Line 1... |
Line 1... |
/* Support for HPPA 64-bit ELF
|
/* Support for HPPA 64-bit ELF
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
Free Software Foundation, Inc.
|
Free Software Foundation, Inc.
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
Line 17... |
Line 17... |
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
along with this program; if not, write to the Free Software
|
along with this program; if not, write to the Free Software
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
MA 02110-1301, USA. */
|
MA 02110-1301, USA. */
|
|
|
|
#include "alloca-conf.h"
|
#include "sysdep.h"
|
#include "sysdep.h"
|
#include "bfd.h"
|
#include "bfd.h"
|
#include "libbfd.h"
|
#include "libbfd.h"
|
#include "elf-bfd.h"
|
#include "elf-bfd.h"
|
#include "elf/hppa.h"
|
#include "elf/hppa.h"
|
#include "libhppa.h"
|
#include "libhppa.h"
|
#include "elf64-hppa.h"
|
#include "elf64-hppa.h"
|
|
|
/* This is the code recommended in the autoconf documentation, almost
|
|
verbatim. */
|
|
#ifndef __GNUC__
|
|
# if HAVE_ALLOCA_H
|
|
# include <alloca.h>
|
|
# else
|
|
# ifdef _AIX
|
|
/* Indented so that pre-ansi C compilers will ignore it, rather than
|
|
choke on it. Some versions of AIX require this to be the first
|
|
thing in the file. */
|
|
#pragma alloca
|
|
# else
|
|
# ifndef alloca /* predefined by HP cc +Olibcalls */
|
|
# if !defined (__STDC__) && !defined (__hpux)
|
|
extern char *alloca ();
|
|
# else
|
|
extern void *alloca ();
|
|
# endif /* __STDC__, __hpux */
|
|
# endif /* alloca */
|
|
# endif /* _AIX */
|
|
# endif /* HAVE_ALLOCA_H */
|
|
#else
|
|
extern void *alloca (size_t);
|
|
#endif /* __GNUC__ */
|
|
|
|
|
|
#define ARCH_SIZE 64
|
#define ARCH_SIZE 64
|
|
|
#define PLT_ENTRY_SIZE 0x10
|
#define PLT_ENTRY_SIZE 0x10
|
#define DLT_ENTRY_SIZE 0x8
|
#define DLT_ENTRY_SIZE 0x8
|
Line 72... |
Line 48... |
Note that we must use the LDD with a 14 bit displacement, not the one
|
Note that we must use the LDD with a 14 bit displacement, not the one
|
with a 5 bit displacement. */
|
with a 5 bit displacement. */
|
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
0x53, 0x7b, 0x00, 0x00 };
|
0x53, 0x7b, 0x00, 0x00 };
|
|
|
struct elf64_hppa_dyn_hash_entry
|
struct elf64_hppa_link_hash_entry
|
{
|
{
|
struct bfd_hash_entry root;
|
struct elf_link_hash_entry eh;
|
|
|
/* Offsets for this symbol in various linker sections. */
|
/* Offsets for this symbol in various linker sections. */
|
bfd_vma dlt_offset;
|
bfd_vma dlt_offset;
|
bfd_vma plt_offset;
|
bfd_vma plt_offset;
|
bfd_vma opd_offset;
|
bfd_vma opd_offset;
|
bfd_vma stub_offset;
|
bfd_vma stub_offset;
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf_link_hash_entry *h;
|
|
|
|
/* The index of the (possibly local) symbol in the input bfd and its
|
/* The index of the (possibly local) symbol in the input bfd and its
|
associated BFD. Needed so that we can have relocs against local
|
associated BFD. Needed so that we can have relocs against local
|
symbols in shared libraries. */
|
symbols in shared libraries. */
|
long sym_indx;
|
long sym_indx;
|
bfd *owner;
|
bfd *owner;
|
Line 113... |
Line 86... |
int type;
|
int type;
|
|
|
/* The input section of the relocation. */
|
/* The input section of the relocation. */
|
asection *sec;
|
asection *sec;
|
|
|
|
/* Number of relocs copied in this section. */
|
|
bfd_size_type count;
|
|
|
/* The index of the section symbol for the input section of
|
/* The index of the section symbol for the input section of
|
the relocation. Only needed when building shared libraries. */
|
the relocation. Only needed when building shared libraries. */
|
int sec_symndx;
|
int sec_symndx;
|
|
|
/* The offset within the input section of the relocation. */
|
/* The offset within the input section of the relocation. */
|
Line 133... |
Line 109... |
unsigned want_plt;
|
unsigned want_plt;
|
unsigned want_opd;
|
unsigned want_opd;
|
unsigned want_stub;
|
unsigned want_stub;
|
};
|
};
|
|
|
struct elf64_hppa_dyn_hash_table
|
|
{
|
|
struct bfd_hash_table root;
|
|
};
|
|
|
|
struct elf64_hppa_link_hash_table
|
struct elf64_hppa_link_hash_table
|
{
|
{
|
struct elf_link_hash_table root;
|
struct elf_link_hash_table root;
|
|
|
/* Shortcuts to get to the various linker defined sections. */
|
/* Shortcuts to get to the various linker defined sections. */
|
Line 164... |
Line 135... |
asection *stub_sec;
|
asection *stub_sec;
|
|
|
bfd_vma text_segment_base;
|
bfd_vma text_segment_base;
|
bfd_vma data_segment_base;
|
bfd_vma data_segment_base;
|
|
|
struct elf64_hppa_dyn_hash_table dyn_hash_table;
|
|
|
|
/* We build tables to map from an input section back to its
|
/* We build tables to map from an input section back to its
|
symbol index. This is the BFD for which we currently have
|
symbol index. This is the BFD for which we currently have
|
a map. */
|
a map. */
|
bfd *section_syms_bfd;
|
bfd *section_syms_bfd;
|
|
|
/* Array of symbol numbers for each input section attached to the
|
/* Array of symbol numbers for each input section attached to the
|
current BFD. */
|
current BFD. */
|
int *section_syms;
|
int *section_syms;
|
};
|
};
|
|
|
#define elf64_hppa_hash_table(p) \
|
#define hppa_link_hash_table(p) \
|
((struct elf64_hppa_link_hash_table *) ((p)->hash))
|
((struct elf64_hppa_link_hash_table *) ((p)->hash))
|
|
|
|
#define hppa_elf_hash_entry(ent) \
|
|
((struct elf64_hppa_link_hash_entry *)(ent))
|
|
|
|
#define eh_name(eh) \
|
|
(eh ? eh->root.root.string : "<undef>")
|
|
|
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
|
|
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
|
|
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
|
const char *string));
|
|
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
PARAMS ((bfd *abfd));
|
(bfd *abfd);
|
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
|
|
bfd_boolean create, bfd_boolean copy));
|
|
static void elf64_hppa_dyn_hash_traverse
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table,
|
|
bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
|
|
PTR info));
|
|
|
|
static const char *get_dyn_name
|
|
PARAMS ((bfd *, struct elf_link_hash_entry *,
|
|
const Elf_Internal_Rela *, char **, size_t *));
|
|
|
|
/* This must follow the definitions of the various derived linker
|
/* This must follow the definitions of the various derived linker
|
hash tables and shared functions. */
|
hash tables and shared functions. */
|
#include "elf-hppa.h"
|
#include "elf-hppa.h"
|
|
|
static bfd_boolean elf64_hppa_object_p
|
static bfd_boolean elf64_hppa_object_p
|
PARAMS ((bfd *));
|
(bfd *);
|
|
|
static void elf64_hppa_post_process_headers
|
static void elf64_hppa_post_process_headers
|
PARAMS ((bfd *, struct bfd_link_info *));
|
(bfd *, struct bfd_link_info *);
|
|
|
static bfd_boolean elf64_hppa_create_dynamic_sections
|
static bfd_boolean elf64_hppa_create_dynamic_sections
|
PARAMS ((bfd *, struct bfd_link_info *));
|
(bfd *, struct bfd_link_info *);
|
|
|
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
|
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
(struct bfd_link_info *, struct elf_link_hash_entry *);
|
|
|
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
|
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean elf64_hppa_size_dynamic_sections
|
static bfd_boolean elf64_hppa_size_dynamic_sections
|
PARAMS ((bfd *, struct bfd_link_info *));
|
(bfd *, struct bfd_link_info *);
|
|
|
static bfd_boolean elf64_hppa_link_output_symbol_hook
|
static int elf64_hppa_link_output_symbol_hook
|
PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
|
(struct bfd_link_info *, const char *, Elf_Internal_Sym *,
|
asection *, struct elf_link_hash_entry *));
|
asection *, struct elf_link_hash_entry *);
|
|
|
static bfd_boolean elf64_hppa_finish_dynamic_symbol
|
static bfd_boolean elf64_hppa_finish_dynamic_symbol
|
PARAMS ((bfd *, struct bfd_link_info *,
|
(bfd *, struct bfd_link_info *,
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
struct elf_link_hash_entry *, Elf_Internal_Sym *);
|
|
|
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
|
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
|
PARAMS ((const Elf_Internal_Rela *));
|
(const Elf_Internal_Rela *);
|
|
|
static bfd_boolean elf64_hppa_finish_dynamic_sections
|
static bfd_boolean elf64_hppa_finish_dynamic_sections
|
PARAMS ((bfd *, struct bfd_link_info *));
|
(bfd *, struct bfd_link_info *);
|
|
|
static bfd_boolean elf64_hppa_check_relocs
|
static bfd_boolean elf64_hppa_check_relocs
|
PARAMS ((bfd *, struct bfd_link_info *,
|
(bfd *, struct bfd_link_info *,
|
asection *, const Elf_Internal_Rela *));
|
asection *, const Elf_Internal_Rela *);
|
|
|
static bfd_boolean elf64_hppa_dynamic_symbol_p
|
static bfd_boolean elf64_hppa_dynamic_symbol_p
|
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
(struct elf_link_hash_entry *, struct bfd_link_info *);
|
|
|
static bfd_boolean elf64_hppa_mark_exported_functions
|
static bfd_boolean elf64_hppa_mark_exported_functions
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean elf64_hppa_finalize_opd
|
static bfd_boolean elf64_hppa_finalize_opd
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean elf64_hppa_finalize_dlt
|
static bfd_boolean elf64_hppa_finalize_dlt
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean allocate_global_data_dlt
|
static bfd_boolean allocate_global_data_dlt
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean allocate_global_data_plt
|
static bfd_boolean allocate_global_data_plt
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean allocate_global_data_stub
|
static bfd_boolean allocate_global_data_stub
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean allocate_global_data_opd
|
static bfd_boolean allocate_global_data_opd
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean get_reloc_section
|
static bfd_boolean get_reloc_section
|
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
|
(bfd *, struct elf64_hppa_link_hash_table *, asection *);
|
|
|
static bfd_boolean count_dyn_reloc
|
static bfd_boolean count_dyn_reloc
|
PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
|
(bfd *, struct elf64_hppa_link_hash_entry *,
|
int, asection *, int, bfd_vma, bfd_vma));
|
int, asection *, int, bfd_vma, bfd_vma);
|
|
|
static bfd_boolean allocate_dynrel_entries
|
static bfd_boolean allocate_dynrel_entries
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean elf64_hppa_finalize_dynreloc
|
static bfd_boolean elf64_hppa_finalize_dynreloc
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
(struct elf_link_hash_entry *, void *);
|
|
|
static bfd_boolean get_opd
|
static bfd_boolean get_opd
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
|
|
static bfd_boolean get_plt
|
static bfd_boolean get_plt
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
|
|
static bfd_boolean get_dlt
|
static bfd_boolean get_dlt
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
|
|
static bfd_boolean get_stub
|
static bfd_boolean get_stub
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
|
|
static int elf64_hppa_elf_get_symbol_type
|
static int elf64_hppa_elf_get_symbol_type
|
PARAMS ((Elf_Internal_Sym *, int));
|
(Elf_Internal_Sym *, int);
|
|
|
static bfd_boolean
|
/* Initialize an entry in the link hash table. */
|
elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
|
|
bfd *abfd ATTRIBUTE_UNUSED,
|
|
new_hash_entry_func new,
|
|
unsigned int entsize)
|
|
{
|
|
memset (ht, 0, sizeof (*ht));
|
|
return bfd_hash_table_init (&ht->root, new, entsize);
|
|
}
|
|
|
|
static struct bfd_hash_entry*
|
static struct bfd_hash_entry*
|
elf64_hppa_new_dyn_hash_entry (entry, table, string)
|
hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
|
struct bfd_hash_entry *entry;
|
struct bfd_hash_table *table,
|
struct bfd_hash_table *table;
|
const char *string)
|
const char *string;
|
|
{
|
{
|
struct elf64_hppa_dyn_hash_entry *ret;
|
|
ret = (struct elf64_hppa_dyn_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
/* Allocate the structure if it has not already been allocated by a
|
subclass. */
|
subclass. */
|
if (!ret)
|
if (entry == NULL)
|
ret = bfd_hash_allocate (table, sizeof (*ret));
|
{
|
|
entry = bfd_hash_allocate (table,
|
if (!ret)
|
sizeof (struct elf64_hppa_link_hash_entry));
|
return 0;
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
/* Call the allocation method of the superclass. */
|
/* Call the allocation method of the superclass. */
|
ret = ((struct elf64_hppa_dyn_hash_entry *)
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
if (entry != NULL)
|
|
{
|
|
struct elf64_hppa_link_hash_entry *hh;
|
|
|
/* Initialize our local data. All zeros. */
|
/* Initialize our local data. All zeros. */
|
memset (&ret->dlt_offset, 0,
|
hh = hppa_elf_hash_entry (entry);
|
(sizeof (struct elf64_hppa_dyn_hash_entry)
|
memset (&hh->dlt_offset, 0,
|
- offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
|
(sizeof (struct elf64_hppa_link_hash_entry)
|
|
- offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
|
|
}
|
|
|
return &ret->root;
|
return entry;
|
}
|
}
|
|
|
/* Create the derived linker hash table. The PA64 ELF port uses this
|
/* Create the derived linker hash table. The PA64 ELF port uses this
|
derived hash table to keep information specific to the PA ElF
|
derived hash table to keep information specific to the PA ElF
|
linker (without using static variables). */
|
linker (without using static variables). */
|
|
|
static struct bfd_link_hash_table*
|
static struct bfd_link_hash_table*
|
elf64_hppa_hash_table_create (abfd)
|
elf64_hppa_hash_table_create (bfd *abfd)
|
bfd *abfd;
|
|
{
|
|
struct elf64_hppa_link_hash_table *ret;
|
|
|
|
ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
|
|
if (!ret)
|
|
return 0;
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|
_bfd_elf_link_hash_newfunc,
|
|
sizeof (struct elf_link_hash_entry)))
|
|
{
|
{
|
bfd_release (abfd, ret);
|
struct elf64_hppa_link_hash_table *htab;
|
return 0;
|
bfd_size_type amt = sizeof (*htab);
|
}
|
|
|
|
if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
|
htab = bfd_zalloc (abfd, amt);
|
