Decrese counter of slots with offset size corresponding to TYPE
 
     and all greater offset sizes.  */
 
  for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
 
    {
 
      BFD_ASSERT (got->n_slots[os] >= n_slots);
 
 
 
      got->n_slots[os] -= n_slots;
 
    }
 
}
 
 
 
/* Add new or update existing entry to GOT.
 
   H, ABFD, TYPE and SYMNDX is data for the entry.
 
   INFO is a context where memory should be allocated.  */
 
 
 
static struct elf_m68k_got_entry *
 
elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
 
                           struct elf_link_hash_entry *h,
 
                           const bfd *abfd,
 
                           enum elf_m68k_reloc_type reloc_type,
 
                           unsigned long symndx,
 
                           struct bfd_link_info *info)
 
{
 
  struct elf_m68k_got_entry_key key_;
 
  struct elf_m68k_got_entry *entry;
 
 
 
  if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
 
    elf_m68k_hash_entry (h)->got_entry_key
 
      = elf_m68k_multi_got (info)->global_symndx++;
 
 
 
  elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
 
 
 
  entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
 
  if (entry == NULL)
 
    return NULL;
 
 
 
  /* Determine entry's type and update got->n_slots counters.  */
 
  entry->key_.type = elf_m68k_update_got_entry_type (got,
 
                                                     entry->key_.type,
 
                                                     reloc_type);
 
 
 
  /* Update refcount.  */
 
  ++entry->u.s1.refcount;
 
 
 
  if (entry->u.s1.refcount == 1)
 
    /* We see this entry for the first time.  */
 
    {
 
      if (entry->key_.bfd != NULL)
 
        got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
 
    }
 
 
 
  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
 
 
 
  if ((got->n_slots[R_8]
 
       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
 
      || (got->n_slots[R_16]
 
          > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
 
    /* This BFD has too many relocation.  */
 
    {
 
      if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
 
        (*_bfd_error_handler) (_("%B: GOT overflow: "
 
                                 "Number of relocations with 8-bit "
 
                                 "offset > %d"),
 
                               abfd,
 
                               ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
 
      else
 
        (*_bfd_error_handler) (_("%B: GOT overflow: "
 
                                 "Number of relocations with 8- or 16-bit "
 
                                 "offset > %d"),
 
                               abfd,
 
                               ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
 
 
 
      return NULL;
 
    }
 
 
 
  return entry;
 
}
 
 
 
/* Compute the hash value of the bfd in a bfd2got hash entry.  */
 
 
 
static hashval_t
 
elf_m68k_bfd2got_entry_hash (const void *entry)
 
{
 
  const struct elf_m68k_bfd2got_entry *e;
 
 
 
  e = (const struct elf_m68k_bfd2got_entry *) entry;
 
 
 
  return e->bfd->id;
 
}
 
 
 
/* Check whether two hash entries have the same bfd.  */
 
 
 
static int
 
elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
 
{
 
  const struct elf_m68k_bfd2got_entry *e1;
 
  const struct elf_m68k_bfd2got_entry *e2;
 
 
 
  e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
 
  e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
 
 
 
  return e1->bfd == e2->bfd;
 
}
 
 
 
/* Destruct a bfd2got entry.  */
 
 
 
static void
 
elf_m68k_bfd2got_entry_del (void *_entry)
 
{
 
  struct elf_m68k_bfd2got_entry *entry;
 
 
 
  entry = (struct elf_m68k_bfd2got_entry *) _entry;
 
 
 
  BFD_ASSERT (entry->got != NULL);
 
  elf_m68k_clear_got (entry->got);
 
}
 
 
 
/* Find existing or create new (depending on HOWTO) bfd2got entry in
 
   MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
 
   memory should be allocated.  */
 
 
 
static struct elf_m68k_bfd2got_entry *
 
elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
 
                            const bfd *abfd,
 
                            enum elf_m68k_get_entry_howto howto,
 
                            struct bfd_link_info *info)
 
{
 
  struct elf_m68k_bfd2got_entry entry_;
 
  void **ptr;
 
  struct elf_m68k_bfd2got_entry *entry;
 
 
 
  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
 
 
 
  if (multi_got->bfd2got == NULL)
 
    /* This is the first GOT.  Initialize bfd2got.  */
 
    {
 
      if (howto == SEARCH)
 
        return NULL;
 
 
 
      multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
 
                                            elf_m68k_bfd2got_entry_eq,
 
                                            elf_m68k_bfd2got_entry_del);
 
      if (multi_got->bfd2got == NULL)
 
        {
 
          bfd_set_error (bfd_error_no_memory);
 
          return NULL;
 
        }
 
    }
 
 
 
  entry_.bfd = abfd;
 
  ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
 
                                                      ? INSERT : NO_INSERT));
 
  if (ptr == NULL)
 
    {
 
      if (howto == SEARCH)
 
        /* Entry not found.  */
 
        return NULL;
 
 
 
      /* We're out of memory.  */
 
      bfd_set_error (bfd_error_no_memory);
 
      return NULL;
 
    }
 
 
 
  if (*ptr == NULL)
 
    /* Entry was not found.  Create new one.  */
 
    {
 
      BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
 
 
 
      entry = ((struct elf_m68k_bfd2got_entry *)
 
               bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
 
      if (entry == NULL)
 
        return NULL;
 
 
 
      entry->bfd = abfd;
 
 
 
      entry->got = elf_m68k_create_empty_got (info);
 
      if (entry->got == NULL)
 
        return NULL;
 
 
 
      *ptr = entry;
 
    }
 
  else
 
    {
 
      BFD_ASSERT (howto != MUST_CREATE);
 
 
 
      /* Return existing entry.  */
 
      entry = *ptr;
 
    }
 
 
 
  return entry;
 
}
 
 
 
struct elf_m68k_can_merge_gots_arg
 
{
 
  /* A current_got that we constructing a DIFF against.  */
 
  struct elf_m68k_got *big;
 
 
 
  /* GOT holding entries not present or that should be changed in
 
     BIG.  */
 
  struct elf_m68k_got *diff;
 
 
 
  /* Context where to allocate memory.  */
 
  struct bfd_link_info *info;
 
 
 
  /* Error flag.  */
 
  bfd_boolean error_p;
 
};
 
 
 
/* Process a single entry from the small GOT to see if it should be added
 
   or updated in the big GOT.  */
 
 
 
static int
 
elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
 
{
 
  const struct elf_m68k_got_entry *entry1;
 
  struct elf_m68k_can_merge_gots_arg *arg;
 
  const struct elf_m68k_got_entry *entry2;
 
  enum elf_m68k_reloc_type type;
 
 
 
  entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
 
  arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
 
 
 
  entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
 
 
 
  if (entry2 != NULL)
 
    /* We found an existing entry.  Check if we should update it.  */
 
    {
 
      type = elf_m68k_update_got_entry_type (arg->diff,
 
                                             entry2->key_.type,
 
                                             entry1->key_.type);
 
 
 
      if (type == entry2->key_.type)
 
        /* ENTRY1 doesn't update data in ENTRY2.  Skip it.
 
           To skip creation of difference entry we use the type,
 
           which we won't see in GOT entries for sure.  */
 
        type = R_68K_max;
 
    }
 
  else
 
    /* We didn't find the entry.  Add entry1 to DIFF.  */
 
    {
 
      BFD_ASSERT (entry1->key_.type != R_68K_max);
 
 
 
      type = elf_m68k_update_got_entry_type (arg->diff,
 
                                             R_68K_max, entry1->key_.type);
 
 
 
      if (entry1->key_.bfd != NULL)
 
        arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
 
    }
 
 
 
  if (type != R_68K_max)
 
    /* Create an entry in DIFF.  */
 
    {
 
      struct elf_m68k_got_entry *entry;
 
 
 
      entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
 
                                      arg->info);
 
      if (entry == NULL)
 
        {
 
          arg->error_p = TRUE;
 
          return 0;
 
        }
 
 
 
      entry->key_.type = type;
 
    }
 
 
 
  return 1;
 
}
 
 
 
/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
 
   Construct DIFF GOT holding the entries which should be added or updated
 
   in BIG GOT to accumulate information from SMALL.
 
