OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf64-hppa.c] - Diff between revs 157 and 225

Show entire file | Details | Blame | View Log

Rev 157 Rev 225
Line 1... Line 1...
/* Support for HPPA 64-bit ELF
/* Support for HPPA 64-bit ELF
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
Line 17... Line 17...
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
 
#include "alloca-conf.h"
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "libhppa.h"
#include "elf64-hppa.h"
#include "elf64-hppa.h"
 
 
/* This is the code recommended in the autoconf documentation, almost
 
   verbatim.  */
 
#ifndef __GNUC__
 
# if HAVE_ALLOCA_H
 
#  include <alloca.h>
 
# else
 
#  ifdef _AIX
 
/* Indented so that pre-ansi C compilers will ignore it, rather than
 
   choke on it.  Some versions of AIX require this to be the first
 
   thing in the file.  */
 
 #pragma alloca
 
#  else
 
#   ifndef alloca /* predefined by HP cc +Olibcalls */
 
#    if !defined (__STDC__) && !defined (__hpux)
 
extern char *alloca ();
 
#    else
 
extern void *alloca ();
 
#    endif /* __STDC__, __hpux */
 
#   endif /* alloca */
 
#  endif /* _AIX */
 
# endif /* HAVE_ALLOCA_H */
 
#else
 
extern void *alloca (size_t);
 
#endif /* __GNUC__ */
 
 
 
 
 
#define ARCH_SIZE              64
#define ARCH_SIZE              64
 
 
#define PLT_ENTRY_SIZE 0x10
#define PLT_ENTRY_SIZE 0x10
#define DLT_ENTRY_SIZE 0x8
#define DLT_ENTRY_SIZE 0x8
Line 72... Line 48...
   Note that we must use the LDD with a 14 bit displacement, not the one
   Note that we must use the LDD with a 14 bit displacement, not the one
   with a 5 bit displacement.  */
   with a 5 bit displacement.  */
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
                          0x53, 0x7b, 0x00, 0x00 };
                          0x53, 0x7b, 0x00, 0x00 };
 
 
struct elf64_hppa_dyn_hash_entry
struct elf64_hppa_link_hash_entry
{
{
  struct bfd_hash_entry root;
  struct elf_link_hash_entry eh;
 
 
  /* Offsets for this symbol in various linker sections.  */
  /* Offsets for this symbol in various linker sections.  */
  bfd_vma dlt_offset;
  bfd_vma dlt_offset;
  bfd_vma plt_offset;
  bfd_vma plt_offset;
  bfd_vma opd_offset;
  bfd_vma opd_offset;
  bfd_vma stub_offset;
  bfd_vma stub_offset;
 
 
  /* The symbol table entry, if any, that this was derived from.  */
 
  struct elf_link_hash_entry *h;
 
 
 
  /* The index of the (possibly local) symbol in the input bfd and its
  /* The index of the (possibly local) symbol in the input bfd and its
     associated BFD.  Needed so that we can have relocs against local
     associated BFD.  Needed so that we can have relocs against local
     symbols in shared libraries.  */
     symbols in shared libraries.  */
  long sym_indx;
  long sym_indx;
  bfd *owner;
  bfd *owner;
Line 113... Line 86...
    int type;
    int type;
 
 
    /* The input section of the relocation.  */
    /* The input section of the relocation.  */
    asection *sec;
    asection *sec;
 
 
 
    /* Number of relocs copied in this section.  */
 
    bfd_size_type count;
 
 
    /* The index of the section symbol for the input section of
    /* The index of the section symbol for the input section of
       the relocation.  Only needed when building shared libraries.  */
       the relocation.  Only needed when building shared libraries.  */
    int sec_symndx;
    int sec_symndx;
 
 
    /* The offset within the input section of the relocation.  */
    /* The offset within the input section of the relocation.  */
Line 133... Line 109...
  unsigned want_plt;
  unsigned want_plt;
  unsigned want_opd;
  unsigned want_opd;
  unsigned want_stub;
  unsigned want_stub;
};
};
 
 
struct elf64_hppa_dyn_hash_table
 
{
 
  struct bfd_hash_table root;
 
};
 
 
 
struct elf64_hppa_link_hash_table
struct elf64_hppa_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  /* Shortcuts to get to the various linker defined sections.  */
  /* Shortcuts to get to the various linker defined sections.  */
Line 164... Line 135...
  asection *stub_sec;
  asection *stub_sec;
 
 
  bfd_vma text_segment_base;
  bfd_vma text_segment_base;
  bfd_vma data_segment_base;
  bfd_vma data_segment_base;
 
 
  struct elf64_hppa_dyn_hash_table dyn_hash_table;
 
 
 
  /* We build tables to map from an input section back to its
  /* We build tables to map from an input section back to its
     symbol index.  This is the BFD for which we currently have
     symbol index.  This is the BFD for which we currently have
     a map.  */
     a map.  */
  bfd *section_syms_bfd;
  bfd *section_syms_bfd;
 
 
  /* Array of symbol numbers for each input section attached to the
  /* Array of symbol numbers for each input section attached to the
     current BFD.  */
     current BFD.  */
  int *section_syms;
  int *section_syms;
};
};
 
 
#define elf64_hppa_hash_table(p) \
#define hppa_link_hash_table(p) \
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
 
 
 
#define hppa_elf_hash_entry(ent) \
 
  ((struct elf64_hppa_link_hash_entry *)(ent))
 
 
 
#define eh_name(eh) \
 
  (eh ? eh->root.root.string : "<undef>")
 
 
typedef struct bfd_hash_entry *(*new_hash_entry_func)
typedef struct bfd_hash_entry *(*new_hash_entry_func)
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
 
 
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
 
  PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
 
           const char *string));
 
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
  PARAMS ((bfd *abfd));
  (bfd *abfd);
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
 
  PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
 
           bfd_boolean create, bfd_boolean copy));
 
static void elf64_hppa_dyn_hash_traverse
 
  PARAMS ((struct elf64_hppa_dyn_hash_table *table,
 
           bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
 
           PTR info));
 
 
 
static const char *get_dyn_name
 
  PARAMS ((bfd *, struct elf_link_hash_entry *,
 
           const Elf_Internal_Rela *, char **, size_t *));
 
 
 
/* This must follow the definitions of the various derived linker
/* This must follow the definitions of the various derived linker
   hash tables and shared functions.  */
   hash tables and shared functions.  */
#include "elf-hppa.h"
#include "elf-hppa.h"
 
 
static bfd_boolean elf64_hppa_object_p
static bfd_boolean elf64_hppa_object_p
  PARAMS ((bfd *));
  (bfd *);
 
 
static void elf64_hppa_post_process_headers
static void elf64_hppa_post_process_headers
  PARAMS ((bfd *, struct bfd_link_info *));
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_create_dynamic_sections
static bfd_boolean elf64_hppa_create_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  (struct bfd_link_info *, struct elf_link_hash_entry *);
 
 
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
  PARAMS ((struct elf_link_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_size_dynamic_sections
static bfd_boolean elf64_hppa_size_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_link_output_symbol_hook
static int elf64_hppa_link_output_symbol_hook
  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
  (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
           asection *, struct elf_link_hash_entry *));
   asection *, struct elf_link_hash_entry *);
 
 
static bfd_boolean elf64_hppa_finish_dynamic_symbol
static bfd_boolean elf64_hppa_finish_dynamic_symbol
  PARAMS ((bfd *, struct bfd_link_info *,
  (bfd *, struct bfd_link_info *,
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
   struct elf_link_hash_entry *, Elf_Internal_Sym *);
 
 
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
  PARAMS ((const Elf_Internal_Rela *));
  (const Elf_Internal_Rela *);
 
 
static bfd_boolean elf64_hppa_finish_dynamic_sections
static bfd_boolean elf64_hppa_finish_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  (bfd *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_check_relocs
static bfd_boolean elf64_hppa_check_relocs
  PARAMS ((bfd *, struct bfd_link_info *,
  (bfd *, struct bfd_link_info *,
           asection *, const Elf_Internal_Rela *));
   asection *, const Elf_Internal_Rela *);
 
 
static bfd_boolean elf64_hppa_dynamic_symbol_p
static bfd_boolean elf64_hppa_dynamic_symbol_p
  PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
  (struct elf_link_hash_entry *, struct bfd_link_info *);
 
 
static bfd_boolean elf64_hppa_mark_exported_functions
static bfd_boolean elf64_hppa_mark_exported_functions
  PARAMS ((struct elf_link_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_opd
static bfd_boolean elf64_hppa_finalize_opd
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_dlt
static bfd_boolean elf64_hppa_finalize_dlt
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_dlt
static bfd_boolean allocate_global_data_dlt
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_plt
static bfd_boolean allocate_global_data_plt
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_stub
static bfd_boolean allocate_global_data_stub
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean allocate_global_data_opd
static bfd_boolean allocate_global_data_opd
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean get_reloc_section
static bfd_boolean get_reloc_section
  PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
  (bfd *, struct elf64_hppa_link_hash_table *, asection *);
 
 
static bfd_boolean count_dyn_reloc
static bfd_boolean count_dyn_reloc
  PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
  (bfd *, struct elf64_hppa_link_hash_entry *,
           int, asection *, int, bfd_vma, bfd_vma));
   int, asection *, int, bfd_vma, bfd_vma);
 
 
static bfd_boolean allocate_dynrel_entries
static bfd_boolean allocate_dynrel_entries
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean elf64_hppa_finalize_dynreloc
static bfd_boolean elf64_hppa_finalize_dynreloc
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
  (struct elf_link_hash_entry *, void *);
 
 
static bfd_boolean get_opd
static bfd_boolean get_opd
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_plt
static bfd_boolean get_plt
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_dlt
static bfd_boolean get_dlt
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static bfd_boolean get_stub
static bfd_boolean get_stub
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
  (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
 
 
static int elf64_hppa_elf_get_symbol_type
static int elf64_hppa_elf_get_symbol_type
  PARAMS ((Elf_Internal_Sym *, int));
  (Elf_Internal_Sym *, int);
 
 
static bfd_boolean
/* Initialize an entry in the link hash table.  */
elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
 
                                bfd *abfd ATTRIBUTE_UNUSED,
 
                                new_hash_entry_func new,
 
                                unsigned int entsize)
 
{
 
  memset (ht, 0, sizeof (*ht));
 
  return bfd_hash_table_init (&ht->root, new, entsize);
 
}
 
 
 
static struct bfd_hash_entry*
static struct bfd_hash_entry*
elf64_hppa_new_dyn_hash_entry (entry, table, string)
hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
     struct bfd_hash_entry *entry;
                          struct bfd_hash_table *table,
     struct bfd_hash_table *table;
                          const char *string)
     const char *string;
 
{
{
  struct elf64_hppa_dyn_hash_entry *ret;
 
  ret = (struct elf64_hppa_dyn_hash_entry *) entry;
 
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (!ret)
  if (entry == NULL)
    ret = bfd_hash_allocate (table, sizeof (*ret));
    {
 
      entry = bfd_hash_allocate (table,
  if (!ret)
                                 sizeof (struct elf64_hppa_link_hash_entry));
    return 0;
      if (entry == NULL)
 
        return entry;
 
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct elf64_hppa_dyn_hash_entry *)
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
  if (entry != NULL)
 
    {
 
      struct elf64_hppa_link_hash_entry *hh;
 
 
  /* Initialize our local data.  All zeros.  */
  /* Initialize our local data.  All zeros.  */
  memset (&ret->dlt_offset, 0,
      hh = hppa_elf_hash_entry (entry);
          (sizeof (struct elf64_hppa_dyn_hash_entry)
      memset (&hh->dlt_offset, 0,
           - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
              (sizeof (struct elf64_hppa_link_hash_entry)
 
               - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
 
    }
 
 
  return &ret->root;
  return entry;
}
}
 
 
/* Create the derived linker hash table.  The PA64 ELF port uses this
/* Create the derived linker hash table.  The PA64 ELF port uses this
   derived hash table to keep information specific to the PA ElF
   derived hash table to keep information specific to the PA ElF
   linker (without using static variables).  */
   linker (without using static variables).  */
 
 
static struct bfd_link_hash_table*
static struct bfd_link_hash_table*
elf64_hppa_hash_table_create (abfd)
elf64_hppa_hash_table_create (bfd *abfd)
     bfd *abfd;
 
{
 
  struct elf64_hppa_link_hash_table *ret;
 
 
 
  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
 
  if (!ret)
 
    return 0;
 
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
 
                                      _bfd_elf_link_hash_newfunc,
 
                                      sizeof (struct elf_link_hash_entry)))
 
    {
    {
      bfd_release (abfd, ret);
  struct elf64_hppa_link_hash_table *htab;
      return 0;
  bfd_size_type amt = sizeof (*htab);
    }
 
 
 
  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
  htab = bfd_zalloc (abfd, amt);
                                       elf64_hppa_new_dyn_hash_entry,
  if (htab == NULL)
                                       sizeof (struct elf64_hppa_dyn_hash_entry)))
    return NULL;
    return 0;
 
  return &ret->root.root;
 
}
 
 
 
/* Look up an entry in a PA64 ELF linker hash table.  */
 
 
 
static struct elf64_hppa_dyn_hash_entry *
  if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
                                      hppa64_link_hash_newfunc,
     struct elf64_hppa_dyn_hash_table *table;
                                      sizeof (struct elf64_hppa_link_hash_entry)))
     const char *string;
 
     bfd_boolean create, copy;
 
{
{
  return ((struct elf64_hppa_dyn_hash_entry *)
      bfd_release (abfd, htab);
          bfd_hash_lookup (&table->root, string, create, copy));
      return NULL;
}
}
 
 
/* Traverse a PA64 ELF linker hash table.  */
  htab->text_segment_base = (bfd_vma) -1;
 
  htab->data_segment_base = (bfd_vma) -1;
 
 
static void
  return &htab->root.root;
elf64_hppa_dyn_hash_traverse (table, func, info)
 
     struct elf64_hppa_dyn_hash_table *table;
 
     bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
 
     PTR info;
 
{
 
  (bfd_hash_traverse
 
   (&table->root,
 
    (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
 
    info));
 
}
}


/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
 
 
   Additionally we set the default architecture and machine.  */
   Additionally we set the default architecture and machine.  */
static bfd_boolean
static bfd_boolean
elf64_hppa_object_p (abfd)
elf64_hppa_object_p (bfd *abfd)
     bfd *abfd;
 
{
{
  Elf_Internal_Ehdr * i_ehdrp;
  Elf_Internal_Ehdr * i_ehdrp;
  unsigned int flags;
  unsigned int flags;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
Line 464... Line 392...
  newsect = hdr->bfd_section;
  newsect = hdr->bfd_section;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Construct a string for use in the elf64_hppa_dyn_hash_table.  The
 
   name describes what was once potentially anonymous memory.  We
 
   allocate memory as necessary, possibly reusing PBUF/PLEN.  */
 
 
 
static const char *
 
get_dyn_name (abfd, h, rel, pbuf, plen)
 
     bfd *abfd;
 
     struct elf_link_hash_entry *h;
 
     const Elf_Internal_Rela *rel;
 
     char **pbuf;
 
     size_t *plen;
 