elf64_hppa_new_dyn_hash_entry,
|
if (htab == NULL)
|
sizeof (struct elf64_hppa_dyn_hash_entry)))
|
return NULL;
|
return 0;
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Look up an entry in a PA64 ELF linker hash table. */
|
|
|
|
static struct elf64_hppa_dyn_hash_entry *
|
if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
|
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
|
hppa64_link_hash_newfunc,
|
struct elf64_hppa_dyn_hash_table *table;
|
sizeof (struct elf64_hppa_link_hash_entry)))
|
const char *string;
|
|
bfd_boolean create, copy;
|
|
{
|
{
|
return ((struct elf64_hppa_dyn_hash_entry *)
|
bfd_release (abfd, htab);
|
bfd_hash_lookup (&table->root, string, create, copy));
|
return NULL;
|
}
|
}
|
|
|
/* Traverse a PA64 ELF linker hash table. */
|
htab->text_segment_base = (bfd_vma) -1;
|
|
htab->data_segment_base = (bfd_vma) -1;
|
|
|
static void
|
return &htab->root.root;
|
elf64_hppa_dyn_hash_traverse (table, func, info)
|
|
struct elf64_hppa_dyn_hash_table *table;
|
|
bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
|
PTR info;
|
|
{
|
|
(bfd_hash_traverse
|
|
(&table->root,
|
|
(bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
|
|
info));
|
|
}
|
}
|
|
|
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
|
|
Additionally we set the default architecture and machine. */
|
Additionally we set the default architecture and machine. */
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_object_p (abfd)
|
elf64_hppa_object_p (bfd *abfd)
|
bfd *abfd;
|
|
{
|
{
|
Elf_Internal_Ehdr * i_ehdrp;
|
Elf_Internal_Ehdr * i_ehdrp;
|
unsigned int flags;
|
unsigned int flags;
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
i_ehdrp = elf_elfheader (abfd);
|
Line 464... |
Line 392... |
newsect = hdr->bfd_section;
|
newsect = hdr->bfd_section;
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
|
|
name describes what was once potentially anonymous memory. We
|
|
allocate memory as necessary, possibly reusing PBUF/PLEN. */
|
|
|
|
static const char *
|
|
get_dyn_name (abfd, h, rel, pbuf, plen)
|
|
bfd *abfd;
|
|
struct elf_link_hash_entry *h;
|
|
const Elf_Internal_Rela *rel;
|
|
char **pbuf;
|
|
size_t *plen;
|
|
{
|
|
asection *sec = abfd->sections;
|
|
size_t nlen, tlen;
|
|
char *buf;
|
|
size_t len;
|
|
|
|
if (h && rel->r_addend == 0)
|
|
return h->root.root.string;
|
|
|
|
if (h)
|
|
nlen = strlen (h->root.root.string);
|
|
else
|
|
nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
|
|
tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
|
|
|
|
len = *plen;
|
|
buf = *pbuf;
|
|
if (len < tlen)
|
|
{
|
|
if (buf)
|
|
free (buf);
|
|
*pbuf = buf = malloc (tlen);
|
|
*plen = len = tlen;
|
|
if (!buf)
|
|
return NULL;
|
|
}
|
|
|
|
if (h)
|
|
{
|
|
memcpy (buf, h->root.root.string, nlen);
|
|
buf[nlen++] = '+';
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
|
}
|
|
else
|
|
{
|
|
nlen = sprintf (buf, "%x:%lx",
|
|
sec->id & 0xffffffff,
|
|
(long) ELF64_R_SYM (rel->r_info));
|
|
if (rel->r_addend)
|
|
{
|
|
buf[nlen++] = '+';
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
|
}
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* SEC is a section containing relocs for an input BFD when linking; return
|
/* SEC is a section containing relocs for an input BFD when linking; return
|
a suitable section for holding relocs in the output BFD for a link. */
|
a suitable section for holding relocs in the output BFD for a link. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
get_reloc_section (abfd, hppa_info, sec)
|
get_reloc_section (bfd *abfd,
|
bfd *abfd;
|
struct elf64_hppa_link_hash_table *hppa_info,
|
struct elf64_hppa_link_hash_table *hppa_info;
|
asection *sec)
|
asection *sec;
|
|
{
|
{
|
const char *srel_name;
|
const char *srel_name;
|
asection *srel;
|
asection *srel;
|
bfd *dynobj;
|
bfd *dynobj;
|
|
|
Line 579... |
Line 447... |
We use this to keep a record of all the FPTR relocations against a
|
We use this to keep a record of all the FPTR relocations against a
|
particular symbol so that we can create FPTR relocations in the
|
particular symbol so that we can create FPTR relocations in the
|
output file. */
|
output file. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
|
count_dyn_reloc (bfd *abfd,
|
bfd *abfd;
|
struct elf64_hppa_link_hash_entry *hh,
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
int type,
|
int type;
|
asection *sec,
|
asection *sec;
|
int sec_symndx,
|
int sec_symndx;
|
bfd_vma offset,
|
bfd_vma offset;
|
bfd_vma addend)
|
bfd_vma addend;
|
|
{
|
{
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
|
|
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
|
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
|
if (!rent)
|
if (!rent)
|
return FALSE;
|
return FALSE;
|
|
|
rent->next = dyn_h->reloc_entries;
|
rent->next = hh->reloc_entries;
|
rent->type = type;
|
rent->type = type;
|
rent->sec = sec;
|
rent->sec = sec;
|
rent->sec_symndx = sec_symndx;
|
rent->sec_symndx = sec_symndx;
|
rent->offset = offset;
|
rent->offset = offset;
|
rent->addend = addend;
|
rent->addend = addend;
|
dyn_h->reloc_entries = rent;
|
hh->reloc_entries = rent;
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
|
/* Return a pointer to the local DLT, PLT and OPD reference counts
|
|
for ABFD. Returns NULL if the storage allocation fails. */
|
|
|
|
static bfd_signed_vma *
|
|
hppa64_elf_local_refcounts (bfd *abfd)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
bfd_signed_vma *local_refcounts;
|
|
|
|
local_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate space for local DLT, PLT and OPD reference
|
|
counts. Done this way to save polluting elf_obj_tdata
|
|
with another target specific pointer. */
|
|
size = symtab_hdr->sh_info;
|
|
size *= 3 * sizeof (bfd_signed_vma);
|
|
local_refcounts = bfd_zalloc (abfd, size);
|
|
elf_local_got_refcounts (abfd) = local_refcounts;
|
|
}
|
|
return local_refcounts;
|
|
}
|
|
|
/* Scan the RELOCS and record the type of dynamic entries that each
|
/* Scan the RELOCS and record the type of dynamic entries that each
|
referenced symbol needs. */
|
referenced symbol needs. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_check_relocs (abfd, info, sec, relocs)
|
elf64_hppa_check_relocs (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info,
|
struct bfd_link_info *info;
|
asection *sec,
|
asection *sec;
|
const Elf_Internal_Rela *relocs)
|
const Elf_Internal_Rela *relocs;
|
|
{
|
{
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
const Elf_Internal_Rela *relend;
|
const Elf_Internal_Rela *relend;
|
Elf_Internal_Shdr *symtab_hdr;
|
Elf_Internal_Shdr *symtab_hdr;
|
const Elf_Internal_Rela *rel;
|
const Elf_Internal_Rela *rel;
|
asection *dlt, *plt, *stubs;
|
asection *dlt, *plt, *stubs;
|
char *buf;
|
char *buf;
|
size_t buf_len;
|
size_t buf_len;
|
int sec_symndx;
|
unsigned int sec_symndx;
|
|
|
if (info->relocatable)
|
if (info->relocatable)
|
return TRUE;
|
return TRUE;
|
|
|
/* If this is the first dynamic object found in the link, create
|
/* If this is the first dynamic object found in the link, create
|
Line 636... |
Line 527... |
{
|
{
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
return FALSE;
|
return FALSE;
|
}
|
}
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
/* If necessary, build a new table holding section symbols indices
|
/* If necessary, build a new table holding section symbols indices
|
for this BFD. */
|
for this BFD. */
|
|
|
Line 675... |
Line 566... |
/* Record the highest section index referenced by the local symbols. */
|
/* Record the highest section index referenced by the local symbols. */
|
highest_shndx = 0;
|
highest_shndx = 0;
|
isymend = local_syms + symtab_hdr->sh_info;
|
isymend = local_syms + symtab_hdr->sh_info;
|
for (isym = local_syms; isym < isymend; isym++)
|
for (isym = local_syms; isym < isymend; isym++)
|
{
|
{
|
if (isym->st_shndx > highest_shndx)
|
if (isym->st_shndx > highest_shndx
|
|
&& isym->st_shndx < SHN_LORESERVE)
|
highest_shndx = isym->st_shndx;
|
highest_shndx = isym->st_shndx;
|
}
|
}
|
|
|
/* Allocate an array to hold the section index to section symbol index
|
/* Allocate an array to hold the section index to section symbol index
|
mapping. Bump by one since we start counting at zero. */
|
mapping. Bump by one since we start counting at zero. */
|
Line 721... |
Line 613... |
{
|
{
|
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
|
|
/* If we did not find a section symbol for this section, then
|
/* If we did not find a section symbol for this section, then
|
something went terribly wrong above. */
|
something went terribly wrong above. */
|
if (sec_symndx == -1)
|
if (sec_symndx == SHN_BAD)
|
return FALSE;
|
return FALSE;
|
|
|
|
if (sec_symndx < SHN_LORESERVE)
|
sec_symndx = hppa_info->section_syms[sec_symndx];
|
sec_symndx = hppa_info->section_syms[sec_symndx];
|
|
else
|
|
sec_symndx = 0;
|
}
|
}
|
else
|
else
|
sec_symndx = 0;
|
sec_symndx = 0;
|
|
|
dlt = plt = stubs = NULL;
|
dlt = plt = stubs = NULL;
|
Line 745... |
Line 640... |
NEED_STUB = 4,
|
NEED_STUB = 4,
|
NEED_OPD = 8,
|
NEED_OPD = 8,
|
NEED_DYNREL = 16,
|
NEED_DYNREL = 16,
|
};
|
};
|
|
|
struct elf_link_hash_entry *h = NULL;
|
|
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
struct elf64_hppa_link_hash_entry *hh;
|
int need_entry;
|
int need_entry;
|
const char *addr_name;
|
|
bfd_boolean maybe_dynamic;
|
bfd_boolean maybe_dynamic;
|
int dynrel_type = R_PARISC_NONE;
|
int dynrel_type = R_PARISC_NONE;
|
static reloc_howto_type *howto;
|
static reloc_howto_type *howto;
|
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
if (r_symndx >= symtab_hdr->sh_info)
|
{
|
{
|
/* We're dealing with a global symbol -- find its hash entry
|
/* We're dealing with a global symbol -- find its hash entry
|
and mark it as being referenced. */
|
and mark it as being referenced. */
|
long indx = r_symndx - symtab_hdr->sh_info;
|
long indx = r_symndx - symtab_hdr->sh_info;
|
h = elf_sym_hashes (abfd)[indx];
|
hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
|
while (h->root.type == bfd_link_hash_indirect
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|| h->root.type == bfd_link_hash_warning)
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
|
|
h->ref_regular = 1;
|
hh->eh.ref_regular = 1;
|
}
|
}
|
|
else
|
|
hh = NULL;
|
|
|
/* We can only get preliminary data on whether a symbol is
|
/* We can only get preliminary data on whether a symbol is
|
locally or externally defined, as not all of the input files
|
locally or externally defined, as not all of the input files
|
have yet been processed. Do something with what we know, as
|
have yet been processed. Do something with what we know, as
|
this may help reduce memory usage and processing time later. */
|
this may help reduce memory usage and processing time later. */
|
maybe_dynamic = FALSE;
|
maybe_dynamic = FALSE;
|
if (h && ((info->shared
|
if (hh && ((info->shared
|
&& (!info->symbolic
|
&& (!info->symbolic
|
|| info->unresolved_syms_in_shared_libs == RM_IGNORE))
|
|| info->unresolved_syms_in_shared_libs == RM_IGNORE))
|
|| !h->def_regular
|
|| !hh->eh.def_regular
|
|| h->root.type == bfd_link_hash_defweak))
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
maybe_dynamic = TRUE;
|
maybe_dynamic = TRUE;
|
|
|
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
need_entry = 0;
|
need_entry = 0;
|
switch (howto->type)
|
switch (howto->type)
|
Line 827... |
Line 722... |
case R_PARISC_PCREL14WR:
|
case R_PARISC_PCREL14WR:
|
case R_PARISC_PCREL14DR:
|
case R_PARISC_PCREL14DR:
|
case R_PARISC_PCREL16F:
|
case R_PARISC_PCREL16F:
|
case R_PARISC_PCREL16WF:
|
case R_PARISC_PCREL16WF:
|
case R_PARISC_PCREL16DF:
|
case R_PARISC_PCREL16DF:
|
|
/* Function calls might need to go through the .plt, and
|
|
might need a long branch stub. */
|
|
if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
|
need_entry = (NEED_PLT | NEED_STUB);
|
need_entry = (NEED_PLT | NEED_STUB);
|
|
else
|
|
need_entry = 0;
|
break;
|
break;
|
|
|
case R_PARISC_PLTOFF21L:
|
case R_PARISC_PLTOFF21L:
|
case R_PARISC_PLTOFF14R:
|
case R_PARISC_PLTOFF14R:
|
case R_PARISC_PLTOFF14F:
|
case R_PARISC_PLTOFF14F:
|
Line 860... |
Line 760... |
case R_PARISC_LTOFF_FPTR64:
|
case R_PARISC_LTOFF_FPTR64:
|
case R_PARISC_LTOFF_FPTR16F:
|
case R_PARISC_LTOFF_FPTR16F:
|
case R_PARISC_LTOFF_FPTR16WF:
|
case R_PARISC_LTOFF_FPTR16WF:
|
case R_PARISC_LTOFF_FPTR16DF:
|
case R_PARISC_LTOFF_FPTR16DF:
|
if (info->shared || maybe_dynamic)
|
if (info->shared || maybe_dynamic)
|
need_entry = (NEED_DLT | NEED_OPD);
|
need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
|
else
|
else
|
need_entry = (NEED_DLT | NEED_OPD);
|
need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
|
dynrel_type = R_PARISC_FPTR64;
|
dynrel_type = R_PARISC_FPTR64;
|
break;
|
break;
|
|
|
/* This is a simple OPD entry. */
|
/* This is a simple OPD entry. */
|
case R_PARISC_FPTR64:
|
case R_PARISC_FPTR64:
|
if (info->shared || maybe_dynamic)
|
if (info->shared || maybe_dynamic)
|
need_entry = (NEED_OPD | NEED_DYNREL);
|
need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
|
else
|
else
|
need_entry = (NEED_OPD);
|
need_entry = (NEED_OPD | NEED_PLT);
|
dynrel_type = R_PARISC_FPTR64;
|
dynrel_type = R_PARISC_FPTR64;
|
break;
|
break;
|
|
|
/* Add more cases as needed. */
|
/* Add more cases as needed. */
|
}
|
}
|
|
|
if (!need_entry)
|
if (!need_entry)
|
continue;
|
continue;
|
|
|
/* Collect a canonical name for this address. */
|
if (hh)
|
addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
|
{
|
|
|
/* Collect the canonical entry data for this address. */
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
addr_name, TRUE, TRUE);
|
|
BFD_ASSERT (dyn_h);
|
|
|
|
/* Stash away enough information to be able to find this symbol
|
/* Stash away enough information to be able to find this symbol
|
regardless of whether or not it is local or global. */
|
regardless of whether or not it is local or global. */
|
dyn_h->h = h;
|
hh->owner = abfd;
|
dyn_h->owner = abfd;
|
hh->sym_indx = r_symndx;
|
dyn_h->sym_indx = r_symndx;
|
}
|
|
|
/* ?!? We may need to do some error checking in here. */