   INFO is the context where memory should be allocated.  */
 
 
 
static bfd_boolean
 
elf_m68k_can_merge_gots (struct elf_m68k_got *big,
 
                         const struct elf_m68k_got *small,
 
                         struct bfd_link_info *info,
 
                         struct elf_m68k_got *diff)
 
{
 
  struct elf_m68k_can_merge_gots_arg arg_;
 
 
 
  BFD_ASSERT (small->offset == (bfd_vma) -1);
 
 
 
  arg_.big = big;
 
  arg_.diff = diff;
 
  arg_.info = info;
 
  arg_.error_p = FALSE;
 
  htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
 
  if (arg_.error_p)
 
    {
 
      diff->offset = 0;
 
      return FALSE;
 
    }
 
 
 
  /* Check for overflow.  */
 
  if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
 
       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
 
      || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
 
          > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
 
    return FALSE;
 
 
 
  return TRUE;
 
}
 
 
 
struct elf_m68k_merge_gots_arg
 
{
 
  /* The BIG got.  */
 
  struct elf_m68k_got *big;
 
 
 
  /* Context where memory should be allocated.  */
 
  struct bfd_link_info *info;
 
 
 
  /* Error flag.  */
 
  bfd_boolean error_p;
 
};
 
 
 
/* Process a single entry from DIFF got.  Add or update corresponding
 
   entry in the BIG got.  */
 
 
 
static int
 
elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
 
{
 
  const struct elf_m68k_got_entry *from;
 
  struct elf_m68k_merge_gots_arg *arg;
 
  struct elf_m68k_got_entry *to;
 
 
 
  from = (const struct elf_m68k_got_entry *) *entry_ptr;
 
  arg = (struct elf_m68k_merge_gots_arg *) _arg;
 
 
 
  to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
 
                               arg->info);
 
  if (to == NULL)
 
    {
 
      arg->error_p = TRUE;
 
      return 0;
 
    }
 
 
 
  BFD_ASSERT (to->u.s1.refcount == 0);
 
  /* All we need to merge is TYPE.  */
 
  to->key_.type = from->key_.type;
 
 
 
  return 1;
 
}
 
 
 
/* Merge data from DIFF to BIG.  INFO is context where memory should be
 
   allocated.  */
 
 
 
static bfd_boolean
 
elf_m68k_merge_gots (struct elf_m68k_got *big,
 
                     struct elf_m68k_got *diff,
 
                     struct bfd_link_info *info)
 
{
 
  if (diff->entries != NULL)
 
    /* DIFF is not empty.  Merge it into BIG GOT.  */
 
    {
 
      struct elf_m68k_merge_gots_arg arg_;
 
 
 
      /* Merge entries.  */
 
      arg_.big = big;
 
      arg_.info = info;
 
      arg_.error_p = FALSE;
 
      htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
 
      if (arg_.error_p)
 
        return FALSE;
 
 
 
      /* Merge counters.  */
 
      big->n_slots[R_8] += diff->n_slots[R_8];
 
      big->n_slots[R_16] += diff->n_slots[R_16];
 
      big->n_slots[R_32] += diff->n_slots[R_32];
 
      big->local_n_slots += diff->local_n_slots;
 
    }
 
  else
 
    /* DIFF is empty.  */
 
    {
 
      BFD_ASSERT (diff->n_slots[R_8] == 0);
 
      BFD_ASSERT (diff->n_slots[R_16] == 0);
 
      BFD_ASSERT (diff->n_slots[R_32] == 0);
 
      BFD_ASSERT (diff->local_n_slots == 0);
 
    }
 
 
 
  BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
 
              || ((big->n_slots[R_8]
 
                   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
 
                  && (big->n_slots[R_16]
 
                      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
 
 
 
  return TRUE;
 
}
 
 
 
struct elf_m68k_finalize_got_offsets_arg
 
{
 
  /* Ranges of the offsets for GOT entries.
 
     R_x entries receive offsets between offset1[R_x] and offset2[R_x].
 
     R_x is R_8, R_16 and R_32.  */
 
  bfd_vma *offset1;
 
  bfd_vma *offset2;
 
 
 
  /* Mapping from global symndx to global symbols.
 
     This is used to build lists of got entries for global symbols.  */
 
  struct elf_m68k_link_hash_entry **symndx2h;
 
 
 
  bfd_vma n_ldm_entries;
 
};
 
 
 
/* Assign ENTRY an offset.  Build list of GOT entries for global symbols
 
   along the way.  */
 
 
 
static int
 
elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
 
{
 
  struct elf_m68k_got_entry *entry;
 
  struct elf_m68k_finalize_got_offsets_arg *arg;
 
 
 
  enum elf_m68k_got_offset_size got_offset_size;
 
  bfd_vma entry_size;
 
 
 
  entry = (struct elf_m68k_got_entry *) *entry_ptr;
 
  arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
 
 
 
  /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
 
  BFD_ASSERT (entry->u.s1.refcount == 0);
 
 
 
  /* Get GOT offset size for the entry .  */
 
  got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
 
 
 
  /* Calculate entry size in bytes.  */
 
  entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
 
 
 
  /* Check if we should switch to negative range of the offsets. */
 
  if (arg->offset1[got_offset_size] + entry_size
 
      > arg->offset2[got_offset_size])
 
    {
 
      /* Verify that this is the only switch to negative range for
 
         got_offset_size.  If this assertion fails, then we've miscalculated
 
         range for got_offset_size entries in
 
         elf_m68k_finalize_got_offsets.  */
 
      BFD_ASSERT (arg->offset2[got_offset_size]
 
                  != arg->offset2[-(int) got_offset_size - 1]);
 
 
 
      /* Switch.  */
 
      arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
 
      arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
 
 
 
      /* Verify that now we have enough room for the entry.  */
 
      BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
 
                  <= arg->offset2[got_offset_size]);
 
    }
 
 
 
  /* Assign offset to entry.  */
 
  entry->u.s2.offset = arg->offset1[got_offset_size];
 
  arg->offset1[got_offset_size] += entry_size;
 
 
 
  if (entry->key_.bfd == NULL)
 
    /* Hook up this entry into the list of got_entries of H.  */
 
    {
 
      struct elf_m68k_link_hash_entry *h;
 
 
 
      h = arg->symndx2h[entry->key_.symndx];
 
      if (h != NULL)
 
        {
 
          entry->u.s2.next = h->glist;
 
          h->glist = entry;
 
        }
 
      else
 
        /* This should be the entry for TLS_LDM relocation then.  */
 
        {
 
          BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
 
                       == R_68K_TLS_LDM32)
 
                      && entry->key_.symndx == 0);
 
 
 
          ++arg->n_ldm_entries;
 
        }
 
    }
 
  else
 
    /* This entry is for local symbol.  */
 
    entry->u.s2.next = NULL;
 
 
 
  return 1;
 
}
 
 
 
/* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
 
   should use negative offsets.
 
   Build list of GOT entries for global symbols along the way.
 
   SYMNDX2H is mapping from global symbol indices to actual
 
   global symbols.
 
   Return offset at which next GOT should start.  */
 
 
 
static void
 
elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
 
                               bfd_boolean use_neg_got_offsets_p,
 
                               struct elf_m68k_link_hash_entry **symndx2h,
 
                               bfd_vma *final_offset, bfd_vma *n_ldm_entries)
 
{
 
  struct elf_m68k_finalize_got_offsets_arg arg_;
 
  bfd_vma offset1_[2 * R_LAST];
 
  bfd_vma offset2_[2 * R_LAST];
 
  int i;
 
  bfd_vma start_offset;
 
 
 
  BFD_ASSERT (got->offset != (bfd_vma) -1);
 
 
 
  /* We set entry offsets relative to the .got section (and not the
 
     start of a particular GOT), so that we can use them in
 
     finish_dynamic_symbol without needing to know the GOT which they come
 
     from.  */
 
 
 
  /* Put offset1 in the middle of offset1_, same for offset2.  */
 
  arg_.offset1 = offset1_ + R_LAST;
 
  arg_.offset2 = offset2_ + R_LAST;
 
 
 
  start_offset = got->offset;
 
 
 
  if (use_neg_got_offsets_p)
 
    /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
 
    i = -(int) R_32 - 1;
 
  else
 
    /* Setup positives ranges for R_8, R_16 and R_32.  */
 
    i = (int) R_8;
 
 
 
  for (; i <= (int) R_32; ++i)
 
    {
 
      int j;
 
      size_t n;
 
 
 
      /* Set beginning of the range of offsets I.  */
 
      arg_.offset1[i] = start_offset;
 
 
 
      /* Calculate number of slots that require I offsets.  */
 
      j = (i >= 0) ? i : -i - 1;
 
      n = (j >= 1) ? got->n_slots[j - 1] : 0;
 
      n = got->n_slots[j] - n;
 
 
 
      if (use_neg_got_offsets_p && n != 0)
 
        {
 
          if (i < 0)
 
            /* We first fill the positive side of the range, so we might
 
               end up with one empty slot at that side when we can't fit
 
               whole 2-slot entry.  Account for that at negative side of
 
               the interval with one additional entry.  */
 
            n = n / 2 + 1;
 
          else
 
            /* When the number of slots is odd, make positive side of the
 
               range one entry bigger.  */
 
            n = (n + 1) / 2;
 
        }
 
 
 
      /* N is the number of slots that require I offsets.
 