{
 
  asection *sec = abfd->sections;
 
  size_t nlen, tlen;
 
  char *buf;
 
  size_t len;
 
 
 
  if (h && rel->r_addend == 0)
 
    return h->root.root.string;
 
 
 
  if (h)
 
    nlen = strlen (h->root.root.string);
 
  else
 
    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
 
  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
 
 
 
  len = *plen;
 
  buf = *pbuf;
 
  if (len < tlen)
 
    {
 
      if (buf)
 
        free (buf);
 
      *pbuf = buf = malloc (tlen);
 
      *plen = len = tlen;
 
      if (!buf)
 
        return NULL;
 
    }
 
 
 
  if (h)
 
    {
 
      memcpy (buf, h->root.root.string, nlen);
 
      buf[nlen++] = '+';
 
      sprintf_vma (buf + nlen, rel->r_addend);
 
    }
 
  else
 
    {
 
      nlen = sprintf (buf, "%x:%lx",
 
                      sec->id & 0xffffffff,
 
                      (long) ELF64_R_SYM (rel->r_info));
 
      if (rel->r_addend)
 
        {
 
          buf[nlen++] = '+';
 
          sprintf_vma (buf + nlen, rel->r_addend);
 
        }
 
    }
 
 
 
  return buf;
 
}
 
 
 
/* SEC is a section containing relocs for an input BFD when linking; return
/* SEC is a section containing relocs for an input BFD when linking; return
   a suitable section for holding relocs in the output BFD for a link.  */
   a suitable section for holding relocs in the output BFD for a link.  */
 
 
static bfd_boolean
static bfd_boolean
get_reloc_section (abfd, hppa_info, sec)
get_reloc_section (bfd *abfd,
     bfd *abfd;
                   struct elf64_hppa_link_hash_table *hppa_info,
     struct elf64_hppa_link_hash_table *hppa_info;
                   asection *sec)
     asection *sec;
 
{
{
  const char *srel_name;
  const char *srel_name;
  asection *srel;
  asection *srel;
  bfd *dynobj;
  bfd *dynobj;
 
 
Line 579... Line 447...
   We use this to keep a record of all the FPTR relocations against a
   We use this to keep a record of all the FPTR relocations against a
   particular symbol so that we can create FPTR relocations in the
   particular symbol so that we can create FPTR relocations in the
   output file.  */
   output file.  */
 
 
static bfd_boolean
static bfd_boolean
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
count_dyn_reloc (bfd *abfd,
     bfd *abfd;
                 struct elf64_hppa_link_hash_entry *hh,
     struct elf64_hppa_dyn_hash_entry *dyn_h;
                 int type,
     int type;
                 asection *sec,
     asection *sec;
                 int sec_symndx,
     int sec_symndx;
                 bfd_vma offset,
     bfd_vma offset;
                 bfd_vma addend)
     bfd_vma addend;
 
{
{
  struct elf64_hppa_dyn_reloc_entry *rent;
  struct elf64_hppa_dyn_reloc_entry *rent;
 
 
  rent = (struct elf64_hppa_dyn_reloc_entry *)
  rent = (struct elf64_hppa_dyn_reloc_entry *)
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
  if (!rent)
  if (!rent)
    return FALSE;
    return FALSE;
 
 
  rent->next = dyn_h->reloc_entries;
  rent->next = hh->reloc_entries;
  rent->type = type;
  rent->type = type;
  rent->sec = sec;
  rent->sec = sec;
  rent->sec_symndx = sec_symndx;
  rent->sec_symndx = sec_symndx;
  rent->offset = offset;
  rent->offset = offset;
  rent->addend = addend;
  rent->addend = addend;
  dyn_h->reloc_entries = rent;
  hh->reloc_entries = rent;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
/* Return a pointer to the local DLT, PLT and OPD reference counts
 
   for ABFD.  Returns NULL if the storage allocation fails.  */
 
 
 
static bfd_signed_vma *
 
hppa64_elf_local_refcounts (bfd *abfd)
 
{
 
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
  bfd_signed_vma *local_refcounts;
 
 
 
  local_refcounts = elf_local_got_refcounts (abfd);
 
  if (local_refcounts == NULL)
 
    {
 
      bfd_size_type size;
 
 
 
      /* Allocate space for local DLT, PLT and OPD reference
 
         counts.  Done this way to save polluting elf_obj_tdata
 
         with another target specific pointer.  */
 
      size = symtab_hdr->sh_info;
 
      size *= 3 * sizeof (bfd_signed_vma);
 
      local_refcounts = bfd_zalloc (abfd, size);
 
      elf_local_got_refcounts (abfd) = local_refcounts;
 
    }
 
  return local_refcounts;
 
}
 
 
/* Scan the RELOCS and record the type of dynamic entries that each
/* Scan the RELOCS and record the type of dynamic entries that each
   referenced symbol needs.  */
   referenced symbol needs.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_check_relocs (abfd, info, sec, relocs)
elf64_hppa_check_relocs (bfd *abfd,
     bfd *abfd;
                         struct bfd_link_info *info,
     struct bfd_link_info *info;
                         asection *sec,
     asection *sec;
                         const Elf_Internal_Rela *relocs)
     const Elf_Internal_Rela *relocs;
 
{
{
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  const Elf_Internal_Rela *relend;
  const Elf_Internal_Rela *relend;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  asection *dlt, *plt, *stubs;
  asection *dlt, *plt, *stubs;
  char *buf;
  char *buf;
  size_t buf_len;
  size_t buf_len;
  int sec_symndx;
  unsigned int sec_symndx;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  /* If this is the first dynamic object found in the link, create
  /* If this is the first dynamic object found in the link, create
Line 636... Line 527...
    {
    {
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
        return FALSE;
        return FALSE;
    }
    }
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
 
  /* If necessary, build a new table holding section symbols indices
  /* If necessary, build a new table holding section symbols indices
     for this BFD.  */
     for this BFD.  */
 
 
Line 675... Line 566...
      /* Record the highest section index referenced by the local symbols.  */
      /* Record the highest section index referenced by the local symbols.  */
      highest_shndx = 0;
      highest_shndx = 0;
      isymend = local_syms + symtab_hdr->sh_info;
      isymend = local_syms + symtab_hdr->sh_info;
      for (isym = local_syms; isym < isymend; isym++)
      for (isym = local_syms; isym < isymend; isym++)
        {
        {
          if (isym->st_shndx > highest_shndx)
          if (isym->st_shndx > highest_shndx
 
              && isym->st_shndx < SHN_LORESERVE)
            highest_shndx = isym->st_shndx;
            highest_shndx = isym->st_shndx;
        }
        }
 
 
      /* Allocate an array to hold the section index to section symbol index
      /* Allocate an array to hold the section index to section symbol index
         mapping.  Bump by one since we start counting at zero.  */
         mapping.  Bump by one since we start counting at zero.  */
Line 721... Line 613...
    {
    {
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
 
 
      /* If we did not find a section symbol for this section, then
      /* If we did not find a section symbol for this section, then
         something went terribly wrong above.  */
         something went terribly wrong above.  */
      if (sec_symndx == -1)
      if (sec_symndx == SHN_BAD)
        return FALSE;
        return FALSE;
 
 
 
      if (sec_symndx < SHN_LORESERVE)
      sec_symndx = hppa_info->section_syms[sec_symndx];
      sec_symndx = hppa_info->section_syms[sec_symndx];
 
      else
 
        sec_symndx = 0;
    }
    }
  else
  else
    sec_symndx = 0;
    sec_symndx = 0;
 
 
  dlt = plt = stubs = NULL;
  dlt = plt = stubs = NULL;
Line 745... Line 640...
          NEED_STUB = 4,
          NEED_STUB = 4,
          NEED_OPD = 8,
          NEED_OPD = 8,
          NEED_DYNREL = 16,
          NEED_DYNREL = 16,
        };
        };
 
 
      struct elf_link_hash_entry *h = NULL;
 
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
      struct elf64_hppa_dyn_hash_entry *dyn_h;
      struct elf64_hppa_link_hash_entry *hh;
      int need_entry;
      int need_entry;
      const char *addr_name;
 
      bfd_boolean maybe_dynamic;
      bfd_boolean maybe_dynamic;
      int dynrel_type = R_PARISC_NONE;
      int dynrel_type = R_PARISC_NONE;
      static reloc_howto_type *howto;
      static reloc_howto_type *howto;
 
 
      if (r_symndx >= symtab_hdr->sh_info)
      if (r_symndx >= symtab_hdr->sh_info)
        {
        {
          /* We're dealing with a global symbol -- find its hash entry
          /* We're dealing with a global symbol -- find its hash entry
             and mark it as being referenced.  */
             and mark it as being referenced.  */
          long indx = r_symndx - symtab_hdr->sh_info;
          long indx = r_symndx - symtab_hdr->sh_info;
          h = elf_sym_hashes (abfd)[indx];
          hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
          while (h->root.type == bfd_link_hash_indirect
          while (hh->eh.root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || hh->eh.root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
 
 
          h->ref_regular = 1;
          hh->eh.ref_regular = 1;
        }
        }
 
      else
 
        hh = NULL;
 
 
      /* We can only get preliminary data on whether a symbol is
      /* We can only get preliminary data on whether a symbol is
         locally or externally defined, as not all of the input files
         locally or externally defined, as not all of the input files
         have yet been processed.  Do something with what we know, as
         have yet been processed.  Do something with what we know, as
         this may help reduce memory usage and processing time later.  */
         this may help reduce memory usage and processing time later.  */
      maybe_dynamic = FALSE;
      maybe_dynamic = FALSE;
      if (h && ((info->shared
      if (hh && ((info->shared
                 && (!info->symbolic
                 && (!info->symbolic
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
                || !h->def_regular
                || !hh->eh.def_regular
                || h->root.type == bfd_link_hash_defweak))
                || hh->eh.root.type == bfd_link_hash_defweak))
        maybe_dynamic = TRUE;
        maybe_dynamic = TRUE;
 
 
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
      need_entry = 0;
      need_entry = 0;
      switch (howto->type)
      switch (howto->type)
Line 827... Line 722...
        case R_PARISC_PCREL14WR:
        case R_PARISC_PCREL14WR:
        case R_PARISC_PCREL14DR:
        case R_PARISC_PCREL14DR:
        case R_PARISC_PCREL16F:
        case R_PARISC_PCREL16F:
        case R_PARISC_PCREL16WF:
        case R_PARISC_PCREL16WF:
        case R_PARISC_PCREL16DF:
        case R_PARISC_PCREL16DF:
 
          /* Function calls might need to go through the .plt, and
 
             might need a long branch stub.  */
 
          if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
          need_entry = (NEED_PLT | NEED_STUB);
          need_entry = (NEED_PLT | NEED_STUB);
 
          else
 
            need_entry = 0;
          break;
          break;
 
 
        case R_PARISC_PLTOFF21L:
        case R_PARISC_PLTOFF21L:
        case R_PARISC_PLTOFF14R:
        case R_PARISC_PLTOFF14R:
        case R_PARISC_PLTOFF14F:
        case R_PARISC_PLTOFF14F:
Line 860... Line 760...
        case R_PARISC_LTOFF_FPTR64:
        case R_PARISC_LTOFF_FPTR64:
        case R_PARISC_LTOFF_FPTR16F:
        case R_PARISC_LTOFF_FPTR16F:
        case R_PARISC_LTOFF_FPTR16WF:
        case R_PARISC_LTOFF_FPTR16WF:
        case R_PARISC_LTOFF_FPTR16DF:
        case R_PARISC_LTOFF_FPTR16DF:
          if (info->shared || maybe_dynamic)
          if (info->shared || maybe_dynamic)
            need_entry = (NEED_DLT | NEED_OPD);
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
          else
          else
            need_entry = (NEED_DLT | NEED_OPD);
            need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
          dynrel_type = R_PARISC_FPTR64;
          dynrel_type = R_PARISC_FPTR64;
          break;
          break;
 
 
        /* This is a simple OPD entry.  */
        /* This is a simple OPD entry.  */
        case R_PARISC_FPTR64:
        case R_PARISC_FPTR64:
          if (info->shared || maybe_dynamic)
          if (info->shared || maybe_dynamic)
            need_entry = (NEED_OPD | NEED_DYNREL);
            need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
          else
          else
            need_entry = (NEED_OPD);
            need_entry = (NEED_OPD | NEED_PLT);
          dynrel_type = R_PARISC_FPTR64;
          dynrel_type = R_PARISC_FPTR64;
          break;
          break;
 
 
        /* Add more cases as needed.  */
        /* Add more cases as needed.  */
        }
        }
 
 
      if (!need_entry)
      if (!need_entry)
        continue;
        continue;
 
 
      /* Collect a canonical name for this address.  */
      if (hh)
      addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
        {
 
 
      /* Collect the canonical entry data for this address.  */
 
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                          addr_name, TRUE, TRUE);
 
      BFD_ASSERT (dyn_h);
 
 
 
      /* Stash away enough information to be able to find this symbol
      /* Stash away enough information to be able to find this symbol
         regardless of whether or not it is local or global.  */
         regardless of whether or not it is local or global.  */
      dyn_h->h = h;
          hh->owner = abfd;
      dyn_h->owner = abfd;
          hh->sym_indx = r_symndx;
      dyn_h->sym_indx = r_symndx;
        }
 
 
      /* ?!? We may need to do some error checking in here.  */
 
      /* Create what's needed.  */
      /* Create what's needed.  */
      if (need_entry & NEED_DLT)
      if (need_entry & NEED_DLT)
        {
        {
 
          /* Allocate space for a DLT entry, as well as a dynamic
 
             relocation for this entry.  */
          if (! hppa_info->dlt_sec
          if (! hppa_info->dlt_sec
              && ! get_dlt (abfd, info, hppa_info))
              && ! get_dlt (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
          dyn_h->want_dlt = 1;
 
 
          if (hh != NULL)
 
            {
 
              hh->want_dlt = 1;
 
              hh->eh.got.refcount += 1;
 
            }
 
          else
 
            {
 
              bfd_signed_vma *local_dlt_refcounts;
 
 
 
              /* This is a DLT entry for a local symbol.  */
 
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
 
              if (local_dlt_refcounts == NULL)
 
                return FALSE;
 
              local_dlt_refcounts[r_symndx] += 1;
 
            }
        }
        }
 
 
      if (need_entry & NEED_PLT)
      if (need_entry & NEED_PLT)
        {
        {
          if (! hppa_info->plt_sec
          if (! hppa_info->plt_sec
              && ! get_plt (abfd, info, hppa_info))
              && ! get_plt (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
          dyn_h->want_plt = 1;
 
 
          if (hh != NULL)
 