|
|
/* Create what's needed. */
|
/* Create what's needed. */
|
if (need_entry & NEED_DLT)
|
if (need_entry & NEED_DLT)
|
{
|
{
|
|
/* Allocate space for a DLT entry, as well as a dynamic
|
|
relocation for this entry. */
|
if (! hppa_info->dlt_sec
|
if (! hppa_info->dlt_sec
|
&& ! get_dlt (abfd, info, hppa_info))
|
&& ! get_dlt (abfd, info, hppa_info))
|
goto err_out;
|
goto err_out;
|
dyn_h->want_dlt = 1;
|
|
|
if (hh != NULL)
|
|
{
|
|
hh->want_dlt = 1;
|
|
hh->eh.got.refcount += 1;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_dlt_refcounts;
|
|
|
|
/* This is a DLT entry for a local symbol. */
|
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
|
if (local_dlt_refcounts == NULL)
|
|
return FALSE;
|
|
local_dlt_refcounts[r_symndx] += 1;
|
|
}
|
}
|
}
|
|
|
if (need_entry & NEED_PLT)
|
if (need_entry & NEED_PLT)
|
{
|
{
|
if (! hppa_info->plt_sec
|
if (! hppa_info->plt_sec
|
&& ! get_plt (abfd, info, hppa_info))
|
&& ! get_plt (abfd, info, hppa_info))
|
goto err_out;
|
goto err_out;
|
dyn_h->want_plt = 1;
|
|
|
if (hh != NULL)
|
|
{
|
|
hh->want_plt = 1;
|
|
hh->eh.needs_plt = 1;
|
|
hh->eh.plt.refcount += 1;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_dlt_refcounts;
|
|
bfd_signed_vma *local_plt_refcounts;
|
|
|
|
/* This is a PLT entry for a local symbol. */
|
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
|
if (local_dlt_refcounts == NULL)
|
|
return FALSE;
|
|
local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
|
|
local_plt_refcounts[r_symndx] += 1;
|
|
}
|
}
|
}
|
|
|
if (need_entry & NEED_STUB)
|
if (need_entry & NEED_STUB)
|
{
|
{
|
if (! hppa_info->stub_sec
|
if (! hppa_info->stub_sec
|
&& ! get_stub (abfd, info, hppa_info))
|
&& ! get_stub (abfd, info, hppa_info))
|
goto err_out;
|
goto err_out;
|
dyn_h->want_stub = 1;
|
if (hh)
|
|
hh->want_stub = 1;
|
}
|
}
|
|
|
if (need_entry & NEED_OPD)
|
if (need_entry & NEED_OPD)
|
{
|
{
|
if (! hppa_info->opd_sec
|
if (! hppa_info->opd_sec
|
&& ! get_opd (abfd, info, hppa_info))
|
&& ! get_opd (abfd, info, hppa_info))
|
goto err_out;
|
goto err_out;
|
|
|
dyn_h->want_opd = 1;
|
/* FPTRs are not allocated by the dynamic linker for PA64,
|
|
though it is possible that will change in the future. */
|
|
|
/* FPTRs are not allocated by the dynamic linker for PA64, though
|
if (hh != NULL)
|
it is possible that will change in the future. */
|
hh->want_opd = 1;
|
|
else
|
|
{
|
|
bfd_signed_vma *local_dlt_refcounts;
|
|
bfd_signed_vma *local_opd_refcounts;
|
|
|
/* This could be a local function that had its address taken, in
|
/* This is a OPD for a local symbol. */
|
which case H will be NULL. */
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
if (h)
|
if (local_dlt_refcounts == NULL)
|
h->needs_plt = 1;
|
return FALSE;
|
|
local_opd_refcounts = (local_dlt_refcounts
|
|
+ 2 * symtab_hdr->sh_info);
|
|
local_opd_refcounts[r_symndx] += 1;
|
|
}
|
}
|
}
|
|
|
/* Add a new dynamic relocation to the chain of dynamic
|
/* Add a new dynamic relocation to the chain of dynamic
|
relocations for this symbol. */
|
relocations for this symbol. */
|
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
{
|
{
|
if (! hppa_info->other_rel_sec
|
if (! hppa_info->other_rel_sec
|
&& ! get_reloc_section (abfd, hppa_info, sec))
|
&& ! get_reloc_section (abfd, hppa_info, sec))
|
goto err_out;
|
goto err_out;
|
|
|
if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
|
/* Count dynamic relocations against global symbols. */
|
|
if (hh != NULL
|
|
&& !count_dyn_reloc (abfd, hh, dynrel_type, sec,
|
sec_symndx, rel->r_offset, rel->r_addend))
|
sec_symndx, rel->r_offset, rel->r_addend))
|
goto err_out;
|
goto err_out;
|
|
|
/* If we are building a shared library and we just recorded
|
/* If we are building a shared library and we just recorded
|
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
Line 980... |
Line 920... |
};
|
};
|
|
|
/* Should we do dynamic things to this symbol? */
|
/* Should we do dynamic things to this symbol? */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_dynamic_symbol_p (h, info)
|
elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
|
struct elf_link_hash_entry *h;
|
struct bfd_link_info *info)
|
struct bfd_link_info *info;
|
|
{
|
{
|
/* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
|
/* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
|
and relocations that retrieve a function descriptor? Assume the
|
and relocations that retrieve a function descriptor? Assume the
|
worst for now. */
|
worst for now. */
|
if (_bfd_elf_dynamic_symbol_p (h, info, 1))
|
if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
|
{
|
{
|
/* ??? Why is this here and not elsewhere is_local_label_name. */
|
/* ??? Why is this here and not elsewhere is_local_label_name. */
|
if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
|
if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
|
return FALSE;
|
return FALSE;
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
else
|
else
|
Line 1003... |
Line 942... |
|
|
/* Mark all functions exported by this file so that we can later allocate
|
/* Mark all functions exported by this file so that we can later allocate
|
entries in .opd for them. */
|
entries in .opd for them. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_mark_exported_functions (h, data)
|
elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
|
struct elf_link_hash_entry *h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (h
|
if (eh->root.type == bfd_link_hash_warning)
|
&& (h->root.type == bfd_link_hash_defined
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& h->root.u.def.section->output_section != NULL
|
|
&& h->type == STT_FUNC)
|
|
{
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
|
|
/* Add this symbol to the PA64 linker hash table. */
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
h->root.root.string, TRUE, TRUE);
|
|
BFD_ASSERT (dyn_h);
|
|
dyn_h->h = h;
|
|
|
|
|
if (eh
|
|
&& (eh->root.type == bfd_link_hash_defined
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
|
&& eh->root.u.def.section->output_section != NULL
|
|
&& eh->type == STT_FUNC)
|
|
{
|
if (! hppa_info->opd_sec
|
if (! hppa_info->opd_sec
|
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
return FALSE;
|
return FALSE;
|
|
|
dyn_h->want_opd = 1;
|
hh->want_opd = 1;
|
|
|
/* Put a flag here for output_symbol_hook. */
|
/* Put a flag here for output_symbol_hook. */
|
dyn_h->st_shndx = -1;
|
hh->st_shndx = -1;
|
h->needs_plt = 1;
|
eh->needs_plt = 1;
|
}
|
}
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Allocate space for a DLT entry. */
|
/* Allocate space for a DLT entry. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
allocate_global_data_dlt (dyn_h, data)
|
allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
|
|
if (dyn_h->want_dlt)
|
if (hh->want_dlt)
|
{
|
{
|
struct elf_link_hash_entry *h = dyn_h->h;
|
|
|
|
if (x->info->shared)
|
if (x->info->shared)
|
{
|
{
|
/* Possibly add the symbol to the local dynamic symbol
|
/* Possibly add the symbol to the local dynamic symbol
|
table since we might need to create a dynamic relocation
|
table since we might need to create a dynamic relocation
|
against it. */
|
against it. */
|
if (! h
|
if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
|
|| (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
|
|
{
|
{
|
bfd *owner;
|
bfd *owner = eh->root.u.def.section->owner;
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
|
|
|
if (! (bfd_elf_link_record_local_dynamic_symbol
|
if (! (bfd_elf_link_record_local_dynamic_symbol
|
(x->info, owner, dyn_h->sym_indx)))
|
(x->info, owner, hh->sym_indx)))
|
return FALSE;
|
return FALSE;
|
}
|
}
|
}
|
}
|
|
|
dyn_h->dlt_offset = x->ofs;
|
hh->dlt_offset = x->ofs;
|
x->ofs += DLT_ENTRY_SIZE;
|
x->ofs += DLT_ENTRY_SIZE;
|
}
|
}
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Allocate space for a DLT.PLT entry. */
|
/* Allocate space for a DLT.PLT entry. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
allocate_global_data_plt (dyn_h, data)
|
allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
|
|
if (dyn_h->want_plt
|
if (hh->want_plt
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
&& elf64_hppa_dynamic_symbol_p (eh, x->info)
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
&& !((eh->root.type == bfd_link_hash_defined
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
|| eh->root.type == bfd_link_hash_defweak)
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
&& eh->root.u.def.section->output_section != NULL))
|
{
|
{
|
dyn_h->plt_offset = x->ofs;
|
hh->plt_offset = x->ofs;
|
x->ofs += PLT_ENTRY_SIZE;
|
x->ofs += PLT_ENTRY_SIZE;
|
if (dyn_h->plt_offset < 0x2000)
|
if (hh->plt_offset < 0x2000)
|
elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
|
hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset;
|
}
|
}
|
else
|
else
|
dyn_h->want_plt = 0;
|
hh->want_plt = 0;
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Allocate space for a STUB entry. */
|
/* Allocate space for a STUB entry. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
allocate_global_data_stub (dyn_h, data)
|
allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
|
|
if (dyn_h->want_stub
|
if (hh->want_stub
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
&& elf64_hppa_dynamic_symbol_p (eh, x->info)
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
&& !((eh->root.type == bfd_link_hash_defined
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
|| eh->root.type == bfd_link_hash_defweak)
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
&& eh->root.u.def.section->output_section != NULL))
|
{
|
{
|
dyn_h->stub_offset = x->ofs;
|
hh->stub_offset = x->ofs;
|
x->ofs += sizeof (plt_stub);
|
x->ofs += sizeof (plt_stub);
|
}
|
}
|
else
|
else
|
dyn_h->want_stub = 0;
|
hh->want_stub = 0;
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Allocate space for a FPTR entry. */
|
/* Allocate space for a FPTR entry. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
allocate_global_data_opd (dyn_h, data)
|
allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
|
|
if (dyn_h->want_opd)
|
if (hh && hh->want_opd)
|
{
|
{
|
struct elf_link_hash_entry *h = dyn_h->h;
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
if (h)
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* We never need an opd entry for a symbol which is not
|
/* We never need an opd entry for a symbol which is not
|
defined by this output file. */
|
defined by this output file. */
|
if (h && (h->root.type == bfd_link_hash_undefined
|
if (hh && (hh->eh.root.type == bfd_link_hash_undefined
|
|| h->root.type == bfd_link_hash_undefweak
|
|| hh->eh.root.type == bfd_link_hash_undefweak
|
|| h->root.u.def.section->output_section == NULL))
|
|| hh->eh.root.u.def.section->output_section == NULL))
|
dyn_h->want_opd = 0;
|
hh->want_opd = 0;
|
|
|
/* If we are creating a shared library, took the address of a local
|
/* If we are creating a shared library, took the address of a local
|
function or might export this function from this object file, then
|
function or might export this function from this object file, then
|
we have to create an opd descriptor. */
|
we have to create an opd descriptor. */
|
else if (x->info->shared
|
else if (x->info->shared
|
|| h == NULL
|
|| hh == NULL
|
|| (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
|
|| (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
|
|| (h->root.type == bfd_link_hash_defined
|
|| (hh->eh.root.type == bfd_link_hash_defined
|
|| h->root.type == bfd_link_hash_defweak))
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
{
|
{
|
/* If we are creating a shared library, then we will have to
|
/* If we are creating a shared library, then we will have to
|
create a runtime relocation for the symbol to properly
|
create a runtime relocation for the symbol to properly
|
initialize the .opd entry. Make sure the symbol gets
|
initialize the .opd entry. Make sure the symbol gets
|
added to the dynamic symbol table. */
|
added to the dynamic symbol table. */
|
if (x->info->shared
|
if (x->info->shared
|
&& (h == NULL || (h->dynindx == -1)))
|
&& (hh == NULL || (hh->eh.dynindx == -1)))
|
{
|
{
|
bfd *owner;
|
bfd *owner;
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
/* PR 6511: Default to using the dynamic symbol table. */
|
|
owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
|
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
(x->info, owner, dyn_h->sym_indx))
|
(x->info, owner, hh->sym_indx))
|
return FALSE;
|
return FALSE;
|
}
|
}
|
|
|
/* This may not be necessary or desirable anymore now that
|
/* This may not be necessary or desirable anymore now that
|
we have some support for dealing with section symbols
|
we have some support for dealing with section symbols
|
in dynamic relocs. But name munging does make the result
|
in dynamic relocs. But name munging does make the result
|
much easier to debug. ie, the EPLT reloc will reference
|
much easier to debug. ie, the EPLT reloc will reference
|
a symbol like .foobar, instead of .text + offset. */
|
a symbol like .foobar, instead of .text + offset. */
|
if (x->info->shared && h)
|
if (x->info->shared && eh)
|
{
|
{
|
char *new_name;
|
char *new_name;
|
struct elf_link_hash_entry *nh;
|
struct elf_link_hash_entry *nh;
|
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
new_name = alloca (strlen (eh->root.root.string) + 2);
|
new_name[0] = '.';
|
new_name[0] = '.';
|
strcpy (new_name + 1, h->root.root.string);
|
strcpy (new_name + 1, eh->root.root.string);
|
|
|
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
new_name, TRUE, TRUE, TRUE);
|
new_name, TRUE, TRUE, TRUE);
|
|
|
nh->root.type = h->root.type;
|
nh->root.type = eh->root.type;
|
nh->root.u.def.value = h->root.u.def.value;
|
nh->root.u.def.value = eh->root.u.def.value;
|
nh->root.u.def.section = h->root.u.def.section;
|
nh->root.u.def.section = eh->root.u.def.section;
|
|
|
if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
|
if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
|
return FALSE;
|
return FALSE;
|
|
|
}
|
}
|