         Calculate length of the range for I offsets.  */
 
      n = 4 * n;
 
 
 
      /* Set end of the range.  */
 
      arg_.offset2[i] = start_offset + n;
 
 
 
      start_offset = arg_.offset2[i];
 
    }
 
 
 
  if (!use_neg_got_offsets_p)
 
    /* Make sure that if we try to switch to negative offsets in
 
       elf_m68k_finalize_got_offsets_1, the assert therein will catch
 
       the bug.  */
 
    for (i = R_8; i <= R_32; ++i)
 
      arg_.offset2[-i - 1] = arg_.offset2[i];
 
 
 
  /* Setup got->offset.  offset1[R_8] is either in the middle or at the
 
     beginning of GOT depending on use_neg_got_offsets_p.  */
 
  got->offset = arg_.offset1[R_8];
 
 
 
  arg_.symndx2h = symndx2h;
 
  arg_.n_ldm_entries = 0;
 
 
 
  /* Assign offsets.  */
 
  htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
 
 
 
  /* Check offset ranges we have actually assigned.  */
 
  for (i = (int) R_8; i <= (int) R_32; ++i)
 
    BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
 
 
 
  *final_offset = start_offset;
 
  *n_ldm_entries = arg_.n_ldm_entries;
 
}
 
 
 
struct elf_m68k_partition_multi_got_arg
 
{
 
  /* The GOT we are adding entries to.  Aka big got.  */
 
  struct elf_m68k_got *current_got;
 
 
 
  /* Offset to assign the next CURRENT_GOT.  */
 
  bfd_vma offset;
 
 
 
  /* Context where memory should be allocated.  */
 
  struct bfd_link_info *info;
 
 
 
  /* Total number of slots in the .got section.
 
     This is used to calculate size of the .got and .rela.got sections.  */
 
  bfd_vma n_slots;
 
 
 
  /* Difference in numbers of allocated slots in the .got section
 
     and necessary relocations in the .rela.got section.
 
     This is used to calculate size of the .rela.got section.  */
 
  bfd_vma slots_relas_diff;
 
 
 
  /* Error flag.  */
 
  bfd_boolean error_p;
 
 
 
  /* Mapping from global symndx to global symbols.
 
     This is used to build lists of got entries for global symbols.  */
 
  struct elf_m68k_link_hash_entry **symndx2h;
 
};
 
 
 
static void
 
elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
 
{
 
  bfd_vma n_ldm_entries;
 
 
 
  elf_m68k_finalize_got_offsets (arg->current_got,
 
                                 (elf_m68k_hash_table (arg->info)
 
                                  ->use_neg_got_offsets_p),
 
                                 arg->symndx2h,
 
                                 &arg->offset, &n_ldm_entries);
 
 
 
  arg->n_slots += arg->current_got->n_slots[R_32];
 
 
 
  if (!arg->info->shared)
 
    /* If we are generating a shared object, we need to
 
       output a R_68K_RELATIVE reloc so that the dynamic
 
       linker can adjust this GOT entry.  Overwise we
 
       don't need space in .rela.got for local symbols.  */
 
    arg->slots_relas_diff += arg->current_got->local_n_slots;
 
 
 
  /* @LDM relocations require a 2-slot GOT entry, but only
 
     one relocation.  Account for that.  */
 
  arg->slots_relas_diff += n_ldm_entries;
 
 
 
  BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
 
}
 
 
 
 
 
/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
 
   or start a new CURRENT_GOT.  */
 
 
 
static int
 
elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
 
{
 
  struct elf_m68k_bfd2got_entry *entry;
 
  struct elf_m68k_partition_multi_got_arg *arg;
 
  struct elf_m68k_got *got;
 
  struct elf_m68k_got diff_;
 
  struct elf_m68k_got *diff;
 
 
 
  entry = (struct elf_m68k_bfd2got_entry *) *_entry;
 
  arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
 
 
 
  got = entry->got;
 
  BFD_ASSERT (got != NULL);
 
  BFD_ASSERT (got->offset == (bfd_vma) -1);
 
 
 
  diff = NULL;
 
 
 
  if (arg->current_got != NULL)
 
    /* Construct diff.  */
 
    {
 
      diff = &diff_;
 
      elf_m68k_init_got (diff);
 
 
 
      if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
 
        {
 
          if (diff->offset == 0)
 
            /* Offset set to 0 in the diff_ indicates an error.  */
 
            {
 
              arg->error_p = TRUE;
 
              goto final_return;
 
            }
 
 
 
          if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
 
            {
 
              elf_m68k_clear_got (diff);
 
              /* Schedule to finish up current_got and start new one.  */
 
              diff = NULL;
 
            }
 
          /* else
 
             Merge GOTs no matter what.  If big GOT overflows,
 
             we'll fail in relocate_section due to truncated relocations.
 
 
 
             ??? May be fail earlier?  E.g., in can_merge_gots.  */
 
        }
 
    }
 
  else
 
    /* Diff of got against empty current_got is got itself.  */
 
    {
 
      /* Create empty current_got to put subsequent GOTs to.  */
 
      arg->current_got = elf_m68k_create_empty_got (arg->info);
 
      if (arg->current_got == NULL)
 
        {
 
          arg->error_p = TRUE;
 
          goto final_return;
 
        }
 
 
 
      arg->current_got->offset = arg->offset;
 
 
 
      diff = got;
 
    }
 
 
 
  if (diff != NULL)
 
    {
 
      if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
 
        {
 
          arg->error_p = TRUE;
 
          goto final_return;
 
        }
 
 
 
      /* Now we can free GOT.  */
 
      elf_m68k_clear_got (got);
 
 
 
      entry->got = arg->current_got;
 
    }
 
  else
 
    {
 
      /* Finish up current_got.  */
 
      elf_m68k_partition_multi_got_2 (arg);
 
 
 
      /* Schedule to start a new current_got.  */
 
      arg->current_got = NULL;
 
 
 
      /* Retry.  */
 
      if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
 
        {
 
          BFD_ASSERT (arg->error_p);
 
          goto final_return;
 
        }
 
    }
 
 
 
 final_return:
 
  if (diff != NULL)
 
    elf_m68k_clear_got (diff);
 
 
 
  return arg->error_p == FALSE ? 1 : 0;
 
}
 
 
 
/* Helper function to build symndx2h mapping.  */
 
 
 
static bfd_boolean
 
elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
 
                          void *_arg)
 
{
 
  struct elf_m68k_link_hash_entry *h;
 
 
 
  h = elf_m68k_hash_entry (_h);
 
 
 
  if (h->got_entry_key != 0)
 
    /* H has at least one entry in the GOT.  */
 
    {
 
      struct elf_m68k_partition_multi_got_arg *arg;
 
 
 
      arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
 
 
 
      BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
 
      arg->symndx2h[h->got_entry_key] = h;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
 
   lists of GOT entries for global symbols.
 
   Calculate sizes of .got and .rela.got sections.  */
 
 
 
static bfd_boolean
 
elf_m68k_partition_multi_got (struct bfd_link_info *info)
 
{
 
  struct elf_m68k_multi_got *multi_got;
 
  struct elf_m68k_partition_multi_got_arg arg_;
 
 
 
  multi_got = elf_m68k_multi_got (info);
 
 
 
  arg_.current_got = NULL;
 
  arg_.offset = 0;
 
  arg_.info = info;
 
  arg_.n_slots = 0;
 
  arg_.slots_relas_diff = 0;
 
  arg_.error_p = FALSE;
 
 
 
  if (multi_got->bfd2got != NULL)
 
    {
 
      /* Initialize symndx2h mapping.  */
 
      {
 
        arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
 
                                     * sizeof (*arg_.symndx2h));
 
        if (arg_.symndx2h == NULL)
 
          return FALSE;
 
 
 
        elf_link_hash_traverse (elf_hash_table (info),
 
                                elf_m68k_init_symndx2h_1, &arg_);
 
      }
 
 
 
      /* Partition.  */
 
      htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
 
                     &arg_);
 
      if (arg_.error_p)
 
        {
 
          free (arg_.symndx2h);
 
          arg_.symndx2h = NULL;
 
 
 
          return FALSE;
 
        }
 
 
 
      /* Finish up last current_got.  */
 
      elf_m68k_partition_multi_got_2 (&arg_);
 
 
 
      free (arg_.symndx2h);
 
    }
 
 
 
  if (elf_hash_table (info)->dynobj != NULL)
 
    /* Set sizes of .got and .rela.got sections.  */
 
    {
 
      asection *s;
 
 
 
      s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
 
      if (s != NULL)
 
        s->size = arg_.offset;
 
      else
 
        BFD_ASSERT (arg_.offset == 0);
 
 
 
      BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
 
      arg_.n_slots -= arg_.slots_relas_diff;
 
 
 
      s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
 
      if (s != NULL)
 
        s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
 
      else
 
        BFD_ASSERT (arg_.n_slots == 0);
 
    }
 
  else
 
    BFD_ASSERT (multi_got->bfd2got == NULL);
 
 
 
  return TRUE;
 
}
 
 
 
/* Specialized version of elf_m68k_get_got_entry that returns pointer
 
   to hashtable slot, thus allowing removal of entry via
 
   elf_m68k_remove_got_entry.  */
 
 
 
static struct elf_m68k_got_entry **
 
elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
 
                             struct elf_m68k_got_entry_key *key)
 
{
 
  void **ptr;
 
  struct elf_m68k_got_entry entry_;
 
  struct elf_m68k_got_entry **entry_ptr;
 
 
 
  entry_.key_ = *key;
 
  ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
 
  BFD_ASSERT (ptr != NULL);
 
 
 
  entry_ptr = (struct elf_m68k_got_entry **) ptr;
 
 
 
  return entry_ptr;
 
}
 
 
 