            {
 
              hh->want_plt = 1;
 
              hh->eh.needs_plt = 1;
 
              hh->eh.plt.refcount += 1;
 
            }
 
          else
 
            {
 
              bfd_signed_vma *local_dlt_refcounts;
 
              bfd_signed_vma *local_plt_refcounts;
 
 
 
              /* This is a PLT entry for a local symbol.  */
 
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
 
              if (local_dlt_refcounts == NULL)
 
                return FALSE;
 
              local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
 
              local_plt_refcounts[r_symndx] += 1;
 
            }
        }
        }
 
 
      if (need_entry & NEED_STUB)
      if (need_entry & NEED_STUB)
        {
        {
          if (! hppa_info->stub_sec
          if (! hppa_info->stub_sec
              && ! get_stub (abfd, info, hppa_info))
              && ! get_stub (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
          dyn_h->want_stub = 1;
          if (hh)
 
            hh->want_stub = 1;
        }
        }
 
 
      if (need_entry & NEED_OPD)
      if (need_entry & NEED_OPD)
        {
        {
          if (! hppa_info->opd_sec
          if (! hppa_info->opd_sec
              && ! get_opd (abfd, info, hppa_info))
              && ! get_opd (abfd, info, hppa_info))
            goto err_out;
            goto err_out;
 
 
          dyn_h->want_opd = 1;
          /* FPTRs are not allocated by the dynamic linker for PA64,
 
             though it is possible that will change in the future.  */
 
 
          /* FPTRs are not allocated by the dynamic linker for PA64, though
          if (hh != NULL)
             it is possible that will change in the future.  */
            hh->want_opd = 1;
 
          else
 
            {
 
              bfd_signed_vma *local_dlt_refcounts;
 
              bfd_signed_vma *local_opd_refcounts;
 
 
          /* This could be a local function that had its address taken, in
              /* This is a OPD for a local symbol.  */
             which case H will be NULL.  */
              local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
          if (h)
              if (local_dlt_refcounts == NULL)
            h->needs_plt = 1;
                return FALSE;
 
              local_opd_refcounts = (local_dlt_refcounts
 
                                     + 2 * symtab_hdr->sh_info);
 
              local_opd_refcounts[r_symndx] += 1;
 
            }
        }
        }
 
 
      /* Add a new dynamic relocation to the chain of dynamic
      /* Add a new dynamic relocation to the chain of dynamic
         relocations for this symbol.  */
         relocations for this symbol.  */
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
        {
        {
          if (! hppa_info->other_rel_sec
          if (! hppa_info->other_rel_sec
              && ! get_reloc_section (abfd, hppa_info, sec))
              && ! get_reloc_section (abfd, hppa_info, sec))
            goto err_out;
            goto err_out;
 
 
          if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
          /* Count dynamic relocations against global symbols.  */
 
          if (hh != NULL
 
              && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
                                sec_symndx, rel->r_offset, rel->r_addend))
                                sec_symndx, rel->r_offset, rel->r_addend))
            goto err_out;
            goto err_out;
 
 
          /* If we are building a shared library and we just recorded
          /* If we are building a shared library and we just recorded
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
Line 980... Line 920...
};
};
 
 
/* Should we do dynamic things to this symbol?  */
/* Should we do dynamic things to this symbol?  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_dynamic_symbol_p (h, info)
elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
     struct elf_link_hash_entry *h;
                             struct bfd_link_info *info)
     struct bfd_link_info *info;
 
{
{
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
     and relocations that retrieve a function descriptor?  Assume the
     and relocations that retrieve a function descriptor?  Assume the
     worst for now.  */
     worst for now.  */
  if (_bfd_elf_dynamic_symbol_p (h, info, 1))
  if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
    {
    {
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
      if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
      if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
        return FALSE;
        return FALSE;
 
 
      return TRUE;
      return TRUE;
    }
    }
  else
  else
Line 1003... Line 942...
 
 
/* Mark all functions exported by this file so that we can later allocate
/* Mark all functions exported by this file so that we can later allocate
   entries in .opd for them.  */
   entries in .opd for them.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_mark_exported_functions (h, data)
elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
     struct elf_link_hash_entry *h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  if (h->root.type == bfd_link_hash_warning)
 
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
  if (h
  if (eh->root.type == bfd_link_hash_warning)
      && (h->root.type == bfd_link_hash_defined
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
          || h->root.type == bfd_link_hash_defweak)
 
      && h->root.u.def.section->output_section != NULL
 
      && h->type == STT_FUNC)
 
    {
 
       struct elf64_hppa_dyn_hash_entry *dyn_h;
 
 
 
      /* Add this symbol to the PA64 linker hash table.  */
 
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                          h->root.root.string, TRUE, TRUE);
 
      BFD_ASSERT (dyn_h);
 
      dyn_h->h = h;
 
 
 
 
  if (eh
 
      && (eh->root.type == bfd_link_hash_defined
 
          || eh->root.type == bfd_link_hash_defweak)
 
      && eh->root.u.def.section->output_section != NULL
 
      && eh->type == STT_FUNC)
 
    {
      if (! hppa_info->opd_sec
      if (! hppa_info->opd_sec
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
        return FALSE;
        return FALSE;
 
 
      dyn_h->want_opd = 1;
      hh->want_opd = 1;
 
 
      /* Put a flag here for output_symbol_hook.  */
      /* Put a flag here for output_symbol_hook.  */
      dyn_h->st_shndx = -1;
      hh->st_shndx = -1;
      h->needs_plt = 1;
      eh->needs_plt = 1;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a DLT entry.  */
/* Allocate space for a DLT entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_dlt (dyn_h, data)
allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (dyn_h->want_dlt)
  if (hh->want_dlt)
    {
    {
      struct elf_link_hash_entry *h = dyn_h->h;
 
 
 
      if (x->info->shared)
      if (x->info->shared)
        {
        {
          /* Possibly add the symbol to the local dynamic symbol
          /* Possibly add the symbol to the local dynamic symbol
             table since we might need to create a dynamic relocation
             table since we might need to create a dynamic relocation
             against it.  */
             against it.  */
          if (! h
          if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
              || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
 
            {
            {
              bfd *owner;
              bfd *owner = eh->root.u.def.section->owner;
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
 
 
 
              if (! (bfd_elf_link_record_local_dynamic_symbol
              if (! (bfd_elf_link_record_local_dynamic_symbol
                     (x->info, owner, dyn_h->sym_indx)))
                     (x->info, owner, hh->sym_indx)))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      dyn_h->dlt_offset = x->ofs;
      hh->dlt_offset = x->ofs;
      x->ofs += DLT_ENTRY_SIZE;
      x->ofs += DLT_ENTRY_SIZE;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a DLT.PLT entry.  */
/* Allocate space for a DLT.PLT entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_plt (dyn_h, data)
allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (dyn_h->want_plt
  if (hh->want_plt
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && !((dyn_h->h->root.type == bfd_link_hash_defined
      && !((eh->root.type == bfd_link_hash_defined
            || dyn_h->h->root.type == bfd_link_hash_defweak)
            || eh->root.type == bfd_link_hash_defweak)
           && dyn_h->h->root.u.def.section->output_section != NULL))
           && eh->root.u.def.section->output_section != NULL))
    {
    {
      dyn_h->plt_offset = x->ofs;
      hh->plt_offset = x->ofs;
      x->ofs += PLT_ENTRY_SIZE;
      x->ofs += PLT_ENTRY_SIZE;
      if (dyn_h->plt_offset < 0x2000)
      if (hh->plt_offset < 0x2000)
        elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
        hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset;
    }
    }
  else
  else
    dyn_h->want_plt = 0;
    hh->want_plt = 0;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a STUB entry.  */
/* Allocate space for a STUB entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_stub (dyn_h, data)
allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (dyn_h->want_stub
  if (hh->want_stub
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
      && elf64_hppa_dynamic_symbol_p (eh, x->info)
      && !((dyn_h->h->root.type == bfd_link_hash_defined
      && !((eh->root.type == bfd_link_hash_defined
            || dyn_h->h->root.type == bfd_link_hash_defweak)
            || eh->root.type == bfd_link_hash_defweak)
           && dyn_h->h->root.u.def.section->output_section != NULL))
           && eh->root.u.def.section->output_section != NULL))
    {
    {
      dyn_h->stub_offset = x->ofs;
      hh->stub_offset = x->ofs;
      x->ofs += sizeof (plt_stub);
      x->ofs += sizeof (plt_stub);
    }
    }
  else
  else
    dyn_h->want_stub = 0;
    hh->want_stub = 0;
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for a FPTR entry.  */
/* Allocate space for a FPTR entry.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_global_data_opd (dyn_h, data)
allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
 
 
  if (dyn_h->want_opd)
  if (hh && hh->want_opd)
    {
    {
      struct elf_link_hash_entry *h = dyn_h->h;
      while (hh->eh.root.type == bfd_link_hash_indirect
 
             || hh->eh.root.type == bfd_link_hash_warning)
      if (h)
        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
        while (h->root.type == bfd_link_hash_indirect
 
               || h->root.type == bfd_link_hash_warning)
 
          h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
      /* We never need an opd entry for a symbol which is not
      /* We never need an opd entry for a symbol which is not
         defined by this output file.  */
         defined by this output file.  */
      if (h && (h->root.type == bfd_link_hash_undefined
      if (hh && (hh->eh.root.type == bfd_link_hash_undefined
                || h->root.type == bfd_link_hash_undefweak
                 || hh->eh.root.type == bfd_link_hash_undefweak
                || h->root.u.def.section->output_section == NULL))
                 || hh->eh.root.u.def.section->output_section == NULL))
        dyn_h->want_opd = 0;
        hh->want_opd = 0;
 
 
      /* If we are creating a shared library, took the address of a local
      /* If we are creating a shared library, took the address of a local
         function or might export this function from this object file, then
         function or might export this function from this object file, then
         we have to create an opd descriptor.  */
         we have to create an opd descriptor.  */
      else if (x->info->shared
      else if (x->info->shared
               || h == NULL
               || hh == NULL
               || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
               || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
               || (h->root.type == bfd_link_hash_defined
               || (hh->eh.root.type == bfd_link_hash_defined
                   || h->root.type == bfd_link_hash_defweak))
                   || hh->eh.root.type == bfd_link_hash_defweak))
        {
        {
          /* If we are creating a shared library, then we will have to
          /* If we are creating a shared library, then we will have to
             create a runtime relocation for the symbol to properly
             create a runtime relocation for the symbol to properly
             initialize the .opd entry.  Make sure the symbol gets
             initialize the .opd entry.  Make sure the symbol gets
             added to the dynamic symbol table.  */
             added to the dynamic symbol table.  */
          if (x->info->shared
          if (x->info->shared
              && (h == NULL || (h->dynindx == -1)))
              && (hh == NULL || (hh->eh.dynindx == -1)))
            {
            {
              bfd *owner;
              bfd *owner;
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
              /* PR 6511: Default to using the dynamic symbol table.  */
 
              owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
 
 
              if (!bfd_elf_link_record_local_dynamic_symbol
              if (!bfd_elf_link_record_local_dynamic_symbol
                    (x->info, owner, dyn_h->sym_indx))
                    (x->info, owner, hh->sym_indx))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* This may not be necessary or desirable anymore now that
          /* This may not be necessary or desirable anymore now that
             we have some support for dealing with section symbols
             we have some support for dealing with section symbols
             in dynamic relocs.  But name munging does make the result
             in dynamic relocs.  But name munging does make the result
             much easier to debug.  ie, the EPLT reloc will reference
             much easier to debug.  ie, the EPLT reloc will reference
             a symbol like .foobar, instead of .text + offset.  */
             a symbol like .foobar, instead of .text + offset.  */
          if (x->info->shared && h)
          if (x->info->shared && eh)
            {
            {
              char *new_name;
              char *new_name;
              struct elf_link_hash_entry *nh;
              struct elf_link_hash_entry *nh;
 
 
              new_name = alloca (strlen (h->root.root.string) + 2);
              new_name = alloca (strlen (eh->root.root.string) + 2);
              new_name[0] = '.';
              new_name[0] = '.';
              strcpy (new_name + 1, h->root.root.string);
              strcpy (new_name + 1, eh->root.root.string);
 
 
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
                                         new_name, TRUE, TRUE, TRUE);
                                         new_name, TRUE, TRUE, TRUE);
 
 
              nh->root.type = h->root.type;
              nh->root.type = eh->root.type;
              nh->root.u.def.value = h->root.u.def.value;
              nh->root.u.def.value = eh->root.u.def.value;
              nh->root.u.def.section = h->root.u.def.section;
              nh->root.u.def.section = eh->root.u.def.section;
 
 
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
                return FALSE;
                return FALSE;
 
 
             }
             }
          dyn_h->opd_offset = x->ofs;
          hh->opd_offset = x->ofs;
          x->ofs += OPD_ENTRY_SIZE;
          x->ofs += OPD_ENTRY_SIZE;
        }
        }
 
 
      /* Otherwise we do not need an opd entry.  */
      /* Otherwise we do not need an opd entry.  */
      else
      else
        dyn_h->want_opd = 0;
        hh->want_opd = 0;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* HP requires the EI_OSABI field to be filled in.  The assignment to
/* HP requires the EI_OSABI field to be filled in.  The assignment to
   EI_ABIVERSION may not be strictly necessary.  */
   EI_ABIVERSION may not be strictly necessary.  */
 
 
static void
static void
elf64_hppa_post_process_headers (abfd, link_info)
elf64_hppa_post_process_headers (bfd *abfd,
     bfd * abfd;
                         struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
 
{
{
  Elf_Internal_Ehdr * i_ehdrp;
  Elf_Internal_Ehdr * i_ehdrp;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
Line 1234... Line 1154...
   because it contains "official procedure descriptors".  The "official"
   because it contains "official procedure descriptors".  The "official"
   refers to the fact that these descriptors are used when taking the address
   refers to the fact that these descriptors are used when taking the address
   of a procedure, thus ensuring a unique address for each procedure.  */
   of a procedure, thus ensuring a unique address for each procedure.  */
 
 
static bfd_boolean
static bfd_boolean
get_opd (abfd, info, hppa_info)
get_opd (bfd *abfd,
     bfd *abfd;
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
         struct elf64_hppa_link_hash_table *hppa_info)
     struct elf64_hppa_link_hash_table *hppa_info;
 
{
{
  asection *opd;
  asection *opd;
  bfd *dynobj;
  bfd *dynobj;
 
 
  opd = hppa_info->opd_sec;
  opd = hppa_info->opd_sec;
Line 1271... Line 1190...
}
}
 
 
/* Create the PLT section.  */
/* Create the PLT section.  */
 
 
static bfd_boolean
static bfd_boolean
get_plt (abfd, info, hppa_info)
get_plt (bfd *abfd,
     bfd *abfd;
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
         struct elf64_hppa_link_hash_table *hppa_info)
     struct elf64_hppa_link_hash_table *hppa_info;
 
{
{
  asection *plt;
  asection *plt;
  bfd *dynobj;
  bfd *dynobj;
 
 
  plt = hppa_info->plt_sec;
  plt = hppa_info->plt_sec;
Line 1308... Line 1226...
}
}
 
 
/* Create the DLT section.  */
/* Create the DLT section.  */
 
 
static bfd_boolean
static bfd_boolean
get_dlt (abfd, info, hppa_info)
get_dlt (bfd *abfd,
     bfd *abfd;
         struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
         struct elf64_hppa_link_hash_table *hppa_info)
     struct elf64_hppa_link_hash_table *hppa_info;
 
{
{
  asection *dlt;
  asection *dlt;
  bfd *dynobj;
  bfd *dynobj;
 
 
  dlt = hppa_info->dlt_sec;
  dlt = hppa_info->dlt_sec;
Line 1345... Line 1262...
}
}
 
 
/* Create the stubs section.  */
/* Create the stubs section.  */
 
 
static bfd_boolean
static bfd_boolean
get_stub (abfd, info, hppa_info)
get_stub (bfd *abfd,
     bfd *abfd;
          struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
          struct elf64_hppa_link_hash_table *hppa_info)
     struct elf64_hppa_link_hash_table *hppa_info;
 
{
{
  asection *stub;
  asection *stub;
  bfd *dynobj;
  bfd *dynobj;
 
 
  stub = hppa_info->stub_sec;
  stub = hppa_info->stub_sec;
Line 1418... Line 1334...
 