dyn_h->opd_offset = x->ofs;
|
hh->opd_offset = x->ofs;
|
x->ofs += OPD_ENTRY_SIZE;
|
x->ofs += OPD_ENTRY_SIZE;
|
}
|
}
|
|
|
/* Otherwise we do not need an opd entry. */
|
/* Otherwise we do not need an opd entry. */
|
else
|
else
|
dyn_h->want_opd = 0;
|
hh->want_opd = 0;
|
}
|
}
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
EI_ABIVERSION may not be strictly necessary. */
|
EI_ABIVERSION may not be strictly necessary. */
|
|
|
static void
|
static void
|
elf64_hppa_post_process_headers (abfd, link_info)
|
elf64_hppa_post_process_headers (bfd *abfd,
|
bfd * abfd;
|
struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
|
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
|
|
{
|
{
|
Elf_Internal_Ehdr * i_ehdrp;
|
Elf_Internal_Ehdr * i_ehdrp;
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
i_ehdrp = elf_elfheader (abfd);
|
|
|
Line 1234... |
Line 1154... |
because it contains "official procedure descriptors". The "official"
|
because it contains "official procedure descriptors". The "official"
|
refers to the fact that these descriptors are used when taking the address
|
refers to the fact that these descriptors are used when taking the address
|
of a procedure, thus ensuring a unique address for each procedure. */
|
of a procedure, thus ensuring a unique address for each procedure. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
get_opd (abfd, info, hppa_info)
|
get_opd (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
struct elf64_hppa_link_hash_table *hppa_info)
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
{
|
{
|
asection *opd;
|
asection *opd;
|
bfd *dynobj;
|
bfd *dynobj;
|
|
|
opd = hppa_info->opd_sec;
|
opd = hppa_info->opd_sec;
|
Line 1271... |
Line 1190... |
}
|
}
|
|
|
/* Create the PLT section. */
|
/* Create the PLT section. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
get_plt (abfd, info, hppa_info)
|
get_plt (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
struct elf64_hppa_link_hash_table *hppa_info)
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
{
|
{
|
asection *plt;
|
asection *plt;
|
bfd *dynobj;
|
bfd *dynobj;
|
|
|
plt = hppa_info->plt_sec;
|
plt = hppa_info->plt_sec;
|
Line 1308... |
Line 1226... |
}
|
}
|
|
|
/* Create the DLT section. */
|
/* Create the DLT section. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
get_dlt (abfd, info, hppa_info)
|
get_dlt (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
struct elf64_hppa_link_hash_table *hppa_info)
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
{
|
{
|
asection *dlt;
|
asection *dlt;
|
bfd *dynobj;
|
bfd *dynobj;
|
|
|
dlt = hppa_info->dlt_sec;
|
dlt = hppa_info->dlt_sec;
|
Line 1345... |
Line 1262... |
}
|
}
|
|
|
/* Create the stubs section. */
|
/* Create the stubs section. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
get_stub (abfd, info, hppa_info)
|
get_stub (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
struct elf64_hppa_link_hash_table *hppa_info)
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
{
|
{
|
asection *stub;
|
asection *stub;
|
bfd *dynobj;
|
bfd *dynobj;
|
|
|
stub = hppa_info->stub_sec;
|
stub = hppa_info->stub_sec;
|
Line 1418... |
Line 1334... |
|
|
.rela.opd:
|
.rela.opd:
|
EPLT relocations for symbols exported from shared libraries. */
|
EPLT relocations for symbols exported from shared libraries. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_create_dynamic_sections (abfd, info)
|
elf64_hppa_create_dynamic_sections (bfd *abfd,
|
bfd *abfd;
|
struct bfd_link_info *info)
|
struct bfd_link_info *info;
|
|
{
|
{
|
asection *s;
|
asection *s;
|
|
|
if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
|
if (! get_stub (abfd, info, hppa_link_hash_table (info)))
|
return FALSE;
|
return FALSE;
|
|
|
if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
|
if (! get_dlt (abfd, info, hppa_link_hash_table (info)))
|
return FALSE;
|
return FALSE;
|
|
|
if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
|
if (! get_plt (abfd, info, hppa_link_hash_table (info)))
|
return FALSE;
|
return FALSE;
|
|
|
if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
|
if (! get_opd (abfd, info, hppa_link_hash_table (info)))
|
return FALSE;
|
return FALSE;
|
|
|
s = bfd_make_section_with_flags (abfd, ".rela.dlt",
|
s = bfd_make_section_with_flags (abfd, ".rela.dlt",
|
(SEC_ALLOC | SEC_LOAD
|
(SEC_ALLOC | SEC_LOAD
|
| SEC_HAS_CONTENTS
|
| SEC_HAS_CONTENTS
|
Line 1445... |
Line 1360... |
| SEC_READONLY
|
| SEC_READONLY
|
| SEC_LINKER_CREATED));
|
| SEC_LINKER_CREATED));
|
if (s == NULL
|
if (s == NULL
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
return FALSE;
|
return FALSE;
|
elf64_hppa_hash_table (info)->dlt_rel_sec = s;
|
hppa_link_hash_table (info)->dlt_rel_sec = s;
|
|
|
s = bfd_make_section_with_flags (abfd, ".rela.plt",
|
s = bfd_make_section_with_flags (abfd, ".rela.plt",
|
(SEC_ALLOC | SEC_LOAD
|
(SEC_ALLOC | SEC_LOAD
|
| SEC_HAS_CONTENTS
|
| SEC_HAS_CONTENTS
|
| SEC_IN_MEMORY
|
| SEC_IN_MEMORY
|
| SEC_READONLY
|
| SEC_READONLY
|
| SEC_LINKER_CREATED));
|
| SEC_LINKER_CREATED));
|
if (s == NULL
|
if (s == NULL
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
return FALSE;
|
return FALSE;
|
elf64_hppa_hash_table (info)->plt_rel_sec = s;
|
hppa_link_hash_table (info)->plt_rel_sec = s;
|
|
|
s = bfd_make_section_with_flags (abfd, ".rela.data",
|
s = bfd_make_section_with_flags (abfd, ".rela.data",
|
(SEC_ALLOC | SEC_LOAD
|
(SEC_ALLOC | SEC_LOAD
|
| SEC_HAS_CONTENTS
|
| SEC_HAS_CONTENTS
|
| SEC_IN_MEMORY
|
| SEC_IN_MEMORY
|
| SEC_READONLY
|
| SEC_READONLY
|
| SEC_LINKER_CREATED));
|
| SEC_LINKER_CREATED));
|
if (s == NULL
|
if (s == NULL
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
return FALSE;
|
return FALSE;
|
elf64_hppa_hash_table (info)->other_rel_sec = s;
|
hppa_link_hash_table (info)->other_rel_sec = s;
|
|
|
s = bfd_make_section_with_flags (abfd, ".rela.opd",
|
s = bfd_make_section_with_flags (abfd, ".rela.opd",
|
(SEC_ALLOC | SEC_LOAD
|
(SEC_ALLOC | SEC_LOAD
|
| SEC_HAS_CONTENTS
|
| SEC_HAS_CONTENTS
|
| SEC_IN_MEMORY
|
| SEC_IN_MEMORY
|
| SEC_READONLY
|
| SEC_READONLY
|
| SEC_LINKER_CREATED));
|
| SEC_LINKER_CREATED));
|
if (s == NULL
|
if (s == NULL
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
return FALSE;
|
return FALSE;
|
elf64_hppa_hash_table (info)->opd_rel_sec = s;
|
hppa_link_hash_table (info)->opd_rel_sec = s;
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* Allocate dynamic relocations for those symbols that turned out
|
/* Allocate dynamic relocations for those symbols that turned out
|
to be dynamic. */
|
to be dynamic. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
allocate_dynrel_entries (dyn_h, data)
|
allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
bfd_boolean dynamic_symbol, shared;
|
bfd_boolean dynamic_symbol, shared;
|
|
|
hppa_info = elf64_hppa_hash_table (x->info);
|
hppa_info = hppa_link_hash_table (x->info);
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
|
shared = x->info->shared;
|
shared = x->info->shared;
|
|
|
/* We may need to allocate relocations for a non-dynamic symbol
|
/* We may need to allocate relocations for a non-dynamic symbol
|
when creating a shared library. */
|
when creating a shared library. */
|
if (!dynamic_symbol && !shared)
|
if (!dynamic_symbol && !shared)
|
return TRUE;
|
return TRUE;
|
|
|
/* Take care of the normal data relocations. */
|
/* Take care of the normal data relocations. */
|
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
for (rent = hh->reloc_entries; rent; rent = rent->next)
|
{
|
{
|
/* Allocate one iff we are building a shared library, the relocation
|
/* Allocate one iff we are building a shared library, the relocation
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
continue;
|
continue;
|
|
|
hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
|
hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
|
|
|
/* Make sure this symbol gets into the dynamic symbol table if it is
|
/* Make sure this symbol gets into the dynamic symbol table if it is
|
not already recorded. ?!? This should not be in the loop since
|
not already recorded. ?!? This should not be in the loop since
|
the symbol need only be added once. */
|
the symbol need only be added once. */
|
if (dyn_h->h == 0
|
if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
|
|| (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
(x->info, rent->sec->owner, dyn_h->sym_indx))
|
(x->info, rent->sec->owner, hh->sym_indx))
|
return FALSE;
|
return FALSE;
|
}
|
}
|
|
|
/* Take care of the GOT and PLT relocations. */
|
/* Take care of the GOT and PLT relocations. */
|
|
|
if ((dynamic_symbol || shared) && dyn_h->want_dlt)
|
if ((dynamic_symbol || shared) && hh->want_dlt)
|
hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
|
hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
|
|
|
/* If we are building a shared library, then every symbol that has an
|
/* If we are building a shared library, then every symbol that has an
|
opd entry will need an EPLT relocation to relocate the symbol's address
|
opd entry will need an EPLT relocation to relocate the symbol's address
|
and __gp value based on the runtime load address. */
|
and __gp value based on the runtime load address. */
|
if (shared && dyn_h->want_opd)
|
if (shared && hh->want_opd)
|
hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
|
hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
|
|
|
if (dyn_h->want_plt && dynamic_symbol)
|
if (hh->want_plt && dynamic_symbol)
|
{
|
{
|
bfd_size_type t = 0;
|
bfd_size_type t = 0;
|
|
|
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
shared libraries get two REL relocations. Local symbols in
|
shared libraries get two REL relocations. Local symbols in
|
Line 1559... |
Line 1472... |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
regular object. */
|
regular object. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_adjust_dynamic_symbol (info, h)
|
elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
struct elf_link_hash_entry *eh)
|
struct elf_link_hash_entry *h;
|
|
{
|
{
|
/* ??? Undefined symbols with PLT entries should be re-defined
|
/* ??? Undefined symbols with PLT entries should be re-defined
|
to be the PLT entry. */
|
to be the PLT entry. */
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
/* If this is a weak symbol, and there is a real definition, the
|
processor independent code will have arranged for us to see the
|
processor independent code will have arranged for us to see the
|
real definition first, and we can just use the same value. */
|
real definition first, and we can just use the same value. */
|
if (h->u.weakdef != NULL)
|
if (eh->u.weakdef != NULL)
|
{
|
{
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
|| eh->u.weakdef->root.type == bfd_link_hash_defweak);
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* If this is a reference to a symbol defined by a dynamic object which
|
/* If this is a reference to a symbol defined by a dynamic object which
|
is not a function, we might allocate the symbol in our .dynbss section
|
is not a function, we might allocate the symbol in our .dynbss section
|
Line 1594... |
Line 1506... |
symbols with a dynindx of -1 and to remove the string table reference
|
symbols with a dynindx of -1 and to remove the string table reference
|
from the dynamic symbol table. If the symbol is not a millicode symbol,
|
from the dynamic symbol table. If the symbol is not a millicode symbol,
|
elf64_hppa_mark_exported_functions is called. */
|
elf64_hppa_mark_exported_functions is called. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_mark_milli_and_exported_functions (h, data)
|
elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
|
struct elf_link_hash_entry *h;
|
void *data)
|
PTR data;
|
|
{
|
{
|
|
struct elf_link_hash_entry *elf = eh;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct elf_link_hash_entry *elf = h;
|
|
|
|
if (elf->root.type == bfd_link_hash_warning)
|
if (elf->root.type == bfd_link_hash_warning)
|
elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
|
elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
|
|
|
if (elf->type == STT_PARISC_MILLI)
|
if (elf->type == STT_PARISC_MILLI)
|
Line 1615... |
Line 1526... |
elf->dynstr_index);
|
elf->dynstr_index);
|
}
|
}
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
return elf64_hppa_mark_exported_functions (h, data);
|
return elf64_hppa_mark_exported_functions (eh, data);
|
}
|
}
|
|
|
/* Set the final sizes of the dynamic sections and allocate memory for
|
/* Set the final sizes of the dynamic sections and allocate memory for
|
the contents of our special sections. */
|
the contents of our special sections. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_size_dynamic_sections (output_bfd, info)
|
elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
struct elf64_hppa_allocate_data data;
|
bfd *dynobj;
|
bfd *dynobj;
|
asection *s;
|
bfd *ibfd;
|
|
asection *sec;
|
bfd_boolean plt;
|
bfd_boolean plt;
|
bfd_boolean relocs;
|
bfd_boolean relocs;
|
bfd_boolean reltext;
|
bfd_boolean reltext;
|
struct elf64_hppa_allocate_data data;
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
dynobj = elf_hash_table (info)->dynobj;
|
BFD_ASSERT (dynobj != NULL);
|
BFD_ASSERT (dynobj != NULL);
|
|
|
/* Mark each function this program exports so that we will allocate
|
/* Mark each function this program exports so that we will allocate
|
Line 1657... |
Line 1567... |
if (elf_hash_table (info)->dynamic_sections_created)
|
if (elf_hash_table (info)->dynamic_sections_created)
|
{
|
{
|
/* Set the contents of the .interp section to the interpreter. */
|
/* Set the contents of the .interp section to the interpreter. */
|
if (info->executable)
|
if (info->executable)
|
{
|
{
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
sec = bfd_get_section_by_name (dynobj, ".interp");
|
BFD_ASSERT (s != NULL);
|
BFD_ASSERT (sec != NULL);
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
/* We may have created entries in the .rela.got section.
|
/* We may have created entries in the .rela.got section.