/* Remove entry pointed to by ENTRY_PTR from GOT.  */
 
 
 
static void
 
elf_m68k_remove_got_entry (struct elf_m68k_got *got,
 
                           struct elf_m68k_got_entry **entry_ptr)
 
{
 
  struct elf_m68k_got_entry *entry;
 
 
 
  entry = *entry_ptr;
 
 
 
  /* Check that offsets have not been finalized yet.  */
 
  BFD_ASSERT (got->offset == (bfd_vma) -1);
 
  /* Check that this entry is indeed unused.  */
 
  BFD_ASSERT (entry->u.s1.refcount == 0);
 
 
 
  elf_m68k_remove_got_entry_type (got, entry->key_.type);
 
 
 
  if (entry->key_.bfd != NULL)
 
    got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
 
 
 
  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
 
 
 
  htab_clear_slot (got->entries, (void **) entry_ptr);
 
}
 
 
 
/* Copy any information related to dynamic linking from a pre-existing
 
   symbol to a newly created symbol.  Also called to copy flags and
 
   other back-end info to a weakdef, in which case the symbol is not
 
   newly created and plt/got refcounts and dynamic indices should not
 
   be copied.  */
 
 
 
static void
 
elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
 
                               struct elf_link_hash_entry *_dir,
 
                               struct elf_link_hash_entry *_ind)
 
{
 
  struct elf_m68k_link_hash_entry *dir;
 
  struct elf_m68k_link_hash_entry *ind;
 
 
 
  _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
 
 
 
  if (_ind->root.type != bfd_link_hash_indirect)
 
    return;
 
 
 
  dir = elf_m68k_hash_entry (_dir);
 
  ind = elf_m68k_hash_entry (_ind);
 
 
 
  /* Any absolute non-dynamic relocations against an indirect or weak
 
     definition will be against the target symbol.  */
 
  _dir->non_got_ref |= _ind->non_got_ref;
 
 
 
  /* We might have a direct symbol already having entries in the GOTs.
 
     Update its key only in case indirect symbol has GOT entries and
 
     assert that both indirect and direct symbols don't have GOT entries
 
     at the same time.  */
 
  if (ind->got_entry_key != 0)
 
    {
 
      BFD_ASSERT (dir->got_entry_key == 0);
 
      /* Assert that GOTs aren't partioned yet.  */
 
      BFD_ASSERT (ind->glist == NULL);
 
 
 
      dir->got_entry_key = ind->got_entry_key;
 
      ind->got_entry_key = 0;
 
    }
 
}
 
 
 
/* Look through the relocs for a section during the first phase, and
 
   allocate space in the global offset table or procedure linkage
 
   table.  */
 
 
 
static bfd_boolean
 
elf_m68k_check_relocs (abfd, info, sec, relocs)
 
     bfd *abfd;
 
     struct bfd_link_info *info;
 
     asection *sec;
 
     const Elf_Internal_Rela *relocs;
 
{
 
  bfd *dynobj;
 
  Elf_Internal_Shdr *symtab_hdr;
 
  struct elf_link_hash_entry **sym_hashes;
 
  const Elf_Internal_Rela *rel;
 
  const Elf_Internal_Rela *rel_end;
 
  asection *sgot;
 
  asection *srelgot;
 
  asection *sreloc;
 
  struct elf_m68k_got *got;
 
 
 
  if (info->relocatable)
 
    return TRUE;
 
 
 
  dynobj = elf_hash_table (info)->dynobj;
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
  sym_hashes = elf_sym_hashes (abfd);
 
 
 
  sgot = NULL;
 
  srelgot = NULL;
 
  sreloc = NULL;
 
 
 
  got = NULL;
 
 
 
  rel_end = relocs + sec->reloc_count;
 
  for (rel = relocs; rel < rel_end; rel++)
 
    {
 
      unsigned long r_symndx;
 
      struct elf_link_hash_entry *h;
 
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
 
 
 
      if (r_symndx < symtab_hdr->sh_info)
 
        h = NULL;
 
      else
 
        {
 
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
        }
        }
 
 
Line 748... Line 2565...
        case R_68K_GOT32:
        case R_68K_GOT32:
          if (h != NULL
          if (h != NULL
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
 
 
 
          /* Relative GOT relocations.  */
        case R_68K_GOT8O:
        case R_68K_GOT8O:
        case R_68K_GOT16O:
        case R_68K_GOT16O:
        case R_68K_GOT32O:
        case R_68K_GOT32O:
 
          /* Fall through.  */
 
 
 
          /* TLS relocations.  */
 
        case R_68K_TLS_GD8:
 
        case R_68K_TLS_GD16:
 
        case R_68K_TLS_GD32:
 
        case R_68K_TLS_LDM8:
 
        case R_68K_TLS_LDM16:
 
        case R_68K_TLS_LDM32:
 
        case R_68K_TLS_IE8:
 
        case R_68K_TLS_IE16:
 
        case R_68K_TLS_IE32:
 
 
 
        case R_68K_TLS_TPREL32:
 
        case R_68K_TLS_DTPREL32:
 
 
 
          if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
 
              && info->shared)
 
            /* Do the special chorus for libraries with static TLS.  */
 
            info->flags |= DF_STATIC_TLS;
 
 
          /* This symbol requires a global offset table entry.  */
          /* This symbol requires a global offset table entry.  */
 
 
          if (dynobj == NULL)
          if (dynobj == NULL)
            {
            {
              /* Create the .got section.  */
              /* Create the .got section.  */
Line 787... Line 2627...
                      || !bfd_set_section_alignment (dynobj, srelgot, 2))
                      || !bfd_set_section_alignment (dynobj, srelgot, 2))
                    return FALSE;
                    return FALSE;
                }
                }
            }
            }
 
 
          if (h != NULL)
          if (got == NULL)
            {
 
              if (h->got.refcount == 0)
 
                {
 
                  /* Make sure this symbol is output as a dynamic symbol.  */
 
                  if (h->dynindx == -1
 
                      && !h->forced_local)
 
                    {
                    {
                      if (!bfd_elf_link_record_dynamic_symbol (info, h))
              struct elf_m68k_bfd2got_entry *bfd2got_entry;
 
 
 
              bfd2got_entry
 
                = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
 
                                              abfd, FIND_OR_CREATE, info);
 
              if (bfd2got_entry == NULL)
                        return FALSE;
                        return FALSE;
                    }
 
 
 
                  /* Allocate space in the .got section.  */
              got = bfd2got_entry->got;
                  sgot->size += 4;
              BFD_ASSERT (got != NULL);
                  /* Allocate relocation space.  */
 
                  srelgot->size += sizeof (Elf32_External_Rela);
 
                }
                }
              h->got.refcount++;
 
            }
 
          else
 
            {
 
              /* This is a global offset table entry for a local symbol.  */
 
              if (local_got_refcounts == NULL)
 
                {
                {
                  bfd_size_type size;
            struct elf_m68k_got_entry *got_entry;
 
 
                  size = symtab_hdr->sh_info;
            /* Add entry to got.  */
                  size *= sizeof (bfd_signed_vma);
            got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
                  local_got_refcounts = ((bfd_signed_vma *)
                                                   ELF32_R_TYPE (rel->r_info),
                                         bfd_zalloc (abfd, size));
                                                   r_symndx, info);
                  if (local_got_refcounts == NULL)
            if (got_entry == NULL)
                    return FALSE;
                    return FALSE;
                  elf_local_got_refcounts (abfd) = local_got_refcounts;
 
                }
            if (got_entry->u.s1.refcount == 1)
              if (local_got_refcounts[r_symndx] == 0)
 
                {
                {
                  sgot->size += 4;
                /* Make sure this symbol is output as a dynamic symbol.  */
                  if (info->shared)
                if (h != NULL
 
                    && h->dynindx == -1
 
                    && !h->forced_local)
                    {
                    {
                      /* If we are generating a shared object, we need to
                    if (!bfd_elf_link_record_dynamic_symbol (info, h))
                         output a R_68K_RELATIVE reloc so that the dynamic
                      return FALSE;
                         linker can adjust this GOT entry.  */
 
                      srelgot->size += sizeof (Elf32_External_Rela);
 
                    }
                    }
                }
                }
              local_got_refcounts[r_symndx]++;
 
            }
            }
 
 
          break;
          break;
 
 
        case R_68K_PLT8:
        case R_68K_PLT8:
        case R_68K_PLT16:
        case R_68K_PLT16:
        case R_68K_PLT32:
        case R_68K_PLT32:
Line 919... Line 2749...
          if (h != NULL)
          if (h != NULL)
            {
            {
              /* Make sure a plt entry is created for this symbol if it
              /* Make sure a plt entry is created for this symbol if it
                 turns out to be a function defined by a dynamic object.  */
                 turns out to be a function defined by a dynamic object.  */
              h->plt.refcount++;
              h->plt.refcount++;
 
 
 
              if (!info->shared)
 