 
   .rela.opd:
   .rela.opd:
        EPLT relocations for symbols exported from shared libraries.  */
        EPLT relocations for symbols exported from shared libraries.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_create_dynamic_sections (abfd, info)
elf64_hppa_create_dynamic_sections (bfd *abfd,
     bfd *abfd;
                                    struct bfd_link_info *info)
     struct bfd_link_info *info;
 
{
{
  asection *s;
  asection *s;
 
 
  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
  if (! get_stub (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
  if (! get_dlt (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
  if (! get_plt (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
  if (! get_opd (abfd, info, hppa_link_hash_table (info)))
    return FALSE;
    return FALSE;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
Line 1445... Line 1360...
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  elf64_hppa_hash_table (info)->dlt_rel_sec = s;
  hppa_link_hash_table (info)->dlt_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  elf64_hppa_hash_table (info)->plt_rel_sec = s;
  hppa_link_hash_table (info)->plt_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.data",
  s = bfd_make_section_with_flags (abfd, ".rela.data",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  elf64_hppa_hash_table (info)->other_rel_sec = s;
  hppa_link_hash_table (info)->other_rel_sec = s;
 
 
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
                                   (SEC_ALLOC | SEC_LOAD
                                   (SEC_ALLOC | SEC_LOAD
                                    | SEC_HAS_CONTENTS
                                    | SEC_HAS_CONTENTS
                                    | SEC_IN_MEMORY
                                    | SEC_IN_MEMORY
                                    | SEC_READONLY
                                    | SEC_READONLY
                                    | SEC_LINKER_CREATED));
                                    | SEC_LINKER_CREATED));
  if (s == NULL
  if (s == NULL
      || !bfd_set_section_alignment (abfd, s, 3))
      || !bfd_set_section_alignment (abfd, s, 3))
    return FALSE;
    return FALSE;
  elf64_hppa_hash_table (info)->opd_rel_sec = s;
  hppa_link_hash_table (info)->opd_rel_sec = s;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate dynamic relocations for those symbols that turned out
/* Allocate dynamic relocations for those symbols that turned out
   to be dynamic.  */
   to be dynamic.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrel_entries (dyn_h, data)
allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_reloc_entry *rent;
  struct elf64_hppa_dyn_reloc_entry *rent;
  bfd_boolean dynamic_symbol, shared;
  bfd_boolean dynamic_symbol, shared;
 
 
  hppa_info = elf64_hppa_hash_table (x->info);
  hppa_info = hppa_link_hash_table (x->info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
  shared = x->info->shared;
  shared = x->info->shared;
 
 
  /* We may need to allocate relocations for a non-dynamic symbol
  /* We may need to allocate relocations for a non-dynamic symbol
     when creating a shared library.  */
     when creating a shared library.  */
  if (!dynamic_symbol && !shared)
  if (!dynamic_symbol && !shared)
    return TRUE;
    return TRUE;
 
 
  /* Take care of the normal data relocations.  */
  /* Take care of the normal data relocations.  */
 
 
  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
  for (rent = hh->reloc_entries; rent; rent = rent->next)
    {
    {
      /* Allocate one iff we are building a shared library, the relocation
      /* Allocate one iff we are building a shared library, the relocation
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
      if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
        continue;
        continue;
 
 
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
      /* Make sure this symbol gets into the dynamic symbol table if it is
      /* Make sure this symbol gets into the dynamic symbol table if it is
         not already recorded.  ?!? This should not be in the loop since
         not already recorded.  ?!? This should not be in the loop since
         the symbol need only be added once.  */
         the symbol need only be added once.  */
      if (dyn_h->h == 0
      if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
          || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
 
        if (!bfd_elf_link_record_local_dynamic_symbol
        if (!bfd_elf_link_record_local_dynamic_symbol
            (x->info, rent->sec->owner, dyn_h->sym_indx))
            (x->info, rent->sec->owner, hh->sym_indx))
          return FALSE;
          return FALSE;
    }
    }
 
 
  /* Take care of the GOT and PLT relocations.  */
  /* Take care of the GOT and PLT relocations.  */
 
 
  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
  if ((dynamic_symbol || shared) && hh->want_dlt)
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
  /* If we are building a shared library, then every symbol that has an
  /* If we are building a shared library, then every symbol that has an
     opd entry will need an EPLT relocation to relocate the symbol's address
     opd entry will need an EPLT relocation to relocate the symbol's address
     and __gp value based on the runtime load address.  */
     and __gp value based on the runtime load address.  */
  if (shared && dyn_h->want_opd)
  if (shared && hh->want_opd)
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
 
 
  if (dyn_h->want_plt && dynamic_symbol)
  if (hh->want_plt && dynamic_symbol)
    {
    {
      bfd_size_type t = 0;
      bfd_size_type t = 0;
 
 
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
         shared libraries get two REL relocations.  Local symbols in
         shared libraries get two REL relocations.  Local symbols in
Line 1559... Line 1472...
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  */
   regular object.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_adjust_dynamic_symbol (info, h)
elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
                                  struct elf_link_hash_entry *eh)
     struct elf_link_hash_entry *h;
 
{
{
  /* ??? Undefined symbols with PLT entries should be re-defined
  /* ??? Undefined symbols with PLT entries should be re-defined
     to be the PLT entry.  */
     to be the PLT entry.  */
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
  if (eh->u.weakdef != NULL)
    {
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
                  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* If this is a reference to a symbol defined by a dynamic object which
  /* If this is a reference to a symbol defined by a dynamic object which
     is not a function, we might allocate the symbol in our .dynbss section
     is not a function, we might allocate the symbol in our .dynbss section
Line 1594... Line 1506...
   symbols with a dynindx of -1 and to remove the string table reference
   symbols with a dynindx of -1 and to remove the string table reference
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
   elf64_hppa_mark_exported_functions is called.  */
   elf64_hppa_mark_exported_functions is called.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions (h, data)
elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
     struct elf_link_hash_entry *h;
                                              void *data)
     PTR data;
 
{
{
 
  struct elf_link_hash_entry *elf = eh;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf_link_hash_entry *elf = h;
 
 
 
  if (elf->root.type == bfd_link_hash_warning)
  if (elf->root.type == bfd_link_hash_warning)
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
 
 
  if (elf->type == STT_PARISC_MILLI)
  if (elf->type == STT_PARISC_MILLI)
Line 1615... Line 1526...
                                  elf->dynstr_index);
                                  elf->dynstr_index);
        }
        }
      return TRUE;
      return TRUE;
    }
    }
 
 
  return elf64_hppa_mark_exported_functions (h, data);
  return elf64_hppa_mark_exported_functions (eh, data);
}
}
 
 
/* Set the final sizes of the dynamic sections and allocate memory for
/* Set the final sizes of the dynamic sections and allocate memory for
   the contents of our special sections.  */
   the contents of our special sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_size_dynamic_sections (output_bfd, info)
elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
     bfd *output_bfd;
 
     struct bfd_link_info *info;
 
{
{
 
  struct elf64_hppa_link_hash_table *hppa_info;
 
  struct elf64_hppa_allocate_data data;
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  bfd *ibfd;
 
  asection *sec;
  bfd_boolean plt;
  bfd_boolean plt;
  bfd_boolean relocs;
  bfd_boolean relocs;
  bfd_boolean reltext;
  bfd_boolean reltext;
  struct elf64_hppa_allocate_data data;
 
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  /* Mark each function this program exports so that we will allocate
  /* Mark each function this program exports so that we will allocate
Line 1657... Line 1567...
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          sec = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (sec != NULL);
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
  else
  else
    {
    {
      /* We may have created entries in the .rela.got section.
      /* We may have created entries in the .rela.got section.
         However, if we are not creating the dynamic sections, we will
         However, if we are not creating the dynamic sections, we will
         not actually use these entries.  Reset the size of .rela.dlt,
         not actually use these entries.  Reset the size of .rela.dlt,
         which will cause it to get stripped from the output file
         which will cause it to get stripped from the output file
         below.  */
         below.  */
      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
      sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
      if (s != NULL)
      if (sec != NULL)
        s->size = 0;
        sec->size = 0;
 
    }
 
 
 
  /* Set up DLT, PLT and OPD offsets for local syms, and space for local
 
     dynamic relocs.  */
 
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
 
    {
 
      bfd_signed_vma *local_dlt;
 
      bfd_signed_vma *end_local_dlt;
 
      bfd_signed_vma *local_plt;
 
      bfd_signed_vma *end_local_plt;
 
      bfd_signed_vma *local_opd;
 
      bfd_signed_vma *end_local_opd;
 
      bfd_size_type locsymcount;
 
      Elf_Internal_Shdr *symtab_hdr;
 
      asection *srel;
 
 
 
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
 
        continue;
 
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
 
        {
 
          struct elf64_hppa_dyn_reloc_entry *hdh_p;
 
 
 
          for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
 
                    elf_section_data (sec)->local_dynrel);
 
               hdh_p != NULL;
 
               hdh_p = hdh_p->next)
 
            {
 
              if (!bfd_is_abs_section (hdh_p->sec)
 
                  && bfd_is_abs_section (hdh_p->sec->output_section))
 
                {
 
                  /* Input section has been discarded, either because
 
                     it is a copy of a linkonce section or due to
 
                     linker script /DISCARD/, so we'll be discarding
 
                     the relocs too.  */
 
                }
 
              else if (hdh_p->count != 0)
 
                {
 
                  srel = elf_section_data (hdh_p->sec)->sreloc;
 
                  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
 
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
 
                    info->flags |= DF_TEXTREL;
 
                }
 
            }
 
        }
 
 
 
      local_dlt = elf_local_got_refcounts (ibfd);
 
      if (!local_dlt)
 
        continue;
 
 
 
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
 
      locsymcount = symtab_hdr->sh_info;
 
      end_local_dlt = local_dlt + locsymcount;
 
      sec = hppa_info->dlt_sec;
 
      srel = hppa_info->dlt_rel_sec;
 
      for (; local_dlt < end_local_dlt; ++local_dlt)
 
        {
 
          if (*local_dlt > 0)
 
            {
 
              *local_dlt = sec->size;
 
              sec->size += DLT_ENTRY_SIZE;
 
              if (info->shared)
 
                {
 
                  srel->size += sizeof (Elf64_External_Rela);
 
                }
 
            }
 
          else
 
            *local_dlt = (bfd_vma) -1;
 
        }
 
 
 
      local_plt = end_local_dlt;
 
      end_local_plt = local_plt + locsymcount;
 
      if (! hppa_info->root.dynamic_sections_created)
 
        {
 
          /* Won't be used, but be safe.  */
 
          for (; local_plt < end_local_plt; ++local_plt)
 
            *local_plt = (bfd_vma) -1;
 
        }
 
      else
 
        {
 
          sec = hppa_info->plt_sec;
 
          srel = hppa_info->plt_rel_sec;
 
          for (; local_plt < end_local_plt; ++local_plt)
 
            {
 
              if (*local_plt > 0)
 
                {
 
                  *local_plt = sec->size;
 
                  sec->size += PLT_ENTRY_SIZE;
 
                  if (info->shared)
 
                    srel->size += sizeof (Elf64_External_Rela);
 
                }
 
              else
 
                *local_plt = (bfd_vma) -1;
 
            }
 
        }
 
 
 
      local_opd = end_local_plt;
 
      end_local_opd = local_opd + locsymcount;
 
      if (! hppa_info->root.dynamic_sections_created)
 
        {
 
          /* Won't be used, but be safe.  */
 
          for (; local_opd < end_local_opd; ++local_opd)
 
            *local_opd = (bfd_vma) -1;
 
        }
 
      else
 
        {
 
          sec = hppa_info->opd_sec;
 
          srel = hppa_info->opd_rel_sec;
 
          for (; local_opd < end_local_opd; ++local_opd)
 
            {
 
              if (*local_opd > 0)
 
                {
 
                  *local_opd = sec->size;
 
                  sec->size += OPD_ENTRY_SIZE;
 
                  if (info->shared)
 
                    srel->size += sizeof (Elf64_External_Rela);
 
                }
 
              else
 
                *local_opd = (bfd_vma) -1;
 
            }
 
        }
    }
    }
 
 
  /* Allocate the GOT entries.  */
  /* Allocate the GOT entries.  */
 
 
  data.info = info;
  data.info = info;
  if (elf64_hppa_hash_table (info)->dlt_sec)
  if (hppa_info->dlt_sec)
    {
    {
      data.ofs = 0x0;
      data.ofs = hppa_info->dlt_sec->size;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
      elf_link_hash_traverse (elf_hash_table (info),
                                    allocate_global_data_dlt, &data);
                                    allocate_global_data_dlt, &data);
      hppa_info->dlt_sec->size = data.ofs;
      hppa_info->dlt_sec->size = data.ofs;
 
    }
 
 
      data.ofs = 0x0;
  if (hppa_info->plt_sec)
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
    {
 
      data.ofs = hppa_info->plt_sec->size;
 
      elf_link_hash_traverse (elf_hash_table (info),
                                    allocate_global_data_plt, &data);
                                    allocate_global_data_plt, &data);
      hppa_info->plt_sec->size = data.ofs;
      hppa_info->plt_sec->size = data.ofs;
 