|
However, if we are not creating the dynamic sections, we will
|
However, if we are not creating the dynamic sections, we will
|
not actually use these entries. Reset the size of .rela.dlt,
|
not actually use these entries. Reset the size of .rela.dlt,
|
which will cause it to get stripped from the output file
|
which will cause it to get stripped from the output file
|
below. */
|
below. */
|
s = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
if (s != NULL)
|
if (sec != NULL)
|
s->size = 0;
|
sec->size = 0;
|
|
}
|
|
|
|
/* Set up DLT, PLT and OPD offsets for local syms, and space for local
|
|
dynamic relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
bfd_signed_vma *local_dlt;
|
|
bfd_signed_vma *end_local_dlt;
|
|
bfd_signed_vma *local_plt;
|
|
bfd_signed_vma *end_local_plt;
|
|
bfd_signed_vma *local_opd;
|
|
bfd_signed_vma *end_local_opd;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct elf64_hppa_dyn_reloc_entry *hdh_p;
|
|
|
|
for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
|
|
elf_section_data (sec)->local_dynrel);
|
|
hdh_p != NULL;
|
|
hdh_p = hdh_p->next)
|
|
{
|
|
if (!bfd_is_abs_section (hdh_p->sec)
|
|
&& bfd_is_abs_section (hdh_p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (hdh_p->count != 0)
|
|
{
|
|
srel = elf_section_data (hdh_p->sec)->sreloc;
|
|
srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
|
|
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_dlt = elf_local_got_refcounts (ibfd);
|
|
if (!local_dlt)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_dlt = local_dlt + locsymcount;
|
|
sec = hppa_info->dlt_sec;
|
|
srel = hppa_info->dlt_rel_sec;
|
|
for (; local_dlt < end_local_dlt; ++local_dlt)
|
|
{
|
|
if (*local_dlt > 0)
|
|
{
|
|
*local_dlt = sec->size;
|
|
sec->size += DLT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
{
|
|
srel->size += sizeof (Elf64_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
*local_dlt = (bfd_vma) -1;
|
|
}
|
|
|
|
local_plt = end_local_dlt;
|
|
end_local_plt = local_plt + locsymcount;
|
|
if (! hppa_info->root.dynamic_sections_created)
|
|
{
|
|
/* Won't be used, but be safe. */
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
else
|
|
{
|
|
sec = hppa_info->plt_sec;
|
|
srel = hppa_info->plt_rel_sec;
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
{
|
|
if (*local_plt > 0)
|
|
{
|
|
*local_plt = sec->size;
|
|
sec->size += PLT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
srel->size += sizeof (Elf64_External_Rela);
|
|
}
|
|
else
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
local_opd = end_local_plt;
|
|
end_local_opd = local_opd + locsymcount;
|
|
if (! hppa_info->root.dynamic_sections_created)
|
|
{
|
|
/* Won't be used, but be safe. */
|
|
for (; local_opd < end_local_opd; ++local_opd)
|
|
*local_opd = (bfd_vma) -1;
|
|
}
|
|
else
|
|
{
|
|
sec = hppa_info->opd_sec;
|
|
srel = hppa_info->opd_rel_sec;
|
|
for (; local_opd < end_local_opd; ++local_opd)
|
|
{
|
|
if (*local_opd > 0)
|
|
{
|
|
*local_opd = sec->size;
|
|
sec->size += OPD_ENTRY_SIZE;
|
|
if (info->shared)
|
|
srel->size += sizeof (Elf64_External_Rela);
|
|
}
|
|
else
|
|
*local_opd = (bfd_vma) -1;
|
|
}
|
|
}
|
}
|
}
|
|
|
/* Allocate the GOT entries. */
|
/* Allocate the GOT entries. */
|
|
|
data.info = info;
|
data.info = info;
|
if (elf64_hppa_hash_table (info)->dlt_sec)
|
if (hppa_info->dlt_sec)
|
{
|
{
|
data.ofs = 0x0;
|
data.ofs = hppa_info->dlt_sec->size;
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
allocate_global_data_dlt, &data);
|
allocate_global_data_dlt, &data);
|
hppa_info->dlt_sec->size = data.ofs;
|
hppa_info->dlt_sec->size = data.ofs;
|
|
}
|
|
|
data.ofs = 0x0;
|
if (hppa_info->plt_sec)
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
{
|
|
data.ofs = hppa_info->plt_sec->size;
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
allocate_global_data_plt, &data);
|
allocate_global_data_plt, &data);
|
hppa_info->plt_sec->size = data.ofs;
|
hppa_info->plt_sec->size = data.ofs;
|
|
}
|
|
|
|
if (hppa_info->stub_sec)
|
|
{
|
data.ofs = 0x0;
|
data.ofs = 0x0;
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
allocate_global_data_stub, &data);
|
allocate_global_data_stub, &data);
|
hppa_info->stub_sec->size = data.ofs;
|
hppa_info->stub_sec->size = data.ofs;
|
}
|
}
|
|
|
/* Allocate space for entries in the .opd section. */
|
/* Allocate space for entries in the .opd section. */
|
if (elf64_hppa_hash_table (info)->opd_sec)
|
if (hppa_info->opd_sec)
|
{
|
{
|
data.ofs = 0;
|
data.ofs = hppa_info->opd_sec->size;
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
allocate_global_data_opd, &data);
|
allocate_global_data_opd, &data);
|
hppa_info->opd_sec->size = data.ofs;
|
hppa_info->opd_sec->size = data.ofs;
|
}
|
}
|
|
|
/* Now allocate space for dynamic relocations, if necessary. */
|
/* Now allocate space for dynamic relocations, if necessary. */
|
if (hppa_info->root.dynamic_sections_created)
|
if (hppa_info->root.dynamic_sections_created)
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
allocate_dynrel_entries, &data);
|
allocate_dynrel_entries, &data);
|
|
|
/* The sizes of all the sections are set. Allocate memory for them. */
|
/* The sizes of all the sections are set. Allocate memory for them. */
|
plt = FALSE;
|
plt = FALSE;
|
relocs = FALSE;
|
relocs = FALSE;
|
reltext = FALSE;
|
reltext = FALSE;
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
|
{
|
{
|
const char *name;
|
const char *name;
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
if ((sec->flags & SEC_LINKER_CREATED) == 0)
|
continue;
|
continue;
|
|
|
/* It's OK to base decisions on the section name, because none
|
/* It's OK to base decisions on the section name, because none
|
of the dynobj section names depend upon the input files. */
|
of the dynobj section names depend upon the input files. */
|
name = bfd_get_section_name (dynobj, s);
|
name = bfd_get_section_name (dynobj, sec);
|
|
|
if (strcmp (name, ".plt") == 0)
|
if (strcmp (name, ".plt") == 0)
|
{
|
{
|
/* Remember whether there is a PLT. */
|
/* Remember whether there is a PLT. */
|
plt = s->size != 0;
|
plt = sec->size != 0;
|
}
|
}
|
else if (strcmp (name, ".opd") == 0
|
else if (strcmp (name, ".opd") == 0
|
|| CONST_STRNEQ (name, ".dlt")
|
|| CONST_STRNEQ (name, ".dlt")
|
|| strcmp (name, ".stub") == 0
|
|| strcmp (name, ".stub") == 0
|
|| strcmp (name, ".got") == 0)
|
|| strcmp (name, ".got") == 0)
|
{
|
{
|
/* Strip this section if we don't need it; see the comment below. */
|
/* Strip this section if we don't need it; see the comment below. */
|
}
|
}
|
else if (CONST_STRNEQ (name, ".rela"))
|
else if (CONST_STRNEQ (name, ".rela"))
|
{
|
{
|
if (s->size != 0)
|
if (sec->size != 0)
|
{
|
{
|
asection *target;
|
asection *target;
|
|
|
/* Remember whether there are any reloc sections other
|
/* Remember whether there are any reloc sections other
|
than .rela.plt. */
|
than .rela.plt. */
|
Line 1757... |
Line 1794... |
section, then we probably need a DT_TEXTREL
|
section, then we probably need a DT_TEXTREL
|
entry. The entries in the .rela.plt section
|
entry. The entries in the .rela.plt section
|
really apply to the .got section, which we
|
really apply to the .got section, which we
|
created ourselves and so know is not readonly. */
|
created ourselves and so know is not readonly. */
|
outname = bfd_get_section_name (output_bfd,
|
outname = bfd_get_section_name (output_bfd,
|
s->output_section);
|
sec->output_section);
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
if (target != NULL
|
if (target != NULL
|
&& (target->flags & SEC_READONLY) != 0
|
&& (target->flags & SEC_READONLY) != 0
|
&& (target->flags & SEC_ALLOC) != 0)
|
&& (target->flags & SEC_ALLOC) != 0)
|
reltext = TRUE;
|
reltext = TRUE;
|
}
|
}
|
|
|
/* We use the reloc_count field as a counter if we need
|
/* We use the reloc_count field as a counter if we need
|
to copy relocs into the output file. */
|
to copy relocs into the output file. */
|
s->reloc_count = 0;
|
sec->reloc_count = 0;
|
}
|
}
|
}
|
}
|
else
|
else
|
{
|
{
|
/* It's not one of our sections, so don't allocate space. */
|
/* It's not one of our sections, so don't allocate space. */
|
continue;
|
continue;
|
}
|
}
|
|
|
if (s->size == 0)
|
if (sec->size == 0)
|
{
|
{
|
/* If we don't need this section, strip it from the
|
/* If we don't need this section, strip it from the
|
output file. This is mostly to handle .rela.bss and
|
output file. This is mostly to handle .rela.bss and
|
.rela.plt. We must create both sections in
|
.rela.plt. We must create both sections in
|
create_dynamic_sections, because they must be created
|
create_dynamic_sections, because they must be created
|
before the linker maps input sections to output
|
before the linker maps input sections to output
|
sections. The linker does that before
|
sections. The linker does that before
|
adjust_dynamic_symbol is called, and it is that
|
adjust_dynamic_symbol is called, and it is that
|
function which decides whether anything needs to go
|
function which decides whether anything needs to go
|
into these sections. */
|
into these sections. */
|
s->flags |= SEC_EXCLUDE;
|
sec->flags |= SEC_EXCLUDE;
|
continue;
|
continue;
|
}
|
}
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
|
continue;
|
continue;
|
|
|
/* Allocate memory for the section contents if it has not
|
/* Allocate memory for the section contents if it has not
|
been allocated already. We use bfd_zalloc here in case
|
been allocated already. We use bfd_zalloc here in case
|
unused entries are not reclaimed before the section's
|
unused entries are not reclaimed before the section's
|
contents are written out. This should not happen, but this
|
contents are written out. This should not happen, but this
|
way if it does, we get a R_PARISC_NONE reloc instead of
|
way if it does, we get a R_PARISC_NONE reloc instead of
|
garbage. */
|
garbage. */
|
if (s->contents == NULL)
|
if (sec->contents == NULL)
|
{
|
{
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
|
if (s->contents == NULL)
|
if (sec->contents == NULL)
|
return FALSE;
|
return FALSE;
|
}
|
}
|
}
|
}
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
if (elf_hash_table (info)->dynamic_sections_created)
|
Line 1875... |
Line 1912... |
For some symbols we had to change their address when outputting
|
For some symbols we had to change their address when outputting
|
the dynamic symbol table. We undo that change here so that
|
the dynamic symbol table. We undo that change here so that
|
the symbols have their expected value in the normal symbol
|
the symbols have their expected value in the normal symbol
|
table. Ick. */
|
table. Ick. */
|
|
|
static bfd_boolean
|
static int
|
elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
|
elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
struct bfd_link_info *info;
|
const char *name,
|
const char *name;
|
Elf_Internal_Sym *sym,
|
Elf_Internal_Sym *sym;
|
asection *input_sec ATTRIBUTE_UNUSED,
|
asection *input_sec ATTRIBUTE_UNUSED;
|
struct elf_link_hash_entry *eh)
|
struct elf_link_hash_entry *h;
|
|
{
|
{
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
|
|
/* We may be called with the file symbol or section symbols.
|
/* We may be called with the file symbol or section symbols.
|
They never need munging, so it is safe to ignore them. */
|
They never need munging, so it is safe to ignore them. */
|
if (!name)
|
if (!name || !eh)
|
return TRUE;
|
return 1;
|
|
|
/* Get the PA dyn_symbol (if any) associated with NAME. */
|
|
hppa_info = elf64_hppa_hash_table (info);
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
name, FALSE, FALSE);
|
|
if (!dyn_h || dyn_h->h != h)
|
|
return TRUE;
|
|
|
|
/* Function symbols for which we created .opd entries *may* have been
|
/* Function symbols for which we created .opd entries *may* have been
|
munged by finish_dynamic_symbol and have to be un-munged here.
|
munged by finish_dynamic_symbol and have to be un-munged here.
|
|
|
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
into non-dynamic ones, so we initialize st_shndx to -1 in
|
into non-dynamic ones, so we initialize st_shndx to -1 in
|
mark_exported_functions and check to see if it was overwritten
|
mark_exported_functions and check to see if it was overwritten
|
here instead of just checking dyn_h->h->dynindx. */
|
here instead of just checking eh->dynindx. */
|
if (dyn_h->want_opd && dyn_h->st_shndx != -1)
|
if (hh->want_opd && hh->st_shndx != -1)
|
{
|
{
|
/* Restore the saved value and section index. */
|
/* Restore the saved value and section index. */
|
sym->st_value = dyn_h->st_value;
|
sym->st_value = hh->st_value;
|
sym->st_shndx = dyn_h->st_shndx;
|
sym->st_shndx = hh->st_shndx;
|
}
|
}
|
|
|
return TRUE;
|
return 1;
|
}
|
}
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
/* Finish up dynamic symbol handling. We set the contents of various
|
dynamic sections here. */
|
dynamic sections here. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
|
bfd *output_bfd;
|
struct bfd_link_info *info,
|
struct bfd_link_info *info;
|
struct elf_link_hash_entry *eh,
|
struct elf_link_hash_entry *h;
|
Elf_Internal_Sym *sym)
|
Elf_Internal_Sym *sym;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
|
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
|
h->root.root.string, FALSE, FALSE);
|
|
|
|
stub = hppa_info->stub_sec;
|
stub = hppa_info->stub_sec;
|
splt = hppa_info->plt_sec;
|
splt = hppa_info->plt_sec;
|
sdlt = hppa_info->dlt_sec;
|
sdlt = hppa_info->dlt_sec;
|
sopd = hppa_info->opd_sec;
|
sopd = hppa_info->opd_sec;
|
Line 1947... |
Line 1972... |
At least for symbols that refer to functions.
|
At least for symbols that refer to functions.
|
|
|
We will store a new value and section index into the symbol long
|
We will store a new value and section index into the symbol long
|
enough to output it into the dynamic symbol table, then we restore
|
enough to output it into the dynamic symbol table, then we restore
|
the original values (in elf64_hppa_link_output_symbol_hook). */
|
the original values (in elf64_hppa_link_output_symbol_hook). */
|
if (dyn_h && dyn_h->want_opd)
|
if (hh->want_opd)
|
{
|
{
|
BFD_ASSERT (sopd != NULL);
|
BFD_ASSERT (sopd != NULL);
|
|
|
/* Save away the original value and section index so that we
|
/* Save away the original value and section index so that we
|
can restore them later. */
|
can restore them later. */
|
dyn_h->st_value = sym->st_value;
|
hh->st_value = sym->st_value;
|
dyn_h->st_shndx = sym->st_shndx;
|
hh->st_shndx = sym->st_shndx;
|
|
|
/* For the dynamic symbol table entry, we want the value to be
|
/* For the dynamic symbol table entry, we want the value to be
|
address of this symbol's entry within the .opd section. */
|
address of this symbol's entry within the .opd section. */
|
sym->st_value = (dyn_h->opd_offset
|
sym->st_value = (hh->opd_offset
|
+ sopd->output_offset
|
+ sopd->output_offset
|
+ sopd->output_section->vma);
|
+ sopd->output_section->vma);
|
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
sopd->output_section);
|
sopd->output_section);
|
}
|
}
|
|
|
/* Initialize a .plt entry if requested. */
|
/* Initialize a .plt entry if requested. */
|
if (dyn_h && dyn_h->want_plt
|
if (hh->want_plt
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
&& elf64_hppa_dynamic_symbol_p (eh, info))
|
{
|
{
|
bfd_vma value;
|
bfd_vma value;
|
Elf_Internal_Rela rel;
|
Elf_Internal_Rela rel;
|
bfd_byte *loc;
|
bfd_byte *loc;
|
|
|
Line 1979... |
Line 2004... |
|
|
/* We do not actually care about the value in the PLT entry
|
/* We do not actually care about the value in the PLT entry
|
if we are creating a shared library and the symbol is
|
if we are creating a shared library and the symbol is
|
still undefined, we create a dynamic relocation to fill
|
still undefined, we create a dynamic relocation to fill
|
in the correct value. */
|
in the correct value. */
|
if (info->shared && h->root.type == bfd_link_hash_undefined)
|
if (info->shared && eh->root.type == bfd_link_hash_undefined)
|
value = 0;
|
value = 0;
|
else
|
else
|
value = (h->root.u.def.value + h->root.u.def.section->vma);
|
value = (eh->root.u.def.value + eh->root.u.def.section->vma);
|
|
|
/* Fill in the entry in the procedure linkage table.
|
/* Fill in the entry in the procedure linkage table.
|
|
|
The format of a plt entry is
|
The format of a plt entry is
|
<funcaddr> <__gp>.
|
<funcaddr> <__gp>.
|
Line 1995... |
Line 2020... |
install the PLT entry.
|
install the PLT entry.
|
|
|
We are modifying the in-memory PLT contents here, so we do not add
|
We are modifying the in-memory PLT contents here, so we do not add
|
in the output_offset of the PLT section. */
|
in the output_offset of the PLT section. */
|
|
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
|
bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
|
value = _bfd_get_gp_value (splt->output_section->owner);
|
value = _bfd_get_gp_value (splt->output_section->owner);
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
|
bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
|
|
|
/* Create a dynamic IPLT relocation for this entry.
|
/* Create a dynamic IPLT relocation for this entry.
|
|
|
We are creating a relocation in the output file's PLT section,
|
We are creating a relocation in the output file's PLT section,
|
which is included within the DLT secton. So we do need to include
|
which is included within the DLT secton. So we do need to include
|
the PLT's output_offset in the computation of the relocation's
|
the PLT's output_offset in the computation of the relocation's
|
address. */
|
address. */
|
rel.r_offset = (dyn_h->plt_offset + splt->output_offset
|
rel.r_offset = (hh->plt_offset + splt->output_offset
|
+ splt->output_section->vma);
|
+ splt->output_section->vma);
|
rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
|
rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
|
rel.r_addend = 0;
|
rel.r_addend = 0;
|
|
|
loc = spltrel->contents;
|
loc = spltrel->contents;
|
loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
|
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
|
}
|
}
|
|
|
/* Initialize an external call stub entry if requested. */
|
/* Initialize an external call stub entry if requested. */
|
if (dyn_h && dyn_h->want_stub
|
if (hh->want_stub
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
&& elf64_hppa_dynamic_symbol_p (eh, info))
|
{
|
{
|
bfd_vma value;
|
bfd_vma value;
|
int insn;
|
int insn;
|
unsigned int max_offset;
|
unsigned int max_offset;
|
|
|
Line 2029... |
Line 2054... |
|
|
/* Install the generic stub template.
|
/* Install the generic stub template.
|
|
|
We are modifying the contents of the stub section, so we do not
|
We are modifying the contents of the stub section, so we do not
|
need to include the stub section's output_offset here. */
|
need to include the stub section's output_offset here. */
|
memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
|
memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
|
|
|
/* Fix up the first ldd instruction.