                /* This symbol needs a non-GOT reference.  */
 
                h->non_got_ref = 1;
            }
            }
 
 
          /* If we are creating a shared library, we need to copy the
          /* If we are creating a shared library, we need to copy the
             reloc into the shared library.  */
             reloc into the shared library.  */
          if (info->shared
          if (info->shared
Line 931... Line 2765...
              /* When creating a shared object, we must copy these
              /* When creating a shared object, we must copy these
                 reloc types into the output file.  We create a reloc
                 reloc types into the output file.  We create a reloc
                 section in dynobj and make room for this reloc.  */
                 section in dynobj and make room for this reloc.  */
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  const char *name;
                  sreloc = _bfd_elf_make_dynamic_reloc_section
 
                    (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
 
 
                  name = (bfd_elf_string_from_elf_section
 
                          (abfd,
 
                           elf_elfheader (abfd)->e_shstrndx,
 
                           elf_section_data (sec)->rel_hdr.sh_name));
 
                  if (name == NULL)
 
                    return FALSE;
 
 
 
                  BFD_ASSERT (CONST_STRNEQ (name, ".rela")
 
                              && strcmp (bfd_get_section_name (abfd, sec),
 
                                         name + 5) == 0);
 
 
 
                  sreloc = bfd_get_section_by_name (dynobj, name);
 
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    {
 
                      sreloc = bfd_make_section_with_flags (dynobj,
 
                                                            name,
 
                                                            (SEC_ALLOC
 
                                                             | SEC_LOAD
 
                                                             | SEC_HAS_CONTENTS
 
                                                             | SEC_IN_MEMORY
 
                                                             | SEC_LINKER_CREATED
 
                                                             | SEC_READONLY));
 
                      if (sreloc == NULL
 
                          || !bfd_set_section_alignment (dynobj, sreloc, 2))
 
                        return FALSE;
                        return FALSE;
                    }
                    }
                  elf_section_data (sec)->sreloc = sreloc;
 
                }
 
 
 
              if (sec->flags & SEC_READONLY
              if (sec->flags & SEC_READONLY
                  /* Don't set DF_TEXTREL yet for PC relative
                  /* Don't set DF_TEXTREL yet for PC relative
                     relocations, they might be discarded later.  */
                     relocations, they might be discarded later.  */
                  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
                  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
Line 997... Line 2807...
                    }
                    }
                  else
                  else
                    {
                    {
                      asection *s;
                      asection *s;
                      void *vpp;
                      void *vpp;
 
                      Elf_Internal_Sym *isym;
 
 
                      s = (bfd_section_from_r_symndx
                      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
                           (abfd, &elf_m68k_hash_table (info)->sym_sec,
                                                    abfd, r_symndx);
                            sec, r_symndx));
                      if (isym == NULL)
                      if (s == NULL)
 
                        return FALSE;
                        return FALSE;
 
 
 
                      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
 
                      if (s == NULL)
 
                        s = sec;
 
 
                      vpp = &elf_section_data (s)->local_dynrel;
                      vpp = &elf_section_data (s)->local_dynrel;
                      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
                      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
                    }
                    }
 
 
                  for (p = *head; p != NULL; p = p->next)
                  for (p = *head; p != NULL; p = p->next)
Line 1085... Line 2899...
                        asection *sec,
                        asection *sec,
                        const Elf_Internal_Rela *relocs)
                        const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_signed_vma *local_got_refcounts;
 
  const Elf_Internal_Rela *rel, *relend;
  const Elf_Internal_Rela *rel, *relend;
  bfd *dynobj;
  bfd *dynobj;
  asection *sgot;
  asection *sgot;
  asection *srelgot;
  asection *srelgot;
 
  struct elf_m68k_got *got;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj == NULL)
  if (dynobj == NULL)
    return TRUE;
    return TRUE;
 
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
 
 
 
  sgot = bfd_get_section_by_name (dynobj, ".got");
  sgot = bfd_get_section_by_name (dynobj, ".got");
  srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
  srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
 
  got = NULL;
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; rel++)
  for (rel = relocs; rel < relend; rel++)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
Line 1125... Line 2939...
      switch (ELF32_R_TYPE (rel->r_info))
      switch (ELF32_R_TYPE (rel->r_info))
        {
        {
        case R_68K_GOT8:
        case R_68K_GOT8:
        case R_68K_GOT16:
        case R_68K_GOT16:
        case R_68K_GOT32:
        case R_68K_GOT32:
 
          if (h != NULL
 
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
 
            break;
 
 
 
          /* FALLTHRU */
        case R_68K_GOT8O:
        case R_68K_GOT8O:
        case R_68K_GOT16O:
        case R_68K_GOT16O:
        case R_68K_GOT32O:
        case R_68K_GOT32O:
          if (h != NULL)
          /* Fall through.  */
            {
 
              if (h->got.refcount > 0)
          /* TLS relocations.  */
                {
        case R_68K_TLS_GD8:
                  --h->got.refcount;
        case R_68K_TLS_GD16:
                  if (h->got.refcount == 0)
        case R_68K_TLS_GD32:
 
        case R_68K_TLS_LDM8:
 
        case R_68K_TLS_LDM16:
 
        case R_68K_TLS_LDM32:
 
        case R_68K_TLS_IE8:
 
        case R_68K_TLS_IE16:
 
        case R_68K_TLS_IE32:
 
 
 
        case R_68K_TLS_TPREL32:
 
        case R_68K_TLS_DTPREL32:
 
 
 
          if (got == NULL)
                    {
                    {
                      /* We don't need the .got entry any more.  */
              got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
                      sgot->size -= 4;
                                                abfd, MUST_FIND, NULL)->got;
                      srelgot->size -= sizeof (Elf32_External_Rela);
              BFD_ASSERT (got != NULL);
                    }
 
                }
                }
            }
 
          else if (local_got_refcounts != NULL)
 
            {
 
              if (local_got_refcounts[r_symndx] > 0)
 
                {
                {
                  --local_got_refcounts[r_symndx];
            struct elf_m68k_got_entry_key key_;
                  if (local_got_refcounts[r_symndx] == 0)
            struct elf_m68k_got_entry **got_entry_ptr;
 
            struct elf_m68k_got_entry *got_entry;
 
 
 
            elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
 
                                         ELF32_R_TYPE (rel->r_info));
 
            got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
 
 
 
            got_entry = *got_entry_ptr;
 
 
 
            if (got_entry->u.s1.refcount > 0)
                    {
                    {
 
                --got_entry->u.s1.refcount;
 
 
 
                if (got_entry->u.s1.refcount == 0)
                      /* We don't need the .got entry any more.  */
                      /* We don't need the .got entry any more.  */
                      sgot->size -= 4;
                  elf_m68k_remove_got_entry (got, got_entry_ptr);
                      if (info->shared)
 
                        srelgot->size -= sizeof (Elf32_External_Rela);
 
                    }
 
                }
                }
            }
            }
          break;
          break;
 
 
        case R_68K_PLT8:
        case R_68K_PLT8:
Line 1208... Line 3043...
   It's a convenient place to determine the PLT style.  */
   It's a convenient place to determine the PLT style.  */
 
 
static bfd_boolean
static bfd_boolean
elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
{
{
 
  /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
 
     sections.  */
 
  if (!elf_m68k_partition_multi_got (info))
 
    return FALSE;
 
 
  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
  return TRUE;
  return TRUE;
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
Line 1336... Line 3176...
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  */
     be handled correctly by relocate_section.  */
  if (info->shared)
  if (info->shared)
    return TRUE;
    return TRUE;
 
 
 
  /* If there are no references to this symbol that do not use the
 
     GOT, we don't need to generate a copy reloc.  */
 
  if (!h->non_got_ref)
 
    return TRUE;
 
 
  if (h->size == 0)
  if (h->size == 0)
    {
    {
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
                             h->root.root.string);
                             h->root.root.string);
      return TRUE;
      return TRUE;
Line 1558... Line 3403...
  struct elf_m68k_pcrel_relocs_copied *s;
  struct elf_m68k_pcrel_relocs_copied *s;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if (!h->def_regular
  if (!SYMBOL_CALLS_LOCAL (info, h))
      || (!info->symbolic
 
          && !h->forced_local))
 
    {
    {
      if ((info->flags & DF_TEXTREL) == 0)
      if ((info->flags & DF_TEXTREL) == 0)
        {
        {
          /* Look for relocations against read-only sections.  */
          /* Look for relocations against read-only sections.  */
          for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
          for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
Line 1586... Line 3429...
    s->section->size -= s->count * sizeof (Elf32_External_Rela);
    s->section->size -= s->count * sizeof (Elf32_External_Rela);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 
 
/* Install relocation RELA.  */
 
 
 
static void
 
elf_m68k_install_rela (bfd *output_bfd,
 
                       asection *srela,
 
                       Elf_Internal_Rela *rela)
 
{
 
  bfd_byte *loc;
 
 
 
  loc = srela->contents;
 
  loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
 
  bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
 
}
 
 
 
/* Find the base offsets for thread-local storage in this object,
 
   for GD/LD and IE/LE respectively.  */
 
 
 
#define DTP_OFFSET 0x8000
 
#define TP_OFFSET  0x7000
 
 
 
static bfd_vma
 
dtpoff_base (struct bfd_link_info *info)
 
{
 
  /* If tls_sec is NULL, we should have signalled an error already.  */
 
  if (elf_hash_table (info)->tls_sec == NULL)
 
    return 0;
 
  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
 
}
 
 
 
static bfd_vma
 
tpoff_base (struct bfd_link_info *info)
 
{
 
  /* If tls_sec is NULL, we should have signalled an error already.  */
 
  if (elf_hash_table (info)->tls_sec == NULL)
 
    return 0;
 
  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
 
}
 
 
 
/* Output necessary relocation to handle a symbol during static link.
 