    }
 
 
 
  if (hppa_info->stub_sec)
 
    {
      data.ofs = 0x0;
      data.ofs = 0x0;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
      elf_link_hash_traverse (elf_hash_table (info),
                                    allocate_global_data_stub, &data);
                                    allocate_global_data_stub, &data);
      hppa_info->stub_sec->size = data.ofs;
      hppa_info->stub_sec->size = data.ofs;
    }
    }
 
 
  /* Allocate space for entries in the .opd section.  */
  /* Allocate space for entries in the .opd section.  */
  if (elf64_hppa_hash_table (info)->opd_sec)
  if (hppa_info->opd_sec)
    {
    {
      data.ofs = 0;
      data.ofs = hppa_info->opd_sec->size;
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
      elf_link_hash_traverse (elf_hash_table (info),
                                    allocate_global_data_opd, &data);
                                    allocate_global_data_opd, &data);
      hppa_info->opd_sec->size = data.ofs;
      hppa_info->opd_sec->size = data.ofs;
    }
    }
 
 
  /* Now allocate space for dynamic relocations, if necessary.  */
  /* Now allocate space for dynamic relocations, if necessary.  */
  if (hppa_info->root.dynamic_sections_created)
  if (hppa_info->root.dynamic_sections_created)
    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
    elf_link_hash_traverse (elf_hash_table (info),
                                  allocate_dynrel_entries, &data);
                                  allocate_dynrel_entries, &data);
 
 
  /* The sizes of all the sections are set.  Allocate memory for them.  */
  /* The sizes of all the sections are set.  Allocate memory for them.  */
  plt = FALSE;
  plt = FALSE;
  relocs = FALSE;
  relocs = FALSE;
  reltext = FALSE;
  reltext = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
    {
    {
      const char *name;
      const char *name;
 
 
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);
      name = bfd_get_section_name (dynobj, sec);
 
 
      if (strcmp (name, ".plt") == 0)
      if (strcmp (name, ".plt") == 0)
        {
        {
          /* Remember whether there is a PLT.  */
          /* Remember whether there is a PLT.  */
          plt = s->size != 0;
          plt = sec->size != 0;
        }
        }
      else if (strcmp (name, ".opd") == 0
      else if (strcmp (name, ".opd") == 0
               || CONST_STRNEQ (name, ".dlt")
               || CONST_STRNEQ (name, ".dlt")
               || strcmp (name, ".stub") == 0
               || strcmp (name, ".stub") == 0
               || strcmp (name, ".got") == 0)
               || strcmp (name, ".got") == 0)
        {
        {
          /* Strip this section if we don't need it; see the comment below.  */
          /* Strip this section if we don't need it; see the comment below.  */
        }
        }
      else if (CONST_STRNEQ (name, ".rela"))
      else if (CONST_STRNEQ (name, ".rela"))
        {
        {
          if (s->size != 0)
          if (sec->size != 0)
            {
            {
              asection *target;
              asection *target;
 
 
              /* Remember whether there are any reloc sections other
              /* Remember whether there are any reloc sections other
                 than .rela.plt.  */
                 than .rela.plt.  */
Line 1757... Line 1794...
                     section, then we probably need a DT_TEXTREL
                     section, then we probably need a DT_TEXTREL
                     entry.  The entries in the .rela.plt section
                     entry.  The entries in the .rela.plt section
                     really apply to the .got section, which we
                     really apply to the .got section, which we
                     created ourselves and so know is not readonly.  */
                     created ourselves and so know is not readonly.  */
                  outname = bfd_get_section_name (output_bfd,
                  outname = bfd_get_section_name (output_bfd,
                                                  s->output_section);
                                                  sec->output_section);
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
                  if (target != NULL
                  if (target != NULL
                      && (target->flags & SEC_READONLY) != 0
                      && (target->flags & SEC_READONLY) != 0
                      && (target->flags & SEC_ALLOC) != 0)
                      && (target->flags & SEC_ALLOC) != 0)
                    reltext = TRUE;
                    reltext = TRUE;
                }
                }
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              s->reloc_count = 0;
              sec->reloc_count = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (s->size == 0)
      if (sec->size == 0)
        {
        {
          /* If we don't need this section, strip it from the
          /* If we don't need this section, strip it from the
             output file.  This is mostly to handle .rela.bss and
             output file.  This is mostly to handle .rela.bss and
             .rela.plt.  We must create both sections in
             .rela.plt.  We must create both sections in
             create_dynamic_sections, because they must be created
             create_dynamic_sections, because they must be created
             before the linker maps input sections to output
             before the linker maps input sections to output
             sections.  The linker does that before
             sections.  The linker does that before
             adjust_dynamic_symbol is called, and it is that
             adjust_dynamic_symbol is called, and it is that
             function which decides whether anything needs to go
             function which decides whether anything needs to go
             into these sections.  */
             into these sections.  */
          s->flags |= SEC_EXCLUDE;
          sec->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents if it has not
      /* Allocate memory for the section contents if it has not
         been allocated already.  We use bfd_zalloc here in case
         been allocated already.  We use bfd_zalloc here in case
         unused entries are not reclaimed before the section's
         unused entries are not reclaimed before the section's
         contents are written out.  This should not happen, but this
         contents are written out.  This should not happen, but this
         way if it does, we get a R_PARISC_NONE reloc instead of
         way if it does, we get a R_PARISC_NONE reloc instead of
         garbage.  */
         garbage.  */
      if (s->contents == NULL)
      if (sec->contents == NULL)
        {
        {
          s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
          sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
          if (s->contents == NULL)
          if (sec->contents == NULL)
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
Line 1875... Line 1912...
   For some symbols we had to change their address when outputting
   For some symbols we had to change their address when outputting
   the dynamic symbol table.  We undo that change here so that
   the dynamic symbol table.  We undo that change here so that
   the symbols have their expected value in the normal symbol
   the symbols have their expected value in the normal symbol
   table.  Ick.  */
   table.  Ick.  */
 
 
static bfd_boolean
static int
elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
     struct bfd_link_info *info;
                                    const char *name,
     const char *name;
                                    Elf_Internal_Sym *sym,
     Elf_Internal_Sym *sym;
                                    asection *input_sec ATTRIBUTE_UNUSED,
     asection *input_sec ATTRIBUTE_UNUSED;
                                    struct elf_link_hash_entry *eh)
     struct elf_link_hash_entry *h;
 
{
{
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct elf64_hppa_dyn_hash_entry *dyn_h;
 
 
 
  /* We may be called with the file symbol or section symbols.
  /* We may be called with the file symbol or section symbols.
     They never need munging, so it is safe to ignore them.  */
     They never need munging, so it is safe to ignore them.  */
  if (!name)
  if (!name || !eh)
    return TRUE;
    return 1;
 
 
  /* Get the PA dyn_symbol (if any) associated with NAME.  */
 
  hppa_info = elf64_hppa_hash_table (info);
 
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                      name, FALSE, FALSE);
 
  if (!dyn_h || dyn_h->h != h)
 
    return TRUE;
 
 
 
  /* Function symbols for which we created .opd entries *may* have been
  /* Function symbols for which we created .opd entries *may* have been
     munged by finish_dynamic_symbol and have to be un-munged here.
     munged by finish_dynamic_symbol and have to be un-munged here.
 
 
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
     into non-dynamic ones, so we initialize st_shndx to -1 in
     into non-dynamic ones, so we initialize st_shndx to -1 in
     mark_exported_functions and check to see if it was overwritten
     mark_exported_functions and check to see if it was overwritten
     here instead of just checking dyn_h->h->dynindx.  */
     here instead of just checking eh->dynindx.  */
  if (dyn_h->want_opd && dyn_h->st_shndx != -1)
  if (hh->want_opd && hh->st_shndx != -1)
    {
    {
      /* Restore the saved value and section index.  */
      /* Restore the saved value and section index.  */
      sym->st_value = dyn_h->st_value;
      sym->st_value = hh->st_value;
      sym->st_shndx = dyn_h->st_shndx;
      sym->st_shndx = hh->st_shndx;
    }
    }
 
 
  return TRUE;
  return 1;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
     bfd *output_bfd;
                                  struct bfd_link_info *info,
     struct bfd_link_info *info;
                                  struct elf_link_hash_entry *eh,
     struct elf_link_hash_entry *h;
                                  Elf_Internal_Sym *sym)
     Elf_Internal_Sym *sym;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_dyn_hash_entry *dyn_h;
 
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
 
                                      h->root.root.string, FALSE, FALSE);
 
 
 
  stub = hppa_info->stub_sec;
  stub = hppa_info->stub_sec;
  splt = hppa_info->plt_sec;
  splt = hppa_info->plt_sec;
  sdlt = hppa_info->dlt_sec;
  sdlt = hppa_info->dlt_sec;
  sopd = hppa_info->opd_sec;
  sopd = hppa_info->opd_sec;
Line 1947... Line 1972...
     At least for symbols that refer to functions.
     At least for symbols that refer to functions.
 
 
     We will store a new value and section index into the symbol long
     We will store a new value and section index into the symbol long
     enough to output it into the dynamic symbol table, then we restore
     enough to output it into the dynamic symbol table, then we restore
     the original values (in elf64_hppa_link_output_symbol_hook).  */
     the original values (in elf64_hppa_link_output_symbol_hook).  */
  if (dyn_h && dyn_h->want_opd)
  if (hh->want_opd)
    {
    {
      BFD_ASSERT (sopd != NULL);
      BFD_ASSERT (sopd != NULL);
 
 
      /* Save away the original value and section index so that we
      /* Save away the original value and section index so that we
         can restore them later.  */
         can restore them later.  */
      dyn_h->st_value = sym->st_value;
      hh->st_value = sym->st_value;
      dyn_h->st_shndx = sym->st_shndx;
      hh->st_shndx = sym->st_shndx;
 
 
      /* For the dynamic symbol table entry, we want the value to be
      /* For the dynamic symbol table entry, we want the value to be
         address of this symbol's entry within the .opd section.  */
         address of this symbol's entry within the .opd section.  */
      sym->st_value = (dyn_h->opd_offset
      sym->st_value = (hh->opd_offset
                       + sopd->output_offset
                       + sopd->output_offset
                       + sopd->output_section->vma);
                       + sopd->output_section->vma);
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
                                                         sopd->output_section);
                                                         sopd->output_section);
    }
    }
 
 
  /* Initialize a .plt entry if requested.  */
  /* Initialize a .plt entry if requested.  */
  if (dyn_h && dyn_h->want_plt
  if (hh->want_plt
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
      && elf64_hppa_dynamic_symbol_p (eh, info))
    {
    {
      bfd_vma value;
      bfd_vma value;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
 
 
Line 1979... Line 2004...
 
 
      /* We do not actually care about the value in the PLT entry
      /* We do not actually care about the value in the PLT entry
         if we are creating a shared library and the symbol is
         if we are creating a shared library and the symbol is
         still undefined, we create a dynamic relocation to fill
         still undefined, we create a dynamic relocation to fill
         in the correct value.  */
         in the correct value.  */
      if (info->shared && h->root.type == bfd_link_hash_undefined)
      if (info->shared && eh->root.type == bfd_link_hash_undefined)
        value = 0;
        value = 0;
      else
      else
        value = (h->root.u.def.value + h->root.u.def.section->vma);
        value = (eh->root.u.def.value + eh->root.u.def.section->vma);
 
 
      /* Fill in the entry in the procedure linkage table.
      /* Fill in the entry in the procedure linkage table.
 
 
         The format of a plt entry is
         The format of a plt entry is
         <funcaddr> <__gp>.
         <funcaddr> <__gp>.
Line 1995... Line 2020...
         install the PLT entry.
         install the PLT entry.
 
 
         We are modifying the in-memory PLT contents here, so we do not add
         We are modifying the in-memory PLT contents here, so we do not add
         in the output_offset of the PLT section.  */
         in the output_offset of the PLT section.  */
 
 
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
      value = _bfd_get_gp_value (splt->output_section->owner);
      value = _bfd_get_gp_value (splt->output_section->owner);
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
      bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
 
 
      /* Create a dynamic IPLT relocation for this entry.
      /* Create a dynamic IPLT relocation for this entry.
 
 
         We are creating a relocation in the output file's PLT section,
         We are creating a relocation in the output file's PLT section,
         which is included within the DLT secton.  So we do need to include
         which is included within the DLT secton.  So we do need to include
         the PLT's output_offset in the computation of the relocation's
         the PLT's output_offset in the computation of the relocation's
         address.  */
         address.  */
      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
      rel.r_offset = (hh->plt_offset + splt->output_offset
                      + splt->output_section->vma);
                      + splt->output_section->vma);
      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
      rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
      rel.r_addend = 0;
      rel.r_addend = 0;
 
 
      loc = spltrel->contents;
      loc = spltrel->contents;
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
    }
    }
 
 
  /* Initialize an external call stub entry if requested.  */
  /* Initialize an external call stub entry if requested.  */
  if (dyn_h && dyn_h->want_stub
  if (hh->want_stub
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
      && elf64_hppa_dynamic_symbol_p (eh, info))
    {
    {
      bfd_vma value;
      bfd_vma value;
      int insn;
      int insn;
      unsigned int max_offset;
      unsigned int max_offset;
 
 
Line 2029... Line 2054...
 
 
      /* Install the generic stub template.
      /* Install the generic stub template.
 
 
         We are modifying the contents of the stub section, so we do not
         We are modifying the contents of the stub section, so we do not
         need to include the stub section's output_offset here.  */
         need to include the stub section's output_offset here.  */
      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
      memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
 
 
      /* Fix up the first ldd instruction.
      /* Fix up the first ldd instruction.
 