|
/* Fix up the first ldd instruction.
|
|
|
We are modifying the contents of the STUB section in memory,
|
We are modifying the contents of the STUB section in memory,
|
so we do not need to include its output offset in this computation.
|
so we do not need to include its output offset in this computation.
|
Line 2042... |
Line 2067... |
the start of the PLT section. These instructions will reference
|
the start of the PLT section. These instructions will reference
|
data relative to the value of __gp, which may not necessarily have
|
data relative to the value of __gp, which may not necessarily have
|
the same address as the start of the PLT section.
|
the same address as the start of the PLT section.
|
|
|
gp_offset contains the offset of __gp within the PLT section. */
|
gp_offset contains the offset of __gp within the PLT section. */
|
value = dyn_h->plt_offset - hppa_info->gp_offset;
|
value = hh->plt_offset - hppa_info->gp_offset;
|
|
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
|
insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
|
if (output_bfd->arch_info->mach >= 25)
|
if (output_bfd->arch_info->mach >= 25)
|
{
|
{
|
/* Wide mode allows 16 bit offsets. */
|
/* Wide mode allows 16 bit offsets. */
|
max_offset = 32768;
|
max_offset = 32768;
|
insn &= ~ 0xfff1;
|
insn &= ~ 0xfff1;
|
Line 2062... |
Line 2087... |
}
|
}
|
|
|
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
{
|
{
|
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
dyn_h->root.string,
|
hh->eh.root.root.string,
|
(long) value);
|
(long) value);
|
return FALSE;
|
return FALSE;
|
}
|
}
|
|
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
stub->contents + dyn_h->stub_offset);
|
stub->contents + hh->stub_offset);
|
|
|
/* Fix up the second ldd instruction. */
|
/* Fix up the second ldd instruction. */
|
value += 8;
|
value += 8;
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
|
insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
|
if (output_bfd->arch_info->mach >= 25)
|
if (output_bfd->arch_info->mach >= 25)
|
{
|
{
|
insn &= ~ 0xfff1;
|
insn &= ~ 0xfff1;
|
insn |= re_assemble_16 ((int) value);
|
insn |= re_assemble_16 ((int) value);
|
}
|
}
|
Line 2084... |
Line 2109... |
{
|
{
|
insn &= ~ 0x3ff1;
|
insn &= ~ 0x3ff1;
|
insn |= re_assemble_14 ((int) value);
|
insn |= re_assemble_14 ((int) value);
|
}
|
}
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
stub->contents + dyn_h->stub_offset + 8);
|
stub->contents + hh->stub_offset + 8);
|
}
|
}
|
|
|
return TRUE;
|
return TRUE;
|
}
|
}
|
|
|
/* The .opd section contains FPTRs for each function this file
|
/* The .opd section contains FPTRs for each function this file
|
exports. Initialize the FPTR entries. */
|
exports. Initialize the FPTR entries. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_finalize_opd (dyn_h, data)
|
elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
|
|
asection *sopd;
|
asection *sopd;
|
asection *sopdrel;
|
asection *sopdrel;
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
sopd = hppa_info->opd_sec;
|
sopd = hppa_info->opd_sec;
|
sopdrel = hppa_info->opd_rel_sec;
|
sopdrel = hppa_info->opd_rel_sec;
|
|
|
if (h && dyn_h->want_opd)
|
if (hh->want_opd)
|
{
|
{
|
bfd_vma value;
|
bfd_vma value;
|
|
|
/* The first two words of an .opd entry are zero.
|
/* The first two words of an .opd entry are zero.
|
|
|
We are modifying the contents of the OPD section in memory, so we
|
We are modifying the contents of the OPD section in memory, so we
|
do not need to include its output offset in this computation. */
|
do not need to include its output offset in this computation. */
|
memset (sopd->contents + dyn_h->opd_offset, 0, 16);
|
memset (sopd->contents + hh->opd_offset, 0, 16);
|
|
|
value = (h->root.u.def.value
|
value = (eh->root.u.def.value
|
+ h->root.u.def.section->output_section->vma
|
+ eh->root.u.def.section->output_section->vma
|
+ h->root.u.def.section->output_offset);
|
+ eh->root.u.def.section->output_offset);
|
|
|
/* The next word is the address of the function. */
|
/* The next word is the address of the function. */
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
|
bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
|
|
|
/* The last word is our local __gp value. */
|
/* The last word is our local __gp value. */
|
value = _bfd_get_gp_value (sopd->output_section->owner);
|
value = _bfd_get_gp_value (sopd->output_section->owner);
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
|
bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
|
}
|
}
|
|
|
/* If we are generating a shared library, we must generate EPLT relocations
|
/* If we are generating a shared library, we must generate EPLT relocations
|
for each entry in the .opd, even for static functions (they may have
|
for each entry in the .opd, even for static functions (they may have
|
had their address taken). */
|
had their address taken). */
|
if (info->shared && dyn_h && dyn_h->want_opd)
|
if (info->shared && hh->want_opd)
|
{
|
{
|
Elf_Internal_Rela rel;
|
Elf_Internal_Rela rel;
|
bfd_byte *loc;
|
bfd_byte *loc;
|
int dynindx;
|
int dynindx;
|
|
|
/* We may need to do a relocation against a local symbol, in
|
/* We may need to do a relocation against a local symbol, in
|
which case we have to look up it's dynamic symbol index off
|
which case we have to look up it's dynamic symbol index off
|
the local symbol hash table. */
|
the local symbol hash table. */
|
if (h && h->dynindx != -1)
|
if (eh->dynindx != -1)
|
dynindx = h->dynindx;
|
dynindx = eh->dynindx;
|
else
|
else
|
dynindx
|
dynindx
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
dyn_h->sym_indx);
|
hh->sym_indx);
|
|
|
/* The offset of this relocation is the absolute address of the
|
/* The offset of this relocation is the absolute address of the
|
.opd entry for this symbol. */
|
.opd entry for this symbol. */
|
rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
|
rel.r_offset = (hh->opd_offset + sopd->output_offset
|
+ sopd->output_section->vma);
|
+ sopd->output_section->vma);
|
|
|
/* If H is non-null, then we have an external symbol.
|
/* If H is non-null, then we have an external symbol.
|
|
|
It is imperative that we use a different dynamic symbol for the
|
It is imperative that we use a different dynamic symbol for the
|
Line 2181... |
Line 2204... |
library.
|
library.
|
|
|
We do have to play similar games for FPTR relocations in shared
|
We do have to play similar games for FPTR relocations in shared
|
libraries, including those for static symbols. See the FPTR
|
libraries, including those for static symbols. See the FPTR
|
handling in elf64_hppa_finalize_dynreloc. */
|
handling in elf64_hppa_finalize_dynreloc. */
|
if (h)
|
if (eh)
|
{
|
{
|
char *new_name;
|
char *new_name;
|
struct elf_link_hash_entry *nh;
|
struct elf_link_hash_entry *nh;
|
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
new_name = alloca (strlen (eh->root.root.string) + 2);
|
new_name[0] = '.';
|
new_name[0] = '.';
|
strcpy (new_name + 1, h->root.root.string);
|
strcpy (new_name + 1, eh->root.root.string);
|
|
|
nh = elf_link_hash_lookup (elf_hash_table (info),
|
nh = elf_link_hash_lookup (elf_hash_table (info),
|
new_name, FALSE, FALSE, FALSE);
|
new_name, TRUE, TRUE, FALSE);
|
|
|
/* All we really want from the new symbol is its dynamic
|
/* All we really want from the new symbol is its dynamic
|
symbol index. */
|
symbol index. */
|
|
if (nh)
|
dynindx = nh->dynindx;
|
dynindx = nh->dynindx;
|
}
|
}
|
|
|
rel.r_addend = 0;
|
rel.r_addend = 0;
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
Line 2213... |
Line 2237... |
/* The .dlt section contains addresses for items referenced through the
|
/* The .dlt section contains addresses for items referenced through the
|
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_finalize_dlt (dyn_h, data)
|
elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
asection *sdlt, *sdltrel;
|
asection *sdlt, *sdltrel;
|
struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
|
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
|
|
sdlt = hppa_info->dlt_sec;
|
sdlt = hppa_info->dlt_sec;
|
sdltrel = hppa_info->dlt_rel_sec;
|
sdltrel = hppa_info->dlt_rel_sec;
|
|
|
/* H/DYN_H may refer to a local variable and we know it's
|
/* H/DYN_H may refer to a local variable and we know it's
|
address, so there is no need to create a relocation. Just install
|
address, so there is no need to create a relocation. Just install
|
the proper value into the DLT, note this shortcut can not be
|
the proper value into the DLT, note this shortcut can not be
|
skipped when building a shared library. */
|
skipped when building a shared library. */
|
if (! info->shared && h && dyn_h->want_dlt)
|
if (! info->shared && hh && hh->want_dlt)
|
{
|
{
|
bfd_vma value;
|
bfd_vma value;
|
|
|
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
to point to the FPTR entry in the .opd section.
|
to point to the FPTR entry in the .opd section.
|
|
|
We include the OPD's output offset in this computation as
|
We include the OPD's output offset in this computation as
|
we are referring to an absolute address in the resulting
|
we are referring to an absolute address in the resulting
|
object file. */
|
object file. */
|
if (dyn_h->want_opd)
|
if (hh->want_opd)
|
{
|
{
|
value = (dyn_h->opd_offset
|
value = (hh->opd_offset
|
+ hppa_info->opd_sec->output_offset
|
+ hppa_info->opd_sec->output_offset
|
+ hppa_info->opd_sec->output_section->vma);
|
+ hppa_info->opd_sec->output_section->vma);
|
}
|
}
|
else if ((h->root.type == bfd_link_hash_defined
|
else if ((eh->root.type == bfd_link_hash_defined
|
|| h->root.type == bfd_link_hash_defweak)
|
|| eh->root.type == bfd_link_hash_defweak)
|
&& h->root.u.def.section)
|
&& eh->root.u.def.section)
|
{
|
{
|
value = h->root.u.def.value + h->root.u.def.section->output_offset;
|
value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
|
if (h->root.u.def.section->output_section)
|
if (eh->root.u.def.section->output_section)
|
value += h->root.u.def.section->output_section->vma;
|
value += eh->root.u.def.section->output_section->vma;
|
else
|
else
|
value += h->root.u.def.section->vma;
|
value += eh->root.u.def.section->vma;
|
}
|
}
|
else
|
else
|
/* We have an undefined function reference. */
|
/* We have an undefined function reference. */
|
value = 0;
|
value = 0;
|
|
|
/* We do not need to include the output offset of the DLT section
|
/* We do not need to include the output offset of the DLT section
|
here because we are modifying the in-memory contents. */
|
here because we are modifying the in-memory contents. */
|
bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
|
bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
|
}
|
}
|
|
|
/* Create a relocation for the DLT entry associated with this symbol.
|
/* Create a relocation for the DLT entry associated with this symbol.
|
When building a shared library the symbol does not have to be dynamic. */
|
When building a shared library the symbol does not have to be dynamic. */
|
if (dyn_h->want_dlt
|
if (hh->want_dlt
|
&& (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
|
&& (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
|
{
|
{
|
Elf_Internal_Rela rel;
|
Elf_Internal_Rela rel;
|
bfd_byte *loc;
|
bfd_byte *loc;
|
int dynindx;
|
int dynindx;
|
|
|
/* We may need to do a relocation against a local symbol, in
|
/* We may need to do a relocation against a local symbol, in
|
which case we have to look up it's dynamic symbol index off
|
which case we have to look up it's dynamic symbol index off
|
the local symbol hash table. */
|
the local symbol hash table. */
|
if (h && h->dynindx != -1)
|
if (eh && eh->dynindx != -1)
|
dynindx = h->dynindx;
|
dynindx = eh->dynindx;
|
else
|
else
|
dynindx
|
dynindx
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
dyn_h->sym_indx);
|
hh->sym_indx);
|
|
|
/* Create a dynamic relocation for this entry. Do include the output
|
/* Create a dynamic relocation for this entry. Do include the output
|
offset of the DLT entry since we need an absolute address in the
|
offset of the DLT entry since we need an absolute address in the
|
resulting object file. */
|
resulting object file. */
|
rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
|
rel.r_offset = (hh->dlt_offset + sdlt->output_offset
|
+ sdlt->output_section->vma);
|
+ sdlt->output_section->vma);
|
if (h && h->type == STT_FUNC)
|
if (eh && eh->type == STT_FUNC)
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
else
|
else
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
rel.r_addend = 0;
|
rel.r_addend = 0;
|
|
|
Line 2307... |
Line 2329... |
|
|
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
for dynamic functions used to initialize static data. */
|
for dynamic functions used to initialize static data. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_finalize_dynreloc (dyn_h, data)
|
elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
void *data)
|
PTR data;
|
|
{
|
{
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf_link_hash_entry *h;
|
|
int dynamic_symbol;
|
int dynamic_symbol;
|
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
|
|
|
if (!dynamic_symbol && !info->shared)
|
if (!dynamic_symbol && !info->shared)
|
return TRUE;
|
return TRUE;
|
|
|
if (dyn_h->reloc_entries)
|
if (hh->reloc_entries)
|
{
|
{
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
int dynindx;
|
int dynindx;
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
h = dyn_h->h;
|
|
|
|
/* We may need to do a relocation against a local symbol, in
|
/* We may need to do a relocation against a local symbol, in
|
which case we have to look up it's dynamic symbol index off
|
which case we have to look up it's dynamic symbol index off
|
the local symbol hash table. */
|
the local symbol hash table. */
|
if (h && h->dynindx != -1)
|
if (eh->dynindx != -1)
|
dynindx = h->dynindx;
|
dynindx = eh->dynindx;
|
else
|
else
|
dynindx
|
dynindx
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
dyn_h->sym_indx);
|
hh->sym_indx);
|
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
for (rent = hh->reloc_entries; rent; rent = rent->next)
|
{
|
{
|
Elf_Internal_Rela rel;
|
Elf_Internal_Rela rel;
|
bfd_byte *loc;
|
bfd_byte *loc;
|
|
|
/* Allocate one iff we are building a shared library, the relocation
|
/* Allocate one iff we are building a shared library, the relocation
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
continue;
|
continue;
|
|
|
/* Create a dynamic relocation for this entry.
|
/* Create a dynamic relocation for this entry.
|
|
|
We need the output offset for the reloc's section because
|
We need the output offset for the reloc's section because
|
Line 2376... |
Line 2396... |
purpose. Thus the hair in the check_relocs routine.
|
purpose. Thus the hair in the check_relocs routine.