   This function is called from elf_m68k_relocate_section.  */
 
 
 
static void
 
elf_m68k_init_got_entry_static (struct bfd_link_info *info,
 
                                bfd *output_bfd,
 
                                enum elf_m68k_reloc_type r_type,
 
                                asection *sgot,
 
                                bfd_vma got_entry_offset,
 
                                bfd_vma relocation)
 
{
 
  switch (elf_m68k_reloc_got_type (r_type))
 
    {
 
    case R_68K_GOT32O:
 
      bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
 
      break;
 
 
 
    case R_68K_TLS_GD32:
 
      /* We know the offset within the module,
 
         put it into the second GOT slot.  */
 
      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
 
                  sgot->contents + got_entry_offset + 4);
 
      /* FALLTHRU */
 
 
 
    case R_68K_TLS_LDM32:
 
      /* Mark it as belonging to module 1, the executable.  */
 
      bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
 
      break;
 
 
 
    case R_68K_TLS_IE32:
 
      bfd_put_32 (output_bfd, relocation - tpoff_base (info),
 
                  sgot->contents + got_entry_offset);
 
      break;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
    }
 
}
 
 
 
/* Output necessary relocation to handle a local symbol
 
   during dynamic link.
 
   This function is called either from elf_m68k_relocate_section
 
   or from elf_m68k_finish_dynamic_symbol.  */
 
 
 
static void
 
elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
 
                                      bfd *output_bfd,
 
                                      enum elf_m68k_reloc_type r_type,
 
                                      asection *sgot,
 
                                      bfd_vma got_entry_offset,
 
                                      bfd_vma relocation,
 
                                      asection *srela)
 
{
 
  Elf_Internal_Rela outrel;
 
 
 
  switch (elf_m68k_reloc_got_type (r_type))
 
    {
 
    case R_68K_GOT32O:
 
      /* Emit RELATIVE relocation to initialize GOT slot
 
         at run-time.  */
 
      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
 
      outrel.r_addend = relocation;
 
      break;
 
 
 
    case R_68K_TLS_GD32:
 
      /* We know the offset within the module,
 
         put it into the second GOT slot.  */
 
      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
 
                  sgot->contents + got_entry_offset + 4);
 
      /* FALLTHRU */
 
 
 
    case R_68K_TLS_LDM32:
 
      /* We don't know the module number,
 
         create a relocation for it.  */
 
      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
 
      outrel.r_addend = 0;
 
      break;
 
 
 
    case R_68K_TLS_IE32:
 
      /* Emit TPREL relocation to initialize GOT slot
 
         at run-time.  */
 
      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
 
      outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
 
      break;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
    }
 
 
 
  /* Offset of the GOT entry.  */
 
  outrel.r_offset = (sgot->output_section->vma
 
                     + sgot->output_offset
 
                     + got_entry_offset);
 
 
 
  /* Install one of the above relocations.  */
 
  elf_m68k_install_rela (output_bfd, srela, &outrel);
 
 
 
  bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
 
}
 
 
/* Relocate an M68K ELF section.  */
/* Relocate an M68K ELF section.  */
 
 
static bfd_boolean
static bfd_boolean
elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
                           contents, relocs, local_syms, local_sections)
                           contents, relocs, local_syms, local_sections)
Line 1603... Line 3585...
     asection **local_sections;
     asection **local_sections;
{
{
  bfd *dynobj;
  bfd *dynobj;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_vma *local_got_offsets;
 
  asection *sgot;
  asection *sgot;
  asection *splt;
  asection *splt;
  asection *sreloc;
  asection *sreloc;
 
  asection *srela;
 
  struct elf_m68k_got *got;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  Elf_Internal_Rela *relend;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
 
 
 
  sgot = NULL;
  sgot = NULL;
  splt = NULL;
  splt = NULL;
  sreloc = NULL;
  sreloc = NULL;
 
  srela = NULL;
 
 
 
  got = NULL;
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
Line 1687... Line 3672...
        case R_68K_GOT32:
        case R_68K_GOT32:
          /* Relocation is to the address of the entry for this symbol
          /* Relocation is to the address of the entry for this symbol
             in the global offset table.  */
             in the global offset table.  */
          if (h != NULL
          if (h != NULL
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
 
            {
 
              if (elf_m68k_hash_table (info)->local_gp_p)
 
                {
 
                  bfd_vma sgot_output_offset;
 
                  bfd_vma got_offset;
 
 
 
                  if (sgot == NULL)
 
                    {
 
                      sgot = bfd_get_section_by_name (dynobj, ".got");
 
 
 
                      if (sgot != NULL)
 
                        sgot_output_offset = sgot->output_offset;
 
                      else
 
                        /* In this case we have a reference to
 
                           _GLOBAL_OFFSET_TABLE_, but the GOT itself is
 
                           empty.
 
                           ??? Issue a warning?  */
 
                        sgot_output_offset = 0;
 
                    }
 
                  else
 
                    sgot_output_offset = sgot->output_offset;
 
 
 
                  if (got == NULL)
 
                    {
 
                      struct elf_m68k_bfd2got_entry *bfd2got_entry;
 
 
 
                      bfd2got_entry
 
                        = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
 
                                                      input_bfd, SEARCH, NULL);
 
 
 
                      if (bfd2got_entry != NULL)
 
                        {
 
                          got = bfd2got_entry->got;
 
                          BFD_ASSERT (got != NULL);
 
 
 
                          got_offset = got->offset;
 
                        }
 
                      else
 
                        /* In this case we have a reference to
 
                           _GLOBAL_OFFSET_TABLE_, but no other references
 
                           accessing any GOT entries.
 
                           ??? Issue a warning?  */
 
                        got_offset = 0;
 
                    }
 
                  else
 
                    got_offset = got->offset;
 
 
 
                  /* Adjust GOT pointer to point to the GOT
 
                     assigned to input_bfd.  */
 
                  rel->r_addend += sgot_output_offset + got_offset;
 
                }
 
              else
 
                BFD_ASSERT (got == NULL || got->offset == 0);
 
 
            break;
            break;
 
            }
          /* Fall through.  */
          /* Fall through.  */
        case R_68K_GOT8O:
        case R_68K_GOT8O:
        case R_68K_GOT16O:
        case R_68K_GOT16O:
        case R_68K_GOT32O:
        case R_68K_GOT32O:
 
 
 
        case R_68K_TLS_LDM32:
 
        case R_68K_TLS_LDM16:
 
        case R_68K_TLS_LDM8:
 
 
 
        case R_68K_TLS_GD8:
 
        case R_68K_TLS_GD16:
 
        case R_68K_TLS_GD32:
 
 
 
        case R_68K_TLS_IE8:
 
        case R_68K_TLS_IE16:
 
        case R_68K_TLS_IE32:
 
 
          /* Relocation is the offset of the entry for this symbol in
          /* Relocation is the offset of the entry for this symbol in
             the global offset table.  */
             the global offset table.  */
 
 
          {
          {
 
            struct elf_m68k_got_entry_key key_;
 
            bfd_vma *off_ptr;
            bfd_vma off;
            bfd_vma off;
 
 
            if (sgot == NULL)
            if (sgot == NULL)
              {
              {
                sgot = bfd_get_section_by_name (dynobj, ".got");
                sgot = bfd_get_section_by_name (dynobj, ".got");
                BFD_ASSERT (sgot != NULL);
                BFD_ASSERT (sgot != NULL);
              }
              }
 
 
            if (h != NULL)
            if (got == NULL)
              {
              {
                bfd_boolean dyn;
                got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
 
                                                  input_bfd, MUST_FIND,
 
                                                  NULL)->got;
 
                BFD_ASSERT (got != NULL);
 
              }
 
 
                off = h->got.offset;
            /* Get GOT offset for this symbol.  */
                BFD_ASSERT (off != (bfd_vma) -1);
            elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
 
                                         r_type);
 
            off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
 
                                               NULL)->u.s2.offset;
 
            off = *off_ptr;
 
 
 
            /* The offset must always be a multiple of 4.  We use
 
               the least significant bit to record whether we have
 
               already generated the necessary reloc.  */
 
            if ((off & 1) != 0)
 
              off &= ~1;
 
            else
 
              {
 
                if (h != NULL
 
                    /* @TLSLDM relocations are bounded to the module, in
 
                       which the symbol is defined -- not to the symbol
 
                       itself.  */
 
                    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
 
                  {
 
                    bfd_boolean dyn;
 
 
                dyn = elf_hash_table (info)->dynamic_sections_created;
                dyn = elf_hash_table (info)->dynamic_sections_created;
                if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                    || (info->shared
                    || (info->shared
                        && (info->symbolic
                            && SYMBOL_REFERENCES_LOCAL (info, h))
                            || h->dynindx == -1
                        || (ELF_ST_VISIBILITY (h->other)
                            || h->forced_local)
                            && h->root.type == bfd_link_hash_undefweak))
                        && h->def_regular))
 
                  {
                  {
                    /* This is actually a static link, or it is a
                    /* This is actually a static link, or it is a
                       -Bsymbolic link and the symbol is defined
                       -Bsymbolic link and the symbol is defined
                       locally, or the symbol was forced to be local
                       locally, or the symbol was forced to be local
                       because of a version file..  We must initialize
                           because of a version file.  We must initialize
                       this entry in the global offset table.  Since
                       this entry in the global offset table.  Since
                       the offset must always be a multiple of 4, we
                       the offset must always be a multiple of 4, we
                       use the least significant bit to record whether
                       use the least significant bit to record whether
                       we have initialized it already.
                       we have initialized it already.
 