 
         We are modifying the contents of the STUB section in memory,
         We are modifying the contents of the STUB section in memory,
         so we do not need to include its output offset in this computation.
         so we do not need to include its output offset in this computation.
Line 2042... Line 2067...
         the start of the PLT section.  These instructions will reference
         the start of the PLT section.  These instructions will reference
         data relative to the value of __gp, which may not necessarily have
         data relative to the value of __gp, which may not necessarily have
         the same address as the start of the PLT section.
         the same address as the start of the PLT section.
 
 
         gp_offset contains the offset of __gp within the PLT section.  */
         gp_offset contains the offset of __gp within the PLT section.  */
      value = dyn_h->plt_offset - hppa_info->gp_offset;
      value = hh->plt_offset - hppa_info->gp_offset;
 
 
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
      if (output_bfd->arch_info->mach >= 25)
      if (output_bfd->arch_info->mach >= 25)
        {
        {
          /* Wide mode allows 16 bit offsets.  */
          /* Wide mode allows 16 bit offsets.  */
          max_offset = 32768;
          max_offset = 32768;
          insn &= ~ 0xfff1;
          insn &= ~ 0xfff1;
Line 2062... Line 2087...
        }
        }
 
 
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
        {
        {
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
                                 dyn_h->root.string,
                                 hh->eh.root.root.string,
                                 (long) value);
                                 (long) value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      bfd_put_32 (stub->owner, (bfd_vma) insn,
      bfd_put_32 (stub->owner, (bfd_vma) insn,
                  stub->contents + dyn_h->stub_offset);
                  stub->contents + hh->stub_offset);
 
 
      /* Fix up the second ldd instruction.  */
      /* Fix up the second ldd instruction.  */
      value += 8;
      value += 8;
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
      insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
      if (output_bfd->arch_info->mach >= 25)
      if (output_bfd->arch_info->mach >= 25)
        {
        {
          insn &= ~ 0xfff1;
          insn &= ~ 0xfff1;
          insn |= re_assemble_16 ((int) value);
          insn |= re_assemble_16 ((int) value);
        }
        }
Line 2084... Line 2109...
        {
        {
          insn &= ~ 0x3ff1;
          insn &= ~ 0x3ff1;
          insn |= re_assemble_14 ((int) value);
          insn |= re_assemble_14 ((int) value);
        }
        }
      bfd_put_32 (stub->owner, (bfd_vma) insn,
      bfd_put_32 (stub->owner, (bfd_vma) insn,
                  stub->contents + dyn_h->stub_offset + 8);
                  stub->contents + hh->stub_offset + 8);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* The .opd section contains FPTRs for each function this file
/* The .opd section contains FPTRs for each function this file
   exports.  Initialize the FPTR entries.  */
   exports.  Initialize the FPTR entries.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_opd (dyn_h, data)
elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
 
  asection *sopd;
  asection *sopd;
  asection *sopdrel;
  asection *sopdrel;
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
  sopd = hppa_info->opd_sec;
  sopd = hppa_info->opd_sec;
  sopdrel = hppa_info->opd_rel_sec;
  sopdrel = hppa_info->opd_rel_sec;
 
 
  if (h && dyn_h->want_opd)
  if (hh->want_opd)
    {
    {
      bfd_vma value;
      bfd_vma value;
 
 
      /* The first two words of an .opd entry are zero.
      /* The first two words of an .opd entry are zero.
 
 
         We are modifying the contents of the OPD section in memory, so we
         We are modifying the contents of the OPD section in memory, so we
         do not need to include its output offset in this computation.  */
         do not need to include its output offset in this computation.  */
      memset (sopd->contents + dyn_h->opd_offset, 0, 16);
      memset (sopd->contents + hh->opd_offset, 0, 16);
 
 
      value = (h->root.u.def.value
      value = (eh->root.u.def.value
               + h->root.u.def.section->output_section->vma
               + eh->root.u.def.section->output_section->vma
               + h->root.u.def.section->output_offset);
               + eh->root.u.def.section->output_offset);
 
 
      /* The next word is the address of the function.  */
      /* The next word is the address of the function.  */
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
 
 
      /* The last word is our local __gp value.  */
      /* The last word is our local __gp value.  */
      value = _bfd_get_gp_value (sopd->output_section->owner);
      value = _bfd_get_gp_value (sopd->output_section->owner);
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
      bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
    }
    }
 
 
  /* If we are generating a shared library, we must generate EPLT relocations
  /* If we are generating a shared library, we must generate EPLT relocations
     for each entry in the .opd, even for static functions (they may have
     for each entry in the .opd, even for static functions (they may have
     had their address taken).  */
     had their address taken).  */
  if (info->shared && dyn_h && dyn_h->want_opd)
  if (info->shared && hh->want_opd)
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
      int dynindx;
      int dynindx;
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (h && h->dynindx != -1)
      if (eh->dynindx != -1)
        dynindx = h->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                dyn_h->sym_indx);
                                                hh->sym_indx);
 
 
      /* The offset of this relocation is the absolute address of the
      /* The offset of this relocation is the absolute address of the
         .opd entry for this symbol.  */
         .opd entry for this symbol.  */
      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
      rel.r_offset = (hh->opd_offset + sopd->output_offset
                      + sopd->output_section->vma);
                      + sopd->output_section->vma);
 
 
      /* If H is non-null, then we have an external symbol.
      /* If H is non-null, then we have an external symbol.
 
 
         It is imperative that we use a different dynamic symbol for the
         It is imperative that we use a different dynamic symbol for the
Line 2181... Line 2204...
         library.
         library.
 
 
         We do have to play similar games for FPTR relocations in shared
         We do have to play similar games for FPTR relocations in shared
         libraries, including those for static symbols.  See the FPTR
         libraries, including those for static symbols.  See the FPTR
         handling in elf64_hppa_finalize_dynreloc.  */
         handling in elf64_hppa_finalize_dynreloc.  */
      if (h)
      if (eh)
        {
        {
          char *new_name;
          char *new_name;
          struct elf_link_hash_entry *nh;
          struct elf_link_hash_entry *nh;
 
 
          new_name = alloca (strlen (h->root.root.string) + 2);
          new_name = alloca (strlen (eh->root.root.string) + 2);
          new_name[0] = '.';
          new_name[0] = '.';
          strcpy (new_name + 1, h->root.root.string);
          strcpy (new_name + 1, eh->root.root.string);
 
 
          nh = elf_link_hash_lookup (elf_hash_table (info),
          nh = elf_link_hash_lookup (elf_hash_table (info),
                                     new_name, FALSE, FALSE, FALSE);
                                     new_name, TRUE, TRUE, FALSE);
 
 
          /* All we really want from the new symbol is its dynamic
          /* All we really want from the new symbol is its dynamic
             symbol index.  */
             symbol index.  */
 
          if (nh)
          dynindx = nh->dynindx;
          dynindx = nh->dynindx;
        }
        }
 
 
      rel.r_addend = 0;
      rel.r_addend = 0;
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
Line 2213... Line 2237...
/* The .dlt section contains addresses for items referenced through the
/* The .dlt section contains addresses for items referenced through the
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_dlt (dyn_h, data)
elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
     struct elf64_hppa_dyn_hash_entry *dyn_h;
 
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  asection *sdlt, *sdltrel;
  asection *sdlt, *sdltrel;
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
 
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  sdlt = hppa_info->dlt_sec;
  sdlt = hppa_info->dlt_sec;
  sdltrel = hppa_info->dlt_rel_sec;
  sdltrel = hppa_info->dlt_rel_sec;
 
 
  /* H/DYN_H may refer to a local variable and we know it's
  /* H/DYN_H may refer to a local variable and we know it's
     address, so there is no need to create a relocation.  Just install
     address, so there is no need to create a relocation.  Just install
     the proper value into the DLT, note this shortcut can not be
     the proper value into the DLT, note this shortcut can not be
     skipped when building a shared library.  */
     skipped when building a shared library.  */
  if (! info->shared && h && dyn_h->want_dlt)
  if (! info->shared && hh && hh->want_dlt)
    {
    {
      bfd_vma value;
      bfd_vma value;
 
 
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
         to point to the FPTR entry in the .opd section.
         to point to the FPTR entry in the .opd section.
 
 
         We include the OPD's output offset in this computation as
         We include the OPD's output offset in this computation as
         we are referring to an absolute address in the resulting
         we are referring to an absolute address in the resulting
         object file.  */
         object file.  */
      if (dyn_h->want_opd)
      if (hh->want_opd)
        {
        {
          value = (dyn_h->opd_offset
          value = (hh->opd_offset
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_offset
                   + hppa_info->opd_sec->output_section->vma);
                   + hppa_info->opd_sec->output_section->vma);
        }
        }
      else if ((h->root.type == bfd_link_hash_defined
      else if ((eh->root.type == bfd_link_hash_defined
                || h->root.type == bfd_link_hash_defweak)
                || eh->root.type == bfd_link_hash_defweak)
               && h->root.u.def.section)
               && eh->root.u.def.section)
        {
        {
          value = h->root.u.def.value + h->root.u.def.section->output_offset;
          value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
          if (h->root.u.def.section->output_section)
          if (eh->root.u.def.section->output_section)
            value += h->root.u.def.section->output_section->vma;
            value += eh->root.u.def.section->output_section->vma;
          else
          else
            value += h->root.u.def.section->vma;
            value += eh->root.u.def.section->vma;
        }
        }
      else
      else
        /* We have an undefined function reference.  */
        /* We have an undefined function reference.  */
        value = 0;
        value = 0;
 
 
      /* We do not need to include the output offset of the DLT section
      /* We do not need to include the output offset of the DLT section
         here because we are modifying the in-memory contents.  */
         here because we are modifying the in-memory contents.  */
      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
      bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
    }
    }
 
 
  /* Create a relocation for the DLT entry associated with this symbol.
  /* Create a relocation for the DLT entry associated with this symbol.
     When building a shared library the symbol does not have to be dynamic.  */
     When building a shared library the symbol does not have to be dynamic.  */
  if (dyn_h->want_dlt
  if (hh->want_dlt
      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
      && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      bfd_byte *loc;
      bfd_byte *loc;
      int dynindx;
      int dynindx;
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (h && h->dynindx != -1)
      if (eh && eh->dynindx != -1)
        dynindx = h->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                dyn_h->sym_indx);
                                                hh->sym_indx);
 
 
      /* Create a dynamic relocation for this entry.  Do include the output
      /* Create a dynamic relocation for this entry.  Do include the output
         offset of the DLT entry since we need an absolute address in the
         offset of the DLT entry since we need an absolute address in the
         resulting object file.  */
         resulting object file.  */
      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
      rel.r_offset = (hh->dlt_offset + sdlt->output_offset
                      + sdlt->output_section->vma);
                      + sdlt->output_section->vma);
      if (h && h->type == STT_FUNC)
      if (eh && eh->type == STT_FUNC)
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
      else
      else
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
      rel.r_addend = 0;
      rel.r_addend = 0;
 
 
Line 2307... Line 2329...
 
 
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
   for dynamic functions used to initialize static data.  */
   for dynamic functions used to initialize static data.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finalize_dynreloc (dyn_h, data)
elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
     struct elf64_hppa_dyn_hash_entry *dyn_h;
                              void *data)
     PTR data;
 
{
{
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct bfd_link_info *info = (struct bfd_link_info *)data;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf_link_hash_entry *h;
 
  int dynamic_symbol;
  int dynamic_symbol;
 
 
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
 
 
  if (!dynamic_symbol && !info->shared)
  if (!dynamic_symbol && !info->shared)
    return TRUE;
    return TRUE;
 
 
  if (dyn_h->reloc_entries)
  if (hh->reloc_entries)
    {
    {
      struct elf64_hppa_dyn_reloc_entry *rent;
      struct elf64_hppa_dyn_reloc_entry *rent;
      int dynindx;
      int dynindx;
 
 
      hppa_info = elf64_hppa_hash_table (info);
      hppa_info = hppa_link_hash_table (info);
      h = dyn_h->h;
 
 
 
      /* We may need to do a relocation against a local symbol, in
      /* We may need to do a relocation against a local symbol, in
         which case we have to look up it's dynamic symbol index off
         which case we have to look up it's dynamic symbol index off
         the local symbol hash table.  */
         the local symbol hash table.  */
      if (h && h->dynindx != -1)
      if (eh->dynindx != -1)
        dynindx = h->dynindx;
        dynindx = eh->dynindx;
      else
      else
        dynindx
        dynindx
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
          = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
                                                dyn_h->sym_indx);
                                                hh->sym_indx);
 
 
      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
      for (rent = hh->reloc_entries; rent; rent = rent->next)
        {
        {
          Elf_Internal_Rela rel;
          Elf_Internal_Rela rel;
          bfd_byte *loc;
          bfd_byte *loc;
 
 
          /* Allocate one iff we are building a shared library, the relocation
          /* Allocate one iff we are building a shared library, the relocation
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
          if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
          if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
            continue;
            continue;
 
 
          /* Create a dynamic relocation for this entry.
          /* Create a dynamic relocation for this entry.
 
 
             We need the output offset for the reloc's section because
             We need the output offset for the reloc's section because
Line 2376... Line 2396...
             purpose.  Thus the hair in the check_relocs routine.
             purpose.  Thus the hair in the check_relocs routine.
 
 
             We use a section symbol recorded by check_relocs as the
             We use a section symbol recorded by check_relocs as the
             base symbol for the relocation.  The addend is the difference
             base symbol for the relocation.  The addend is the difference
             between the section symbol and the address of the .opd entry.  */
             between the section symbol and the address of the .opd entry.  */
          if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
          if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
            {
            {
              bfd_vma value, value2;
              bfd_vma value, value2;
 
 
              /* First compute the address of the opd entry for this symbol.  */
              /* First compute the address of the opd entry for this symbol.  */
              value = (dyn_h->opd_offset
              value = (hh->opd_offset
                       + hppa_info->opd_sec->output_section->vma
                       + hppa_info->opd_sec->output_section->vma
                       + hppa_info->opd_sec->output_offset);
                       + hppa_info->opd_sec->output_offset);
 
 
              /* Compute the value of the start of the section with
              /* Compute the value of the start of the section with
                 the relocation.  */
                 the relocation.  */
Line 2424... Line 2444...
 