|
|
|
We use a section symbol recorded by check_relocs as the
|
We use a section symbol recorded by check_relocs as the
|
base symbol for the relocation. The addend is the difference
|
base symbol for the relocation. The addend is the difference
|
between the section symbol and the address of the .opd entry. */
|
between the section symbol and the address of the .opd entry. */
|
if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
|
if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
{
|
{
|
bfd_vma value, value2;
|
bfd_vma value, value2;
|
|
|
/* First compute the address of the opd entry for this symbol. */
|
/* First compute the address of the opd entry for this symbol. */
|
value = (dyn_h->opd_offset
|
value = (hh->opd_offset
|
+ hppa_info->opd_sec->output_section->vma
|
+ hppa_info->opd_sec->output_section->vma
|
+ hppa_info->opd_sec->output_offset);
|
+ hppa_info->opd_sec->output_offset);
|
|
|
/* Compute the value of the start of the section with
|
/* Compute the value of the start of the section with
|
the relocation. */
|
the relocation. */
|
Line 2424... |
Line 2444... |
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
/* Used to decide how to sort relocs in an optimal manner for the
|
dynamic linker, before writing them out. */
|
dynamic linker, before writing them out. */
|
|
|
static enum elf_reloc_type_class
|
static enum elf_reloc_type_class
|
elf64_hppa_reloc_type_class (rela)
|
elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
|
const Elf_Internal_Rela *rela;
|
|
{
|
{
|
if (ELF64_R_SYM (rela->r_info) == 0)
|
if (ELF64_R_SYM (rela->r_info) == 0)
|
return reloc_class_relative;
|
return reloc_class_relative;
|
|
|
switch ((int) ELF64_R_TYPE (rela->r_info))
|
switch ((int) ELF64_R_TYPE (rela->r_info))
|
Line 2444... |
Line 2463... |
}
|
}
|
|
|
/* Finish up the dynamic sections. */
|
/* Finish up the dynamic sections. */
|
|
|
static bfd_boolean
|
static bfd_boolean
|
elf64_hppa_finish_dynamic_sections (output_bfd, info)
|
elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
|
bfd *output_bfd;
|
struct bfd_link_info *info)
|
struct bfd_link_info *info;
|
|
{
|
{
|
bfd *dynobj;
|
bfd *dynobj;
|
asection *sdyn;
|
asection *sdyn;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
|
hppa_info = elf64_hppa_hash_table (info);
|
hppa_info = hppa_link_hash_table (info);
|
|
|
/* Finalize the contents of the .opd section. */
|
/* Finalize the contents of the .opd section. */
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
elf64_hppa_finalize_opd,
|
elf64_hppa_finalize_opd,
|
info);
|
info);
|
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
elf64_hppa_finalize_dynreloc,
|
elf64_hppa_finalize_dynreloc,
|
info);
|
info);
|
|
|
/* Finalize the contents of the .dlt section. */
|
/* Finalize the contents of the .dlt section. */
|
dynobj = elf_hash_table (info)->dynobj;
|
dynobj = elf_hash_table (info)->dynobj;
|
/* Finalize the contents of the .dlt section. */
|
/* Finalize the contents of the .dlt section. */
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
elf_link_hash_traverse (elf_hash_table (info),
|
elf64_hppa_finalize_dlt,
|
elf64_hppa_finalize_dlt,
|
info);
|
info);
|
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
Line 2710... |
Line 2728... |
}
|
}
|
|
|
/* Called when writing out an object file to decide the type of a
|
/* Called when writing out an object file to decide the type of a
|
symbol. */
|
symbol. */
|
static int
|
static int
|
elf64_hppa_elf_get_symbol_type (elf_sym, type)
|
elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
|
Elf_Internal_Sym *elf_sym;
|
int type)
|
int type;
|
|
{
|
{
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
return STT_PARISC_MILLI;
|
return STT_PARISC_MILLI;
|
else
|
else
|
return type;
|
return type;
|
Line 2768... |
Line 2785... |
hdr->p_type = PT_LOAD;
|
hdr->p_type = PT_LOAD;
|
|
|
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
|
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
|
}
|
}
|
|
|
|
/* Hook called by the linker routine which adds symbols from an object
|
|
file. HP's libraries define symbols with HP specific section
|
|
indices, which we have to handle. */
|
|
|
|
static bfd_boolean
|
|
elf_hppa_add_symbol_hook (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Sym *sym,
|
|
const char **namep ATTRIBUTE_UNUSED,
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
|
asection **secp,
|
|
bfd_vma *valp)
|
|
{
|
|
unsigned int index = sym->st_shndx;
|
|
|
|
switch (index)
|
|
{
|
|
case SHN_PARISC_ANSI_COMMON:
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
|
*valp = sym->st_size;
|
|
break;
|
|
|
|
case SHN_PARISC_HUGE_COMMON:
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
|
*valp = sym->st_size;
|
|
break;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
|
void *data)
|
|
{
|
|
struct bfd_link_info *info = data;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* If we are not creating a shared library, and this symbol is
|
|
referenced by a shared library but is not defined anywhere, then
|
|
the generic code will warn that it is undefined.
|
|
|
|
This behavior is undesirable on HPs since the standard shared
|
|
libraries contain references to undefined symbols.
|
|
|
|
So we twiddle the flags associated with such symbols so that they
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
|
|
|
Ultimately we should have better controls over the generic ELF BFD
|
|
linker code. */
|
|
if (! info->relocatable
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
|
&& h->root.type == bfd_link_hash_undefined
|
|
&& h->ref_dynamic
|
|
&& !h->ref_regular)
|
|
{
|
|
h->ref_dynamic = 0;
|
|
h->pointer_equality_needed = 1;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
|
void *data)
|
|
{
|
|
struct bfd_link_info *info = data;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* If we are not creating a shared library, and this symbol is
|
|
referenced by a shared library but is not defined anywhere, then
|
|
the generic code will warn that it is undefined.
|
|
|
|
This behavior is undesirable on HPs since the standard shared
|
|
libraries contain references to undefined symbols.
|
|
|
|
So we twiddle the flags associated with such symbols so that they
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
|
|
|
Ultimately we should have better controls over the generic ELF BFD
|
|
linker code. */
|
|
if (! info->relocatable
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
|
&& h->root.type == bfd_link_hash_undefined
|
|
&& !h->ref_dynamic
|
|
&& !h->ref_regular
|
|
&& h->pointer_equality_needed)
|
|
{
|
|
h->ref_dynamic = 1;
|
|
h->pointer_equality_needed = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf_hppa_is_dynamic_loader_symbol (const char *name)
|
|
{
|
|
return (! strcmp (name, "__CPU_REVISION")
|
|
|| ! strcmp (name, "__CPU_KEYBITS_1")
|
|
|| ! strcmp (name, "__SYSTEM_ID_D")
|
|
|| ! strcmp (name, "__FPU_MODEL")
|
|
|| ! strcmp (name, "__FPU_REVISION")
|
|
|| ! strcmp (name, "__ARGC")
|
|
|| ! strcmp (name, "__ARGV")
|
|
|| ! strcmp (name, "__ENVP")
|
|
|| ! strcmp (name, "__TLS_SIZE_D")
|
|
|| ! strcmp (name, "__LOAD_INFO")
|
|
|| ! strcmp (name, "__systab"));
|
|
}
|
|
|
|
/* Record the lowest address for the data and text segments. */
|
|
static void
|
|
elf_hppa_record_segment_addrs (bfd *abfd,
|
|
asection *section,
|
|
void *data)
|
|
{
|
|
struct elf64_hppa_link_hash_table *hppa_info = data;
|
|
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
|
{
|
|
bfd_vma value;
|
|
Elf_Internal_Phdr *p;
|
|
|
|
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
|
|
BFD_ASSERT (p != NULL);
|
|
value = p->p_vaddr;
|
|
|
|
if (section->flags & SEC_READONLY)
|
|
{
|
|
if (value < hppa_info->text_segment_base)
|
|
hppa_info->text_segment_base = value;
|
|
}
|
|
else
|
|
{
|
|
if (value < hppa_info->data_segment_base)
|
|
hppa_info->data_segment_base = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called after we have seen all the input files/sections, but before
|
|
final symbol resolution and section placement has been determined.
|
|
|
|
We use this hook to (possibly) provide a value for __gp, then we
|
|
fall back to the generic ELF final link routine. */
|
|
|
|
static bfd_boolean
|
|
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
bfd_boolean retval;
|
|
struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
|
|
|
|
if (! info->relocatable)
|
|
{
|
|
struct elf_link_hash_entry *gp;
|
|
bfd_vma gp_val;
|
|
|
|
/* The linker script defines a value for __gp iff it was referenced
|
|
by one of the objects being linked. First try to find the symbol
|
|
in the hash table. If that fails, just compute the value __gp
|
|
should have had. */
|
|
gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
|
|
FALSE, FALSE);
|
|
|
|
if (gp)
|
|
{
|
|
|
|
/* Adjust the value of __gp as we may want to slide it into the
|
|
.plt section so that the stubs can access PLT entries without
|
|
using an addil sequence. */
|
|
gp->root.u.def.value += hppa_info->gp_offset;
|
|
|
|
gp_val = (gp->root.u.def.section->output_section->vma
|
|
+ gp->root.u.def.section->output_offset
|
|
+ gp->root.u.def.value);
|
|
}
|
|
else
|
|
{
|
|
asection *sec;
|
|
|
|
/* First look for a .plt section. If found, then __gp is the
|
|
address of the .plt + gp_offset.
|
|
|
|
If no .plt is found, then look for .dlt, .opd and .data (in
|
|
that order) and set __gp to the base address of whichever
|
|
section is found first. */
|
|
|
|
sec = hppa_info->plt_sec;
|
|
if (sec && ! (sec->flags & SEC_EXCLUDE))
|
|
gp_val = (sec->output_offset
|
|
+ sec->output_section->vma
|
|
+ hppa_info->gp_offset);
|
|
else
|
|
{
|
|
sec = hppa_info->dlt_sec;
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
sec = hppa_info->opd_sec;
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
|
gp_val = 0;
|
|
else
|
|
gp_val = sec->output_offset + sec->output_section->vma;
|
|
}
|
|
}
|
|
|
|
/* Install whatever value we found/computed for __gp. */
|
|
_bfd_set_gp_value (abfd, gp_val);
|
|
}
|
|
|
|
/* We need to know the base of the text and data segments so that we
|
|
can perform SEGREL relocations. We will record the base addresses
|
|
when we encounter the first SEGREL relocation. */
|
|
hppa_info->text_segment_base = (bfd_vma)-1;
|
|
hppa_info->data_segment_base = (bfd_vma)-1;
|
|
|
|
/* HP's shared libraries have references to symbols that are not
|
|
defined anywhere. The generic ELF BFD linker code will complain
|
|
about such symbols.
|
|
|
|
So we detect the losing case and arrange for the flags on the symbol
|
|
to indicate that it was never referenced. This keeps the generic
|
|
ELF BFD link code happy and appears to not create any secondary
|
|
problems. Ultimately we need a way to control the behavior of the
|
|
generic ELF BFD link code better. */
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
|
elf_hppa_unmark_useless_dynamic_symbols,
|
|
info);
|
|
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
|
retval = bfd_elf_final_link (abfd, info);
|
|
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
|
elf_hppa_remark_useless_dynamic_symbols,
|
|
info);
|
|
|
|
/* If we're producing a final executable, sort the contents of the
|
|
unwind section. */
|
|
if (retval)
|
|
retval = elf_hppa_sort_unwind (abfd);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Relocate the given INSN. VALUE should be the actual value we want
|
|
to insert into the instruction, ie by this point we should not be
|
|
concerned with computing an offset relative to the DLT, PC, etc.
|
|
Instead this routine is meant to handle the bit manipulations needed
|
|
to insert the relocation into the given instruction. */
|
|
|
|
static int
|
|
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
/* This is any 22 bit branch. In PA2.0 syntax it corresponds to
|
|
the "B" instruction. */
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_PCREL22C:
|
|
return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
|
|
|
|
/* This is any 12 bit branch. */
|
|
case R_PARISC_PCREL12F:
|
|
return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
|
|
|
|
/* This is any 17 bit branch. In PA2.0 syntax it also corresponds
|
|
to the "B" instruction as well as BE. */
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
|
|
|
|
/* ADDIL or LDIL instructions. */
|
|
case R_PARISC_DLTREL21L:
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_LTOFF_FPTR21L:
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_LTOFF_TP21L:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_PLTOFF21L:
|
|
case R_PARISC_DIR21L:
|
|
return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
|
|
|
|
/* LDO and integer loads/stores with 14 bit displacements. */
|
|
case R_PARISC_DLTREL14R:
|
|
case R_PARISC_DLTREL14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_LTOFF_FPTR14R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_LTOFF_TP14R:
|
|
case R_PARISC_LTOFF_TP14F:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_PLTOFF14R:
|
|
case R_PARISC_PLTOFF14F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR14F:
|
|
return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
|
|
|
|
/* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
|
|
case R_PARISC_LTOFF_FPTR16F:
|
|
case R_PARISC_PCREL16F:
|
|
case R_PARISC_LTOFF_TP16F:
|
|
case R_PARISC_GPREL16F:
|
|
case R_PARISC_PLTOFF16F:
|
|
case R_PARISC_DIR16F:
|
|
case R_PARISC_LTOFF16F:
|
|
return (insn & ~0xffff) | re_assemble_16 (sym_value);
|
|
|
|
/* Doubleword loads and stores with a 14 bit displacement. */
|
|
case R_PARISC_DLTREL14DR:
|
|
case R_PARISC_DLTIND14DR:
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
|
case R_PARISC_PCREL14DR:
|
|
case R_PARISC_PCREL16DF:
|
|
case R_PARISC_LTOFF_TP14DR:
|
|
case R_PARISC_LTOFF_TP16DF:
|
|
case R_PARISC_DPREL14DR:
|
|
case R_PARISC_GPREL16DF:
|
|
case R_PARISC_PLTOFF14DR:
|
|
case R_PARISC_PLTOFF16DF:
|
|
case R_PARISC_DIR14DR:
|
|
case R_PARISC_DIR16DF:
|
|
case R_PARISC_LTOFF16DF:
|
|
return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
|
|
| ((sym_value & 0x1ff8) << 1));
|
|
|
|
/* Floating point single word load/store instructions. */
|
|
case R_PARISC_DLTREL14WR:
|
|
case R_PARISC_DLTIND14WR:
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
|
case R_PARISC_PCREL14WR:
|
|
case R_PARISC_PCREL16WF:
|
|
case R_PARISC_LTOFF_TP14WR:
|
|
case R_PARISC_LTOFF_TP16WF:
|
|
case R_PARISC_DPREL14WR:
|
|
case R_PARISC_GPREL16WF:
|
|
case R_PARISC_PLTOFF14WR:
|
|
case R_PARISC_PLTOFF16WF:
|
|
case R_PARISC_DIR16WF:
|
|
case R_PARISC_DIR14WR:
|
|
case R_PARISC_LTOFF16WF:
|
|
return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
|
|
| ((sym_value & 0x1ffc) << 1));
|
|
|
|
default:
|
|
return insn;
|
|
}
|
|
}
|
|
|
|
/* Compute the value for a relocation (REL) during a final link stage,
|
|
then insert the value into the proper location in CONTENTS.
|
|
|
|
VALUE is a tentative value for the relocation and may be overridden
|
|
and modified here based on the specific relocation to be performed.
|
|
|
|
For example we do conversions for PC-relative branches in this routine
|
|
or redirection of calls to external routines to stubs.
|
|
|
|
The work of actually applying the relocation is left to a helper
|
|
routine in an attempt to reduce the complexity and size of this
|
|
function. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
|
|
bfd *input_bfd,
|
|
bfd *output_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
bfd_vma value,
|
|
struct bfd_link_info *info,
|
|
asection *sym_sec,
|
|
struct elf_link_hash_entry *eh)
|
|
{
|
|
struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
|
bfd_vma *local_offsets;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
int insn;
|
|
bfd_vma max_branch_offset = 0;
|
|
bfd_vma offset = rel->r_offset;
|
|
bfd_signed_vma addend = rel->r_addend;
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
|
unsigned int r_symndx = ELF_R_SYM (rel->r_info);
|
|
unsigned int r_type = howto->type;
|
|
bfd_byte *hit_data = contents + offset;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
local_offsets = elf_local_got_offsets (input_bfd);
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_NONE:
|
|
break;
|
|
|
|
/* Basic function call support.