 
                       When doing a dynamic link, we create a .rela.got
                       When doing a dynamic link, we create a .rela.got
                       relocation entry to initialize the value.  This
                       relocation entry to initialize the value.  This
                       is done in the finish_dynamic_symbol routine.  */
                       is done in the finish_dynamic_symbol routine.  */
                    if ((off & 1) != 0)
 
                      off &= ~1;
                        elf_m68k_init_got_entry_static (info,
                    else
                                                        output_bfd,
                      {
                                                        r_type,
                        bfd_put_32 (output_bfd, relocation,
                                                        sgot,
                                    sgot->contents + off);
                                                        off,
                        h->got.offset |= 1;
                                                        relocation);
                      }
 
 
                        *off_ptr |= 1;
                  }
                  }
                else
                else
                  unresolved_reloc = FALSE;
                  unresolved_reloc = FALSE;
              }
              }
            else
                else if (info->shared) /* && h == NULL */
              {
                  /* Process local symbol during dynamic link.  */
                BFD_ASSERT (local_got_offsets != NULL
 
                            && local_got_offsets[r_symndx] != (bfd_vma) -1);
 
 
 
                off = local_got_offsets[r_symndx];
 
 
 
                /* The offset must always be a multiple of 4.  We use
 
                   the least significant bit to record whether we have
 
                   already generated the necessary reloc.  */
 
                if ((off & 1) != 0)
 
                  off &= ~1;
 
                else
 
                  {
                  {
                    bfd_put_32 (output_bfd, relocation, sgot->contents + off);
                    if (srela == NULL)
 
 
                    if (info->shared)
 
                      {
                      {
                        asection *s;
                        srela = bfd_get_section_by_name (dynobj, ".rela.got");
                        Elf_Internal_Rela outrel;
                        BFD_ASSERT (srela != NULL);
                        bfd_byte *loc;
                      }
 
 
                        s = bfd_get_section_by_name (dynobj, ".rela.got");
                    elf_m68k_init_got_entry_local_shared (info,
                        BFD_ASSERT (s != NULL);
                                                          output_bfd,
 
                                                          r_type,
 
                                                          sgot,
 
                                                          off,
 
                                                          relocation,
 
                                                          srela);
 
 
                        outrel.r_offset = (sgot->output_section->vma
                    *off_ptr |= 1;
                                           + sgot->output_offset
 
                                           + off);
 
                        outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
 
                        outrel.r_addend = relocation;
 
                        loc = s->contents;
 
                        loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
 
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
 
                      }
                      }
 
                else /* h == NULL && !info->shared */
 
                  {
 
                    elf_m68k_init_got_entry_static (info,
 
                                                    output_bfd,
 
                                                    r_type,
 
                                                    sgot,
 
                                                    off,
 
                                                    relocation);
 
 
                    local_got_offsets[r_symndx] |= 1;
                    *off_ptr |= 1;
                  }
                  }
              }
              }
 
 
            relocation = sgot->output_offset + off;
            /* We don't use elf_m68k_reloc_got_type in the condition below
            if (r_type == R_68K_GOT8O
               because this is the only place where difference between
 
               R_68K_GOTx and R_68K_GOTxO relocations matters.  */
 
            if (r_type == R_68K_GOT32O
                || r_type == R_68K_GOT16O
                || r_type == R_68K_GOT16O
                || r_type == R_68K_GOT32O)
                || r_type == R_68K_GOT8O
 
                || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
 
                || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
 
                || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
 
              {
 
                /* GOT pointer is adjusted to point to the start/middle
 
                   of local GOT.  Adjust the offset accordingly.  */
 
                BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
 
                            || off >= got->offset);
 
 
 
                if (elf_m68k_hash_table (info)->local_gp_p)
 
                  relocation = off - got->offset;
 
                else
              {
              {
 
                    BFD_ASSERT (got->offset == 0);
 
                    relocation = sgot->output_offset + off;
 
                  }
 
 
                /* This relocation does not use the addend.  */
                /* This relocation does not use the addend.  */
                rel->r_addend = 0;
                rel->r_addend = 0;
              }
              }
            else
            else
              relocation += sgot->output_section->vma;
              relocation = (sgot->output_section->vma + sgot->output_offset
 
                            + off);
 
          }
 
          break;
 
 
 
        case R_68K_TLS_LDO32:
 
        case R_68K_TLS_LDO16:
 
        case R_68K_TLS_LDO8:
 
          relocation -= dtpoff_base (info);
 
          break;
 
 
 
        case R_68K_TLS_LE32:
 
        case R_68K_TLS_LE16:
 
        case R_68K_TLS_LE8:
 
          if (info->shared)
 
            {
 
              (*_bfd_error_handler)
 
                (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
 
                   "in shared object"),
 
                 input_bfd, input_section, (long) rel->r_offset, howto->name);
 
 
 
              return FALSE;
          }
          }
 
          else
 
            relocation -= tpoff_base (info);
 
 
          break;
          break;
 
 
        case R_68K_PLT8:
        case R_68K_PLT8:
        case R_68K_PLT16:
        case R_68K_PLT16:
        case R_68K_PLT32:
        case R_68K_PLT32:
Line 1848... Line 3961...
          /* This relocation does not use the addend.  */
          /* This relocation does not use the addend.  */
          rel->r_addend = 0;
          rel->r_addend = 0;
 
 
          break;
          break;
 
 
        case R_68K_PC8:
 
        case R_68K_PC16:
 
        case R_68K_PC32:
 
          if (h == NULL
 
              || (info->shared
 
                  && h->forced_local))
 
            break;
 
          /* Fall through.  */
 
        case R_68K_8:
        case R_68K_8:
        case R_68K_16:
        case R_68K_16:
        case R_68K_32:
        case R_68K_32:
 
        case R_68K_PC8:
 
        case R_68K_PC16:
 
        case R_68K_PC32:
          if (info->shared
          if (info->shared
              && r_symndx != 0
              && r_symndx != 0
              && (input_section->flags & SEC_ALLOC) != 0
              && (input_section->flags & SEC_ALLOC) != 0
              && (h == NULL
              && (h == NULL
                  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                  || h->root.type != bfd_link_hash_undefweak)
                  || h->root.type != bfd_link_hash_undefweak)
              && ((r_type != R_68K_PC8
              && ((r_type != R_68K_PC8
                   && r_type != R_68K_PC16
                   && r_type != R_68K_PC16
                   && r_type != R_68K_PC32)
                   && r_type != R_68K_PC32)
                  || (h != NULL
                  || !SYMBOL_CALLS_LOCAL (info, h)))
                      && h->dynindx != -1
 
                      && (!info->symbolic
 
                          || !h->def_regular))))
 
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
              bfd_byte *loc;
              bfd_byte *loc;
              bfd_boolean skip, relocate;
              bfd_boolean skip, relocate;
 
 
Line 1998... Line 4103...
             howto->name,
             howto->name,
             h->root.root.string);
             h->root.root.string);
          return FALSE;
          return FALSE;
        }
        }
 
 
 
      if (r_symndx != 0
 
          && r_type != R_68K_NONE
 
          && (h == NULL
 
              || h->root.type == bfd_link_hash_defined
 
              || h->root.type == bfd_link_hash_defweak))
 
        {
 
          char sym_type;
 
 
 
          sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
 
 
 
          if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
 
            {
 
              const char *name;
 
 
 
              if (h != NULL)
 
                name = h->root.root.string;
 
              else
 
                {
 
                  name = (bfd_elf_string_from_elf_section
 
                          (input_bfd, symtab_hdr->sh_link, sym->st_name));
 
                  if (name == NULL || *name == '\0')
 
                    name = bfd_section_name (input_bfd, sec);
 
                }
 
 
 
              (*_bfd_error_handler)
 
                ((sym_type == STT_TLS
 
                  ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
 
                  : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
 
                 input_bfd,
 
                 input_section,
 
                 (long) rel->r_offset,
 
                 howto->name,
 
                 name);
 