 
/* Used to decide how to sort relocs in an optimal manner for the
/* Used to decide how to sort relocs in an optimal manner for the
   dynamic linker, before writing them out.  */
   dynamic linker, before writing them out.  */
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf64_hppa_reloc_type_class (rela)
elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
     const Elf_Internal_Rela *rela;
 
{
{
  if (ELF64_R_SYM (rela->r_info) == 0)
  if (ELF64_R_SYM (rela->r_info) == 0)
    return reloc_class_relative;
    return reloc_class_relative;
 
 
  switch ((int) ELF64_R_TYPE (rela->r_info))
  switch ((int) ELF64_R_TYPE (rela->r_info))
Line 2444... Line 2463...
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf64_hppa_finish_dynamic_sections (output_bfd, info)
elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
     bfd *output_bfd;
                                    struct bfd_link_info *info)
     struct bfd_link_info *info;
 
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *sdyn;
  asection *sdyn;
  struct elf64_hppa_link_hash_table *hppa_info;
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
  hppa_info = elf64_hppa_hash_table (info);
  hppa_info = hppa_link_hash_table (info);
 
 
  /* Finalize the contents of the .opd section.  */
  /* Finalize the contents of the .opd section.  */
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
  elf_link_hash_traverse (elf_hash_table (info),
                                elf64_hppa_finalize_opd,
                                elf64_hppa_finalize_opd,
                                info);
                                info);
 
 
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
  elf_link_hash_traverse (elf_hash_table (info),
                                elf64_hppa_finalize_dynreloc,
                                elf64_hppa_finalize_dynreloc,
                                info);
                                info);
 
 
  /* Finalize the contents of the .dlt section.  */
  /* Finalize the contents of the .dlt section.  */
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  /* Finalize the contents of the .dlt section.  */
  /* Finalize the contents of the .dlt section.  */
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
  elf_link_hash_traverse (elf_hash_table (info),
                                elf64_hppa_finalize_dlt,
                                elf64_hppa_finalize_dlt,
                                info);
                                info);
 
 
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
Line 2710... Line 2728...
}
}
 
 
/* Called when writing out an object file to decide the type of a
/* Called when writing out an object file to decide the type of a
   symbol.  */
   symbol.  */
static int
static int
elf64_hppa_elf_get_symbol_type (elf_sym, type)
elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
     Elf_Internal_Sym *elf_sym;
                                int type)
     int type;
 
{
{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
    return STT_PARISC_MILLI;
    return STT_PARISC_MILLI;
  else
  else
    return type;
    return type;
Line 2768... Line 2785...
    hdr->p_type = PT_LOAD;
    hdr->p_type = PT_LOAD;
 
 
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
}
}
 
 
 
/* Hook called by the linker routine which adds symbols from an object
 
   file.  HP's libraries define symbols with HP specific section
 
   indices, which we have to handle.  */
 
 
 
static bfd_boolean
 
elf_hppa_add_symbol_hook (bfd *abfd,
 
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
 
                          Elf_Internal_Sym *sym,
 
                          const char **namep ATTRIBUTE_UNUSED,
 
                          flagword *flagsp ATTRIBUTE_UNUSED,
 
                          asection **secp,
 
                          bfd_vma *valp)
 
{
 
  unsigned int index = sym->st_shndx;
 
 
 
  switch (index)
 
    {
 
    case SHN_PARISC_ANSI_COMMON:
 
      *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
 
      (*secp)->flags |= SEC_IS_COMMON;
 
      *valp = sym->st_size;
 
      break;
 
 
 
    case SHN_PARISC_HUGE_COMMON:
 
      *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
 
      (*secp)->flags |= SEC_IS_COMMON;
 
      *valp = sym->st_size;
 
      break;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
 
                                         void *data)
 
{
 
  struct bfd_link_info *info = data;
 
 
 
  if (h->root.type == bfd_link_hash_warning)
 
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
  /* If we are not creating a shared library, and this symbol is
 
     referenced by a shared library but is not defined anywhere, then
 
     the generic code will warn that it is undefined.
 
 
 
     This behavior is undesirable on HPs since the standard shared
 
     libraries contain references to undefined symbols.
 
 
 
     So we twiddle the flags associated with such symbols so that they
 
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
 
     Ultimately we should have better controls over the generic ELF BFD
 
     linker code.  */
 
  if (! info->relocatable
 
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
 
      && h->root.type == bfd_link_hash_undefined
 
      && h->ref_dynamic
 
      && !h->ref_regular)
 
    {
 
      h->ref_dynamic = 0;
 
      h->pointer_equality_needed = 1;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
 
                                         void *data)
 
{
 
  struct bfd_link_info *info = data;
 
 
 
  if (h->root.type == bfd_link_hash_warning)
 
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
 
  /* If we are not creating a shared library, and this symbol is
 
     referenced by a shared library but is not defined anywhere, then
 
     the generic code will warn that it is undefined.
 
 
 
     This behavior is undesirable on HPs since the standard shared
 
     libraries contain references to undefined symbols.
 
 
 
     So we twiddle the flags associated with such symbols so that they
 
     will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
 
 
 
     Ultimately we should have better controls over the generic ELF BFD
 
     linker code.  */
 
  if (! info->relocatable
 
      && info->unresolved_syms_in_shared_libs != RM_IGNORE
 
      && h->root.type == bfd_link_hash_undefined
 
      && !h->ref_dynamic
 
      && !h->ref_regular
 
      && h->pointer_equality_needed)
 
    {
 
      h->ref_dynamic = 1;
 
      h->pointer_equality_needed = 0;
 
    }
 
 
 
  return TRUE;
 
}
 
 
 
static bfd_boolean
 
elf_hppa_is_dynamic_loader_symbol (const char *name)
 
{
 
  return (! strcmp (name, "__CPU_REVISION")
 
          || ! strcmp (name, "__CPU_KEYBITS_1")
 
          || ! strcmp (name, "__SYSTEM_ID_D")
 
          || ! strcmp (name, "__FPU_MODEL")
 
          || ! strcmp (name, "__FPU_REVISION")
 
          || ! strcmp (name, "__ARGC")
 
          || ! strcmp (name, "__ARGV")
 
          || ! strcmp (name, "__ENVP")
 
          || ! strcmp (name, "__TLS_SIZE_D")
 
          || ! strcmp (name, "__LOAD_INFO")
 
          || ! strcmp (name, "__systab"));
 
}
 
 
 
/* Record the lowest address for the data and text segments.  */
 
static void
 
elf_hppa_record_segment_addrs (bfd *abfd,
 
                               asection *section,
 
                               void *data)
 
{
 
  struct elf64_hppa_link_hash_table *hppa_info = data;
 
 
 
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
 
    {
 
      bfd_vma value;
 
      Elf_Internal_Phdr *p;
 
 
 
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
 
      BFD_ASSERT (p != NULL);
 
      value = p->p_vaddr;
 
 
 
      if (section->flags & SEC_READONLY)
 
        {
 
          if (value < hppa_info->text_segment_base)
 
            hppa_info->text_segment_base = value;
 
        }
 
      else
 
        {
 
          if (value < hppa_info->data_segment_base)
 
            hppa_info->data_segment_base = value;
 
        }
 
    }
 
}
 
 
 
/* Called after we have seen all the input files/sections, but before
 
   final symbol resolution and section placement has been determined.
 
 
 
   We use this hook to (possibly) provide a value for __gp, then we
 
   fall back to the generic ELF final link routine.  */
 
 
 
static bfd_boolean
 
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
 
{
 
  bfd_boolean retval;
 
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
 
 
 
  if (! info->relocatable)
 
    {
 
      struct elf_link_hash_entry *gp;
 
      bfd_vma gp_val;
 
 
 
      /* The linker script defines a value for __gp iff it was referenced
 
         by one of the objects being linked.  First try to find the symbol
 
         in the hash table.  If that fails, just compute the value __gp
 
         should have had.  */
 
      gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
 
                                 FALSE, FALSE);
 
 
 
      if (gp)
 
        {
 
 
 
          /* Adjust the value of __gp as we may want to slide it into the
 
             .plt section so that the stubs can access PLT entries without
 
             using an addil sequence.  */
 
          gp->root.u.def.value += hppa_info->gp_offset;
 
 
 
          gp_val = (gp->root.u.def.section->output_section->vma
 
                    + gp->root.u.def.section->output_offset
 
                    + gp->root.u.def.value);
 
        }
 
      else
 
        {
 
          asection *sec;
 
 
 
          /* First look for a .plt section.  If found, then __gp is the
 
             address of the .plt + gp_offset.
 
 
 
             If no .plt is found, then look for .dlt, .opd and .data (in
 
             that order) and set __gp to the base address of whichever
 
             section is found first.  */
 
 
 
          sec = hppa_info->plt_sec;
 
          if (sec && ! (sec->flags & SEC_EXCLUDE))
 
            gp_val = (sec->output_offset
 
                      + sec->output_section->vma
 
                      + hppa_info->gp_offset);
 
          else
 
            {
 
              sec = hppa_info->dlt_sec;
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                sec = hppa_info->opd_sec;
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                sec = bfd_get_section_by_name (abfd, ".data");
 
              if (!sec || (sec->flags & SEC_EXCLUDE))
 
                gp_val = 0;
 
              else
 
                gp_val = sec->output_offset + sec->output_section->vma;
 
            }
 
        }
 
 
 
      /* Install whatever value we found/computed for __gp.  */
 
      _bfd_set_gp_value (abfd, gp_val);
 
    }
 
 
 
  /* We need to know the base of the text and data segments so that we
 
     can perform SEGREL relocations.  We will record the base addresses
 
     when we encounter the first SEGREL relocation.  */
 
  hppa_info->text_segment_base = (bfd_vma)-1;
 
  hppa_info->data_segment_base = (bfd_vma)-1;
 
 
 
  /* HP's shared libraries have references to symbols that are not
 
     defined anywhere.  The generic ELF BFD linker code will complain
 
     about such symbols.
 
 
 
     So we detect the losing case and arrange for the flags on the symbol
 
     to indicate that it was never referenced.  This keeps the generic
 
     ELF BFD link code happy and appears to not create any secondary
 
     problems.  Ultimately we need a way to control the behavior of the
 
     generic ELF BFD link code better.  */
 
  elf_link_hash_traverse (elf_hash_table (info),
 
                          elf_hppa_unmark_useless_dynamic_symbols,
 
                          info);
 
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
 
  retval = bfd_elf_final_link (abfd, info);
 
 
 
  elf_link_hash_traverse (elf_hash_table (info),
 
                          elf_hppa_remark_useless_dynamic_symbols,
 
                          info);
 
 
 
  /* If we're producing a final executable, sort the contents of the
 
     unwind section. */
 
  if (retval)
 
    retval = elf_hppa_sort_unwind (abfd);
 
 
 
  return retval;
 
}
 
 
 
/* Relocate the given INSN.  VALUE should be the actual value we want
 
   to insert into the instruction, ie by this point we should not be
 
   concerned with computing an offset relative to the DLT, PC, etc.
 
   Instead this routine is meant to handle the bit manipulations needed
 
   to insert the relocation into the given instruction.  */
 
 
 
static int
 
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
 
{
 
  switch (r_type)
 
    {
 
    /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
 
       the "B" instruction.  */
 
    case R_PARISC_PCREL22F:
 
    case R_PARISC_PCREL22C:
 
      return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
 
 
 
      /* This is any 12 bit branch.  */
 
    case R_PARISC_PCREL12F:
 
      return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
 
 
 
    /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
 
       to the "B" instruction as well as BE.  */
 
    case R_PARISC_PCREL17F:
 
    case R_PARISC_DIR17F:
 
    case R_PARISC_DIR17R:
 
    case R_PARISC_PCREL17C:
 
    case R_PARISC_PCREL17R:
 
      return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
 
 
 
    /* ADDIL or LDIL instructions.  */
 
    case R_PARISC_DLTREL21L:
 
    case R_PARISC_DLTIND21L:
 
    case R_PARISC_LTOFF_FPTR21L:
 
    case R_PARISC_PCREL21L:
 
    case R_PARISC_LTOFF_TP21L:
 
    case R_PARISC_DPREL21L:
 
    case R_PARISC_PLTOFF21L:
 
    case R_PARISC_DIR21L:
 
      return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
 
 
 
    /* LDO and integer loads/stores with 14 bit displacements.  */
 
    case R_PARISC_DLTREL14R:
 
    case R_PARISC_DLTREL14F:
 
    case R_PARISC_DLTIND14R:
 
    case R_PARISC_DLTIND14F:
 
    case R_PARISC_LTOFF_FPTR14R:
 
    case R_PARISC_PCREL14R:
 
    case R_PARISC_PCREL14F:
 
    case R_PARISC_LTOFF_TP14R:
 
    case R_PARISC_LTOFF_TP14F:
 
    case R_PARISC_DPREL14R:
 
    case R_PARISC_DPREL14F:
 
    case R_PARISC_PLTOFF14R:
 
    case R_PARISC_PLTOFF14F:
 
    case R_PARISC_DIR14R:
 
    case R_PARISC_DIR14F:
 
      return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
 
 
 
    /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
 
    case R_PARISC_LTOFF_FPTR16F:
 
    case R_PARISC_PCREL16F:
 
    case R_PARISC_LTOFF_TP16F:
 
    case R_PARISC_GPREL16F:
 
    case R_PARISC_PLTOFF16F:
 
    case R_PARISC_DIR16F:
 
    case R_PARISC_LTOFF16F:
 
      return (insn & ~0xffff) | re_assemble_16 (sym_value);
 
 
 
    /* Doubleword loads and stores with a 14 bit displacement.  */
 
    case R_PARISC_DLTREL14DR:
 
    case R_PARISC_DLTIND14DR:
 
    case R_PARISC_LTOFF_FPTR14DR:
 
    case R_PARISC_LTOFF_FPTR16DF:
 
    case R_PARISC_PCREL14DR:
 
    case R_PARISC_PCREL16DF:
 
    case R_PARISC_LTOFF_TP14DR:
 
    case R_PARISC_LTOFF_TP16DF:
 
    case R_PARISC_DPREL14DR:
 
    case R_PARISC_GPREL16DF:
 
    case R_PARISC_PLTOFF14DR:
 
    case R_PARISC_PLTOFF16DF:
 
    case R_PARISC_DIR14DR:
 
    case R_PARISC_DIR16DF:
 
    case R_PARISC_LTOFF16DF:
 
      return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
 
                                 | ((sym_value & 0x1ff8) << 1));
 
 
 
    /* Floating point single word load/store instructions.  */
 
    case R_PARISC_DLTREL14WR:
 
    case R_PARISC_DLTIND14WR:
 
    case R_PARISC_LTOFF_FPTR14WR:
 
    case R_PARISC_LTOFF_FPTR16WF:
 
    case R_PARISC_PCREL14WR:
 
    case R_PARISC_PCREL16WF:
 
    case R_PARISC_LTOFF_TP14WR:
 
    case R_PARISC_LTOFF_TP16WF:
 
    case R_PARISC_DPREL14WR:
 
    case R_PARISC_GPREL16WF:
 
    case R_PARISC_PLTOFF14WR:
 
    case R_PARISC_PLTOFF16WF:
 
    case R_PARISC_DIR16WF:
 
    case R_PARISC_DIR14WR:
 
    case R_PARISC_LTOFF16WF:
 
      return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
 
                                 | ((sym_value & 0x1ffc) << 1));
 
 
 
    default:
 
      return insn;
 
    }
 
}
 
 
 
/* Compute the value for a relocation (REL) during a final link stage,
 
   then insert the value into the proper location in CONTENTS.
 
 
 
   VALUE is a tentative value for the relocation and may be overridden
 
   and modified here based on the specific relocation to be performed.
 
 
 
   For example we do conversions for PC-relative branches in this routine
 
   or redirection of calls to external routines to stubs.
 
 
 
   The work of actually applying the relocation is left to a helper
 
   routine in an attempt to reduce the complexity and size of this
 
   function.  */
 
 
 
static bfd_reloc_status_type
 
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
 
                              bfd *input_bfd,
 
                              bfd *output_bfd,
 
                              asection *input_section,
 
                              bfd_byte *contents,
 
                              bfd_vma value,
 
                              struct bfd_link_info *info,
 
                              asection *sym_sec,
 
                              struct elf_link_hash_entry *eh)
 
{
 
  struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
 
  struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
 
  bfd_vma *local_offsets;
 
  Elf_Internal_Shdr *symtab_hdr;
 
  int insn;
 
  bfd_vma max_branch_offset = 0;
 
  bfd_vma offset = rel->r_offset;
 
  bfd_signed_vma addend = rel->r_addend;
 
  reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
 
  unsigned int r_symndx = ELF_R_SYM (rel->r_info);
 
  unsigned int r_type = howto->type;
 
  bfd_byte *hit_data = contents + offset;
 
 
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
 
  local_offsets = elf_local_got_offsets (input_bfd);
 
  insn = bfd_get_32 (input_bfd, hit_data);
 
 
 
  switch (r_type)
 
    {
 
    case R_PARISC_NONE:
 
      break;
 
 
 
    /* Basic function call support.
 