|
|
|
|
Note for a call to a function defined in another dynamic library
|
|
we want to redirect the call to a stub. */
|
|
|
|
/* PC relative relocs without an implicit offset. */
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_PCREL14WR:
|
|
case R_PARISC_PCREL14DR:
|
|
case R_PARISC_PCREL16F:
|
|
case R_PARISC_PCREL16WF:
|
|
case R_PARISC_PCREL16DF:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
/* Adjust for any field selectors. */
|
|
if (r_type == R_PARISC_PCREL21L)
|
|
value = hppa_field_adjust (value, -8 + addend, e_lsel);
|
|
else if (r_type == R_PARISC_PCREL14F
|
|
|| r_type == R_PARISC_PCREL16F
|
|
|| r_type == R_PARISC_PCREL16WF
|
|
|| r_type == R_PARISC_PCREL16DF)
|
|
value = hppa_field_adjust (value, -8 + addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, -8 + addend, e_rsel);
|
|
|
|
/* Apply the relocation to the given instruction. */
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22C:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
addend -= 8;
|
|
|
|
if (r_type == (unsigned int) R_PARISC_PCREL22F)
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
|
|
|
/* Make sure we can reach the branch target. */
|
|
if (max_branch_offset != 0
|
|
&& value + addend + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): cannot reach %s"),
|
|
input_bfd,
|
|
input_section,
|
|
offset,
|
|
eh->root.root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Adjust for any field selectors. */
|
|
if (r_type == R_PARISC_PCREL17R)
|
|
value = hppa_field_adjust (value, addend, e_rsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
|
|
/* All branches are implicitly shifted by 2 places. */
|
|
value >>= 2;
|
|
|
|
/* Apply the relocation to the given instruction. */
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
/* Indirect references to data through the DLT. */
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14DR:
|
|
case R_PARISC_DLTIND14WR:
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_LTOFF_FPTR14R:
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
|
case R_PARISC_LTOFF_FPTR21L:
|
|
case R_PARISC_LTOFF_FPTR16F:
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
|
case R_PARISC_LTOFF_TP21L:
|
|
case R_PARISC_LTOFF_TP14R:
|
|
case R_PARISC_LTOFF_TP14F:
|
|
case R_PARISC_LTOFF_TP14WR:
|
|
case R_PARISC_LTOFF_TP14DR:
|
|
case R_PARISC_LTOFF_TP16F:
|
|
case R_PARISC_LTOFF_TP16WF:
|
|
case R_PARISC_LTOFF_TP16DF:
|
|
case R_PARISC_LTOFF16F:
|
|
case R_PARISC_LTOFF16WF:
|
|
case R_PARISC_LTOFF16DF:
|
|
{
|
|
bfd_vma off;
|
|
|
|
/* If this relocation was against a local symbol, then we still
|
|
have not set up the DLT entry (it's not convenient to do so
|
|
in the "finalize_dlt" routine because it is difficult to get
|
|
to the local symbol's value).
|
|
|
|
So, if this is a local symbol (h == NULL), then we need to
|
|
fill in its DLT entry.
|
|
|
|
Similarly we may still need to set up an entry in .opd for
|
|
a local function which had its address taken. */
|
|
if (hh == NULL)
|
|
{
|
|
bfd_vma *local_opd_offsets, *local_dlt_offsets;
|
|
|
|
if (local_offsets == NULL)
|
|
abort ();
|
|
|
|
/* Now do .opd creation if needed. */
|
|
if (r_type == R_PARISC_LTOFF_FPTR14R
|
|
|| r_type == R_PARISC_LTOFF_FPTR14DR
|
|
|| r_type == R_PARISC_LTOFF_FPTR14WR
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF)
|
|
{
|
|
local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
|
|
off = local_opd_offsets[r_symndx];
|
|
|
|
/* The last bit records whether we've already initialised
|
|
this local .opd entry. */
|
|
if ((off & 1) != 0)
|
|
{
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
off &= ~1;
|
|
}
|
|
else
|
|
{
|
|
local_opd_offsets[r_symndx] |= 1;
|
|
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + off, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents + off + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
(hppa_info->opd_sec->contents + off + 24));
|
|
}
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (off
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
addend = 0;
|
|
}
|
|
|
|
local_dlt_offsets = local_offsets;
|
|
off = local_dlt_offsets[r_symndx];
|
|
|
|
if ((off & 1) != 0)
|
|
{
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
off &= ~1;
|
|
}
|
|
else
|
|
{
|
|
local_dlt_offsets[r_symndx] |= 1;
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value + addend,
|
|
hppa_info->dlt_sec->contents + off);
|
|
}
|
|
}
|
|
else
|
|
off = hh->dlt_offset;
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (off
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All DLTIND relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_DLTIND21L
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
|
|| r_type == R_PARISC_LTOFF_TP21L)
|
|
value = hppa_field_adjust (value, 0, e_lsel);
|
|
else if (r_type == R_PARISC_DLTIND14F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF
|
|
|| r_type == R_PARISC_LTOFF16F
|
|
|| r_type == R_PARISC_LTOFF16DF
|
|
|| r_type == R_PARISC_LTOFF16WF
|
|
|| r_type == R_PARISC_LTOFF_TP16F
|
|
|| r_type == R_PARISC_LTOFF_TP16WF
|
|
|| r_type == R_PARISC_LTOFF_TP16DF)
|
|
value = hppa_field_adjust (value, 0, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, 0, e_rsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_DLTREL14R:
|
|
case R_PARISC_DLTREL14F:
|
|
case R_PARISC_DLTREL14DR:
|
|
case R_PARISC_DLTREL14WR:
|
|
case R_PARISC_DLTREL21L:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DPREL14WR:
|
|
case R_PARISC_DPREL14DR:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_GPREL16F:
|
|
case R_PARISC_GPREL16WF:
|
|
case R_PARISC_GPREL16DF:
|
|
{
|
|
/* Subtract out the global pointer value to make value a DLT
|
|
relative address. */
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All DLTREL relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_DLTREL21L
|
|
|| r_type == R_PARISC_DPREL21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_DLTREL14F
|
|
|| r_type == R_PARISC_DPREL14F
|
|
|| r_type == R_PARISC_GPREL16F
|
|
|| r_type == R_PARISC_GPREL16WF
|
|
|| r_type == R_PARISC_GPREL16DF)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR14WR:
|
|
case R_PARISC_DIR14DR:
|
|
case R_PARISC_DIR16F:
|
|
case R_PARISC_DIR16WF:
|
|
case R_PARISC_DIR16DF:
|
|
{
|
|
/* All DIR relocations are basically the same at this point,
|
|
except that branch offsets need to be divided by four, and
|
|
we need different field selectors. Note that we don't
|
|
redirect absolute calls to local stubs. */
|
|
|
|
if (r_type == R_PARISC_DIR21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_DIR17F
|
|
|| r_type == R_PARISC_DIR16F
|
|
|| r_type == R_PARISC_DIR16WF
|
|
|| r_type == R_PARISC_DIR16DF
|
|
|| r_type == R_PARISC_DIR14F)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
|
|
/* All branches are implicitly shifted by 2 places. */
|
|
value >>= 2;
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_PLTOFF21L:
|
|
case R_PARISC_PLTOFF14R:
|
|
case R_PARISC_PLTOFF14F:
|
|
case R_PARISC_PLTOFF14WR:
|
|
case R_PARISC_PLTOFF14DR:
|
|
case R_PARISC_PLTOFF16F:
|
|
case R_PARISC_PLTOFF16WF:
|
|
case R_PARISC_PLTOFF16DF:
|
|
{
|
|
/* We want the value of the PLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (hh->plt_offset
|
|
+ hppa_info->plt_sec->output_offset
|
|
+ hppa_info->plt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
/* All PLTOFF relocations are basically the same at this point,
|
|
except that we need different field selectors for the 21bit
|
|
version vs the 14bit versions. */
|
|
if (r_type == R_PARISC_PLTOFF21L)
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
|
else if (r_type == R_PARISC_PLTOFF14F
|
|
|| r_type == R_PARISC_PLTOFF16F
|
|
|| r_type == R_PARISC_PLTOFF16WF
|
|
|| r_type == R_PARISC_PLTOFF16DF)
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
|
else
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
|
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
|
break;
|
|
}
|
|
|
|
case R_PARISC_LTOFF_FPTR32:
|
|
{
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (hh == NULL)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ hh->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + hh->opd_offset + 24);
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (hh->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value,
|
|
hppa_info->dlt_sec->contents + hh->dlt_offset);
|
|
}
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (hh->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_LTOFF_FPTR64:
|
|
case R_PARISC_LTOFF_TP64:
|
|
{
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents
|
|
+ hh->opd_offset + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + hh->opd_offset + 24);
|
|
|
|
/* The DLT value is the address of the .opd entry. */
|
|
value = (hh->opd_offset
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
|
value,
|
|
hppa_info->dlt_sec->contents + hh->dlt_offset);
|
|
}
|
|
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (hh->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_DIR32:
|
|
bfd_put_32 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_DIR64:
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_GPREL64:
|
|
/* Subtract out the global pointer value to make value a DLT
|
|
relative address. */
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_LTOFF64:
|
|
/* We want the value of the DLT offset for this symbol, not
|
|
the symbol's actual address. Note that __gp may not point
|
|
to the start of the DLT, so we have to compute the absolute
|
|
address, then subtract out the value of __gp. */
|
|
value = (hh->dlt_offset
|
|
+ hppa_info->dlt_sec->output_offset
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
|
value -= _bfd_get_gp_value (output_bfd);
|
|
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_PCREL32:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
value += addend;
|
|
value -= 8;
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_PCREL64:
|
|
{
|
|
/* If this is a call to a function defined in another dynamic
|
|
library, then redirect the call to the local stub for this
|
|
function. */
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
|
+ hppa_info->stub_sec->output_section->vma);
|
|
|
|
/* Turn VALUE into a proper PC relative address. */
|
|
value -= (offset + input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
value += addend;
|
|
value -= 8;
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_FPTR64:
|
|
{
|
|
bfd_vma off;
|
|
|
|
/* We may still need to create the FPTR itself if it was for
|
|
a local symbol. */
|
|
if (hh == NULL)
|
|
{
|
|
bfd_vma *local_opd_offsets;
|
|
|
|
if (local_offsets == NULL)
|
|
abort ();
|
|
|
|
local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
|
|
off = local_opd_offsets[r_symndx];
|
|
|
|
/* The last bit records whether we've already initialised
|
|
this local .opd entry. */
|
|
if ((off & 1) != 0)
|
|
{
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
off &= ~1;
|
|
}
|
|
else
|
|
{
|
|
/* The first two words of an .opd entry are zero. */
|
|
memset (hppa_info->opd_sec->contents + off, 0, 16);
|
|
|
|
/* The next word is the address of the function. */
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
|
(hppa_info->opd_sec->contents + off + 16));
|
|
|
|
/* The last word is our local __gp value. */
|
|
value = _bfd_get_gp_value
|
|
(hppa_info->opd_sec->output_section->owner);
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
|
hppa_info->opd_sec->contents + off + 24);
|
|
}
|
|
}
|
|
else
|
|
off = hh->opd_offset;
|
|
|
|
if (hh == NULL || hh->want_opd)
|
|
/* We want the value of the OPD offset for this symbol. */
|
|
value = (off
|
|
+ hppa_info->opd_sec->output_offset
|
|
+ hppa_info->opd_sec->output_section->vma);
|
|
else
|
|
/* We want the address of the symbol. */
|
|
value += addend;
|
|
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_PARISC_SECREL32:
|
|
if (sym_sec)
|
|
value -= sym_sec->output_section->vma;
|
|
bfd_put_32 (input_bfd, value + addend, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
case R_PARISC_SEGREL64:
|
|
{
|
|
/* If this is the first SEGREL relocation, then initialize
|
|
the segment base values. */
|
|
if (hppa_info->text_segment_base == (bfd_vma) -1)
|
|
bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
|
|
hppa_info);
|
|
|
|
/* VALUE holds the absolute address. We want to include the
|
|
addend, then turn it into a segment relative address.
|
|
|
|
The segment is derived from SYM_SEC. We assume that there are
|
|
only two segments of note in the resulting executable/shlib.
|
|
A readonly segment (.text) and a readwrite segment (.data). */
|
|
value += addend;
|
|
|
|
if (sym_sec->flags & SEC_CODE)
|
|
value -= hppa_info->text_segment_base;
|
|
else
|
|
value -= hppa_info->data_segment_base;
|
|
|
|
if (r_type == R_PARISC_SEGREL32)
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
else
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static bfd_boolean
|
|
elf64_hppa_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
|
|
|
hppa_info = hppa_link_hash_table (info);
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *eh;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
bfd_boolean warned_undef;
|
|
|
|
r_type = ELF_R_TYPE (rel->r_info);
|
|
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|
|
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
|
|
continue;
|
|
|
|
/* This is a final link. */
|
|
r_symndx = ELF_R_SYM (rel->r_info);
|
|
eh = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
warned_undef = FALSE;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* This is a local symbol, hh defaults to NULL. */
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
|
|
}
|
|
else
|
|
{
|
|
/* This is not a local symbol. */
|
|
bfd_boolean unresolved_reloc;
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
/* It seems this can happen with erroneous or unsupported
|
|
input (mixing a.out and elf in an archive, for example.) */
|
|
if (sym_hashes == NULL)
|
|
return FALSE;
|
|
|
|
eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
|
|
while (eh->root.type == bfd_link_hash_indirect
|
|
|| eh->root.type == bfd_link_hash_warning)
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
|
|
|
warned_undef = FALSE;
|
|
unresolved_reloc = FALSE;
|
|
relocation = 0;
|
|
if (eh->root.type == bfd_link_hash_defined
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = eh->root.u.def.section;
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL)
|
|
/* Set a flag that will be cleared later if we find a
|
|
relocation value for this symbol. output_section
|
|
is typically NULL for symbols satisfied by a shared
|
|
library. */
|
|
unresolved_reloc = TRUE;
|
|
else
|
|
relocation = (eh->root.u.def.value
|
|
+ sym_sec->output_section->vma
|
|
+ sym_sec->output_offset);
|
|
}
|
|
else if (eh->root.type == bfd_link_hash_undefweak)
|
|
;
|
|
else if (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
|
|
;
|
|
else if (!info->relocatable
|
|
&& elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
|
|
continue;
|
|
else if (!info->relocatable)
|
|
{
|
|
bfd_boolean err;
|
|
err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
|
|
|| ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
|
|
if (!info->callbacks->undefined_symbol (info,
|
|
eh->root.root.string,
|
|
input_bfd,
|
|
input_section,
|
|
rel->r_offset, err))
|
|
return FALSE;
|
|
warned_undef = TRUE;
|
|
}
|
|
|
|
if (!info->relocatable
|
|
&& relocation == 0
|
|
&& eh->root.type != bfd_link_hash_defined
|
|
&& eh->root.type != bfd_link_hash_defweak
|
|
&& eh->root.type != bfd_link_hash_undefweak)
|
|
{
|
|
if (info->unresolved_syms_in_objects == RM_IGNORE
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
|
|
&& eh->type == STT_PARISC_MILLI)
|
|
{
|
|
if (! info->callbacks->undefined_symbol
|
|
(info, eh_name (eh), input_bfd,
|
|
input_section, rel->r_offset, FALSE))
|
|
return FALSE;
|
|
warned_undef = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sym_sec != NULL && elf_discarded_section (sym_sec))
|
|
{
|
|
/* For relocs against symbols from removed linkonce sections,
|
|
or sections discarded by a linker script, we just want the
|
|
section contents zeroed. Avoid any special processing. */
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
|
rel->r_info = 0;
|
|
rel->r_addend = 0;
|
|
continue;
|
|
}
|
|
|
|
if (info->relocatable)
|
|
continue;
|
|
|
|
r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
|
|
input_section, contents,
|
|
relocation, info, sym_sec,
|
|
eh);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
switch (r)
|
|
{
|
|
default:
|
|
abort ();
|
|
case bfd_reloc_overflow:
|
|
{
|
|
const char *sym_name;
|
|
|
|
if (eh != NULL)
|
|
sym_name = NULL;
|
|
else
|
|
{
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return FALSE;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, (eh ? &eh->root : NULL), sym_name,
|
|
howto->name, (bfd_vma) 0, input_bfd,
|
|
input_section, rel->r_offset)))
|
|
return FALSE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
|
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
|
{
|
{
|
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|