            }
 
        }
 
 
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
                                    contents, rel->r_offset,
                                    contents, rel->r_offset,
                                    relocation, rel->r_addend);
                                    relocation, rel->r_addend);
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
Line 2145... Line 4286...
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
        }
        }
    }
    }
 
 
  if (h->got.offset != (bfd_vma) -1)
  if (elf_m68k_hash_entry (h)->glist != NULL)
    {
    {
      asection *sgot;
      asection *sgot;
      asection *srela;
      asection *srela;
      Elf_Internal_Rela rela;
      struct elf_m68k_got_entry *got_entry;
      bfd_byte *loc;
 
 
 
      /* This symbol has an entry in the global offset table.  Set it
      /* This symbol has an entry in the global offset table.  Set it
         up.  */
         up.  */
 
 
      sgot = bfd_get_section_by_name (dynobj, ".got");
      sgot = bfd_get_section_by_name (dynobj, ".got");
      srela = bfd_get_section_by_name (dynobj, ".rela.got");
      srela = bfd_get_section_by_name (dynobj, ".rela.got");
      BFD_ASSERT (sgot != NULL && srela != NULL);
      BFD_ASSERT (sgot != NULL && srela != NULL);
 
 
      rela.r_offset = (sgot->output_section->vma
      got_entry = elf_m68k_hash_entry (h)->glist;
                       + sgot->output_offset
 
                       + (h->got.offset &~ (bfd_vma) 1));
      while (got_entry != NULL)
 
        {
 
          enum elf_m68k_reloc_type r_type;
 
          bfd_vma got_entry_offset;
 
 
 
          r_type = got_entry->key_.type;
 
          got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
 
 
      /* If this is a -Bsymbolic link, and the symbol is defined
      /* If this is a -Bsymbolic link, and the symbol is defined
         locally, we just want to emit a RELATIVE reloc.  Likewise if
         locally, we just want to emit a RELATIVE reloc.  Likewise if
         the symbol was forced to be local because of a version file.
         the symbol was forced to be local because of a version file.
         The entry in the global offset table will already have been
             The entry in the global offset table already have been
         initialized in the relocate_section function.  */
         initialized in the relocate_section function.  */
      if (info->shared
      if (info->shared
          && (info->symbolic
              && SYMBOL_REFERENCES_LOCAL (info, h))
              || h->dynindx == -1
 
              || h->forced_local)
 
          && h->def_regular)
 
        {
        {
          rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
              bfd_vma relocation;
          rela.r_addend = bfd_get_signed_32 (output_bfd,
 
 
              relocation = bfd_get_signed_32 (output_bfd,
                                             (sgot->contents
                                             (sgot->contents
                                              + (h->got.offset &~ (bfd_vma) 1)));
                                               + got_entry_offset));
 
 
 
              /* Undo TP bias.  */
 
              switch (elf_m68k_reloc_got_type (r_type))
 
                {
 
                case R_68K_GOT32O:
 
                case R_68K_TLS_LDM32:
 
                  break;
 
 
 
                case R_68K_TLS_GD32:
 
                  relocation += dtpoff_base (info);
 
                  break;
 
 
 
                case R_68K_TLS_IE32:
 
                  relocation += tpoff_base (info);
 
                  break;
 
 
 
                default:
 
                  BFD_ASSERT (FALSE);
 
                }
 
 
 
              elf_m68k_init_got_entry_local_shared (info,
 
                                                    output_bfd,
 
                                                    r_type,
 
                                                    sgot,
 
                                                    got_entry_offset,
 
                                                    relocation,
 
                                                    srela);
        }
        }
      else
      else
        {
        {
 
              Elf_Internal_Rela rela;
 
 
 
              /* Put zeros to GOT slots that will be initialized
 
                 at run-time.  */
 
              {
 
                bfd_vma n_slots;
 
 
 
                n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
 
                while (n_slots--)
          bfd_put_32 (output_bfd, (bfd_vma) 0,
          bfd_put_32 (output_bfd, (bfd_vma) 0,
                      sgot->contents + (h->got.offset &~ (bfd_vma) 1));
                              (sgot->contents + got_entry_offset
          rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
                               + 4 * n_slots));
 
              }
 
 
          rela.r_addend = 0;
          rela.r_addend = 0;
 
              rela.r_offset = (sgot->output_section->vma
 
                               + sgot->output_offset
 
                               + got_entry_offset);
 
 
 
              switch (elf_m68k_reloc_got_type (r_type))
 
                {
 
                case R_68K_GOT32O:
 
                  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
 
                  elf_m68k_install_rela (output_bfd, srela, &rela);
 
                  break;
 
 
 
                case R_68K_TLS_GD32:
 
                  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
 
                  elf_m68k_install_rela (output_bfd, srela, &rela);
 
 
 
                  rela.r_offset += 4;
 
                  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
 
                  elf_m68k_install_rela (output_bfd, srela, &rela);
 
                  break;
 
 
 
                case R_68K_TLS_IE32:
 
                  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
 
                  elf_m68k_install_rela (output_bfd, srela, &rela);
 
                  break;
 
 
 
                default:
 
                  BFD_ASSERT (FALSE);
 
                  break;
 
                }
        }
        }
 
 
      loc = srela->contents;
          got_entry = got_entry->u.s2.next;
      loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
        }
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
 
    }
    }
 
 
  if (h->needs_copy)
  if (h->needs_copy)
    {
    {
      asection *s;
      asection *s;
Line 2464... Line 4674...
      && elf_section_data (datasec)->relocs != internal_relocs)
      && elf_section_data (datasec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
  return FALSE;
  return FALSE;
}
}
 
 
 
/* Set target options.  */
 
 
 
void
 
bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
 
{
 
  struct elf_m68k_link_hash_table *htab;
 
 
 
  htab = elf_m68k_hash_table (info);
 
 
 
  switch (got_handling)
 
    {
 
    case 0:
 
      /* --got=single.  */
 
      htab->local_gp_p = FALSE;
 
      htab->use_neg_got_offsets_p = FALSE;
 
      htab->allow_multigot_p = FALSE;
 
      break;
 
 
 
    case 1:
 
      /* --got=negative.  */
 
      htab->local_gp_p = TRUE;
 
      htab->use_neg_got_offsets_p = TRUE;
 
      htab->allow_multigot_p = FALSE;
 
      break;
 
 
 
    case 2:
 
      /* --got=multigot.  */
 
      htab->local_gp_p = TRUE;
 
      htab->use_neg_got_offsets_p = TRUE;
 
      htab->allow_multigot_p = TRUE;
 
      break;
 
 
 
    default:
 
      BFD_ASSERT (FALSE);
 
    }
 
}
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf32_m68k_reloc_type_class (rela)
elf32_m68k_reloc_type_class (rela)
     const Elf_Internal_Rela *rela;
     const Elf_Internal_Rela *rela;
{
{
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
Line 2499... Line 4746...
#define ELF_MAXPAGESIZE                 0x2000
#define ELF_MAXPAGESIZE                 0x2000
#define elf_backend_create_dynamic_sections \
#define elf_backend_create_dynamic_sections \
                                        _bfd_elf_create_dynamic_sections
                                        _bfd_elf_create_dynamic_sections
#define bfd_elf32_bfd_link_hash_table_create \
#define bfd_elf32_bfd_link_hash_table_create \
                                        elf_m68k_link_hash_table_create
                                        elf_m68k_link_hash_table_create
#define bfd_elf32_bfd_final_link        bfd_elf_gc_common_final_link
/* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create?  */
 
#define bfd_elf32_bfd_link_hash_table_free \
 
                                        elf_m68k_link_hash_table_free
 
#define bfd_elf32_bfd_final_link        bfd_elf_final_link
 
 
#define elf_backend_check_relocs        elf_m68k_check_relocs
#define elf_backend_check_relocs        elf_m68k_check_relocs
#define elf_backend_always_size_sections \
#define elf_backend_always_size_sections \
                                        elf_m68k_always_size_sections
                                        elf_m68k_always_size_sections
#define elf_backend_adjust_dynamic_symbol \
#define elf_backend_adjust_dynamic_symbol \
Line 2516... Line 4766...
                                        elf_m68k_finish_dynamic_symbol
                                        elf_m68k_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
#define elf_backend_finish_dynamic_sections \
                                        elf_m68k_finish_dynamic_sections
                                        elf_m68k_finish_dynamic_sections
#define elf_backend_gc_mark_hook        elf_m68k_gc_mark_hook
#define elf_backend_gc_mark_hook        elf_m68k_gc_mark_hook
#define elf_backend_gc_sweep_hook       elf_m68k_gc_sweep_hook
#define elf_backend_gc_sweep_hook       elf_m68k_gc_sweep_hook
 
#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
#define bfd_elf32_bfd_merge_private_bfd_data \
#define bfd_elf32_bfd_merge_private_bfd_data \
                                        elf32_m68k_merge_private_bfd_data
                                        elf32_m68k_merge_private_bfd_data
#define bfd_elf32_bfd_set_private_flags \
#define bfd_elf32_bfd_set_private_flags \
                                        elf32_m68k_set_private_flags
                                        elf32_m68k_set_private_flags
#define bfd_elf32_bfd_print_private_bfd_data \
#define bfd_elf32_bfd_print_private_bfd_data \

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.