 
 
       Note for a call to a function defined in another dynamic library
 
       we want to redirect the call to a stub.  */
 
 
 
    /* PC relative relocs without an implicit offset.  */
 
    case R_PARISC_PCREL21L:
 
    case R_PARISC_PCREL14R:
 
    case R_PARISC_PCREL14F:
 
    case R_PARISC_PCREL14WR:
 
    case R_PARISC_PCREL14DR:
 
    case R_PARISC_PCREL16F:
 
    case R_PARISC_PCREL16WF:
 
    case R_PARISC_PCREL16DF:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        /* Adjust for any field selectors.  */
 
        if (r_type == R_PARISC_PCREL21L)
 
          value = hppa_field_adjust (value, -8 + addend, e_lsel);
 
        else if (r_type == R_PARISC_PCREL14F
 
                 || r_type == R_PARISC_PCREL16F
 
                 || r_type == R_PARISC_PCREL16WF
 
                 || r_type == R_PARISC_PCREL16DF)
 
          value = hppa_field_adjust (value, -8 + addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, -8 + addend, e_rsel);
 
 
 
        /* Apply the relocation to the given instruction.  */
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_PCREL12F:
 
    case R_PARISC_PCREL22F:
 
    case R_PARISC_PCREL17F:
 
    case R_PARISC_PCREL22C:
 
    case R_PARISC_PCREL17C:
 
    case R_PARISC_PCREL17R:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
        addend -= 8;
 
 
 
        if (r_type == (unsigned int) R_PARISC_PCREL22F)
 
          max_branch_offset = (1 << (22-1)) << 2;
 
        else if (r_type == (unsigned int) R_PARISC_PCREL17F)
 
          max_branch_offset = (1 << (17-1)) << 2;
 
        else if (r_type == (unsigned int) R_PARISC_PCREL12F)
 
          max_branch_offset = (1 << (12-1)) << 2;
 
 
 
        /* Make sure we can reach the branch target.  */
 
        if (max_branch_offset != 0
 
            && value + addend + max_branch_offset >= 2*max_branch_offset)
 
          {
 
            (*_bfd_error_handler)
 
              (_("%B(%A+0x%lx): cannot reach %s"),
 
              input_bfd,
 
              input_section,
 
              offset,
 
              eh->root.root.string);
 
            bfd_set_error (bfd_error_bad_value);
 
            return bfd_reloc_notsupported;
 
          }
 
 
 
        /* Adjust for any field selectors.  */
 
        if (r_type == R_PARISC_PCREL17R)
 
          value = hppa_field_adjust (value, addend, e_rsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
 
 
        /* All branches are implicitly shifted by 2 places.  */
 
        value >>= 2;
 
 
 
        /* Apply the relocation to the given instruction.  */
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    /* Indirect references to data through the DLT.  */
 
    case R_PARISC_DLTIND14R:
 
    case R_PARISC_DLTIND14F:
 
    case R_PARISC_DLTIND14DR:
 
    case R_PARISC_DLTIND14WR:
 
    case R_PARISC_DLTIND21L:
 
    case R_PARISC_LTOFF_FPTR14R:
 
    case R_PARISC_LTOFF_FPTR14DR:
 
    case R_PARISC_LTOFF_FPTR14WR:
 
    case R_PARISC_LTOFF_FPTR21L:
 
    case R_PARISC_LTOFF_FPTR16F:
 
    case R_PARISC_LTOFF_FPTR16WF:
 
    case R_PARISC_LTOFF_FPTR16DF:
 
    case R_PARISC_LTOFF_TP21L:
 
    case R_PARISC_LTOFF_TP14R:
 
    case R_PARISC_LTOFF_TP14F:
 
    case R_PARISC_LTOFF_TP14WR:
 
    case R_PARISC_LTOFF_TP14DR:
 
    case R_PARISC_LTOFF_TP16F:
 
    case R_PARISC_LTOFF_TP16WF:
 
    case R_PARISC_LTOFF_TP16DF:
 
    case R_PARISC_LTOFF16F:
 
    case R_PARISC_LTOFF16WF:
 
    case R_PARISC_LTOFF16DF:
 
      {
 
        bfd_vma off;
 
 
 
        /* If this relocation was against a local symbol, then we still
 
           have not set up the DLT entry (it's not convenient to do so
 
           in the "finalize_dlt" routine because it is difficult to get
 
           to the local symbol's value).
 
 
 
           So, if this is a local symbol (h == NULL), then we need to
 
           fill in its DLT entry.
 
 
 
           Similarly we may still need to set up an entry in .opd for
 
           a local function which had its address taken.  */
 
        if (hh == NULL)
 
          {
 
            bfd_vma *local_opd_offsets, *local_dlt_offsets;
 
 
 
            if (local_offsets == NULL)
 
              abort ();
 
 
 
            /* Now do .opd creation if needed.  */
 
            if (r_type == R_PARISC_LTOFF_FPTR14R
 
                || r_type == R_PARISC_LTOFF_FPTR14DR
 
                || r_type == R_PARISC_LTOFF_FPTR14WR
 
                || r_type == R_PARISC_LTOFF_FPTR21L
 
                || r_type == R_PARISC_LTOFF_FPTR16F
 
                || r_type == R_PARISC_LTOFF_FPTR16WF
 
                || r_type == R_PARISC_LTOFF_FPTR16DF)
 
              {
 
                local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
 
                off = local_opd_offsets[r_symndx];
 
 
 
                /* The last bit records whether we've already initialised
 
                   this local .opd entry.  */
 
                if ((off & 1) != 0)
 
                  {
 
                    BFD_ASSERT (off != (bfd_vma) -1);
 
                    off &= ~1;
 
                  }
 
                else
 
                  {
 
                    local_opd_offsets[r_symndx] |= 1;
 
 
 
                    /* The first two words of an .opd entry are zero.  */
 
                    memset (hppa_info->opd_sec->contents + off, 0, 16);
 
 
 
                    /* The next word is the address of the function.  */
 
                    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                                (hppa_info->opd_sec->contents + off + 16));
 
 
 
                    /* The last word is our local __gp value.  */
 
                    value = _bfd_get_gp_value
 
                              (hppa_info->opd_sec->output_section->owner);
 
                    bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                                (hppa_info->opd_sec->contents + off + 24));
 
                  }
 
 
 
                /* The DLT value is the address of the .opd entry.  */
 
                value = (off
 
                         + hppa_info->opd_sec->output_offset
 
                         + hppa_info->opd_sec->output_section->vma);
 
                addend = 0;
 
              }
 
 
 
            local_dlt_offsets = local_offsets;
 
            off = local_dlt_offsets[r_symndx];
 
 
 
            if ((off & 1) != 0)
 
              {
 
                BFD_ASSERT (off != (bfd_vma) -1);
 
                off &= ~1;
 
              }
 
            else
 
              {
 
                local_dlt_offsets[r_symndx] |= 1;
 
                bfd_put_64 (hppa_info->dlt_sec->owner,
 
                            value + addend,
 
                            hppa_info->dlt_sec->contents + off);
 
              }
 
          }
 
        else
 
          off = hh->dlt_offset;
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (off
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All DLTIND relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_DLTIND21L
 
            || r_type == R_PARISC_LTOFF_FPTR21L
 
            || r_type == R_PARISC_LTOFF_TP21L)
 
          value = hppa_field_adjust (value, 0, e_lsel);
 
        else if (r_type == R_PARISC_DLTIND14F
 
                 || r_type == R_PARISC_LTOFF_FPTR16F
 
                 || r_type == R_PARISC_LTOFF_FPTR16WF
 
                 || r_type == R_PARISC_LTOFF_FPTR16DF
 
                 || r_type == R_PARISC_LTOFF16F
 
                 || r_type == R_PARISC_LTOFF16DF
 
                 || r_type == R_PARISC_LTOFF16WF
 
                 || r_type == R_PARISC_LTOFF_TP16F
 
                 || r_type == R_PARISC_LTOFF_TP16WF
 
                 || r_type == R_PARISC_LTOFF_TP16DF)
 
          value = hppa_field_adjust (value, 0, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, 0, e_rsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_DLTREL14R:
 
    case R_PARISC_DLTREL14F:
 
    case R_PARISC_DLTREL14DR:
 
    case R_PARISC_DLTREL14WR:
 
    case R_PARISC_DLTREL21L:
 
    case R_PARISC_DPREL21L:
 
    case R_PARISC_DPREL14WR:
 
    case R_PARISC_DPREL14DR:
 
    case R_PARISC_DPREL14R:
 
    case R_PARISC_DPREL14F:
 
    case R_PARISC_GPREL16F:
 
    case R_PARISC_GPREL16WF:
 
    case R_PARISC_GPREL16DF:
 
      {
 
        /* Subtract out the global pointer value to make value a DLT
 
           relative address.  */
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All DLTREL relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_DLTREL21L
 
            || r_type == R_PARISC_DPREL21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_DLTREL14F
 
                 || r_type == R_PARISC_DPREL14F
 
                 || r_type == R_PARISC_GPREL16F
 
                 || r_type == R_PARISC_GPREL16WF
 
                 || r_type == R_PARISC_GPREL16DF)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_DIR21L:
 
    case R_PARISC_DIR17R:
 
    case R_PARISC_DIR17F:
 
    case R_PARISC_DIR14R:
 
    case R_PARISC_DIR14F:
 
    case R_PARISC_DIR14WR:
 
    case R_PARISC_DIR14DR:
 
    case R_PARISC_DIR16F:
 
    case R_PARISC_DIR16WF:
 
    case R_PARISC_DIR16DF:
 
      {
 
        /* All DIR relocations are basically the same at this point,
 
           except that branch offsets need to be divided by four, and
 
           we need different field selectors.  Note that we don't
 
           redirect absolute calls to local stubs.  */
 
 
 
        if (r_type == R_PARISC_DIR21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_DIR17F
 
                 || r_type == R_PARISC_DIR16F
 
                 || r_type == R_PARISC_DIR16WF
 
                 || r_type == R_PARISC_DIR16DF
 
                 || r_type == R_PARISC_DIR14F)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
 
          /* All branches are implicitly shifted by 2 places.  */
 
          value >>= 2;
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_PLTOFF21L:
 
    case R_PARISC_PLTOFF14R:
 
    case R_PARISC_PLTOFF14F:
 
    case R_PARISC_PLTOFF14WR:
 
    case R_PARISC_PLTOFF14DR:
 
    case R_PARISC_PLTOFF16F:
 
    case R_PARISC_PLTOFF16WF:
 
    case R_PARISC_PLTOFF16DF:
 
      {
 
        /* We want the value of the PLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (hh->plt_offset
 
                 + hppa_info->plt_sec->output_offset
 
                 + hppa_info->plt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
 
 
        /* All PLTOFF relocations are basically the same at this point,
 
           except that we need different field selectors for the 21bit
 
           version vs the 14bit versions.  */
 
        if (r_type == R_PARISC_PLTOFF21L)
 
          value = hppa_field_adjust (value, addend, e_lrsel);
 
        else if (r_type == R_PARISC_PLTOFF14F
 
                 || r_type == R_PARISC_PLTOFF16F
 
                 || r_type == R_PARISC_PLTOFF16WF
 
                 || r_type == R_PARISC_PLTOFF16DF)
 
          value = hppa_field_adjust (value, addend, e_fsel);
 
        else
 
          value = hppa_field_adjust (value, addend, e_rrsel);
 
 
 
        insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
 
        break;
 
      }
 
 
 
    case R_PARISC_LTOFF_FPTR32:
 
      {
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (hh == NULL)
 
          {
 
            /* The first two words of an .opd entry are zero.  */
 
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
 
 
 
            /* The next word is the address of the function.  */
 
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                        (hppa_info->opd_sec->contents
 
                         + hh->opd_offset + 16));
 
 
 
            /* The last word is our local __gp value.  */
 
            value = _bfd_get_gp_value
 
                      (hppa_info->opd_sec->output_section->owner);
 
            bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
 
 
 
            /* The DLT value is the address of the .opd entry.  */
 
            value = (hh->opd_offset
 
                     + hppa_info->opd_sec->output_offset
 
                     + hppa_info->opd_sec->output_section->vma);
 
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
 
                        value,
 
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
 
          }
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (hh->dlt_offset
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
        bfd_put_32 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_LTOFF_FPTR64:
 
    case R_PARISC_LTOFF_TP64:
 
      {
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
 
          {
 
            /* The first two words of an .opd entry are zero.  */
 
            memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
 
 
 
            /* The next word is the address of the function.  */
 
            bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                        (hppa_info->opd_sec->contents
 
                         + hh->opd_offset + 16));
 
 
 
            /* The last word is our local __gp value.  */
 
            value = _bfd_get_gp_value
 
                      (hppa_info->opd_sec->output_section->owner);
 
            bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                        hppa_info->opd_sec->contents + hh->opd_offset + 24);
 
 
 
            /* The DLT value is the address of the .opd entry.  */
 
            value = (hh->opd_offset
 
                     + hppa_info->opd_sec->output_offset
 
                     + hppa_info->opd_sec->output_section->vma);
 
 
 
            bfd_put_64 (hppa_info->dlt_sec->owner,
 
                        value,
 
                        hppa_info->dlt_sec->contents + hh->dlt_offset);
 
          }
 
 
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
        value = (hh->dlt_offset
 
                 + hppa_info->dlt_sec->output_offset
 
                 + hppa_info->dlt_sec->output_section->vma);
 
        value -= _bfd_get_gp_value (output_bfd);
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_DIR32:
 
      bfd_put_32 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_DIR64:
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_GPREL64:
 
      /* Subtract out the global pointer value to make value a DLT
 
         relative address.  */
 
      value -= _bfd_get_gp_value (output_bfd);
 
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_LTOFF64:
 
        /* We want the value of the DLT offset for this symbol, not
 
           the symbol's actual address.  Note that __gp may not point
 
           to the start of the DLT, so we have to compute the absolute
 
           address, then subtract out the value of __gp.  */
 
      value = (hh->dlt_offset
 
               + hppa_info->dlt_sec->output_offset
 
               + hppa_info->dlt_sec->output_section->vma);
 
      value -= _bfd_get_gp_value (output_bfd);
 
 
 
      bfd_put_64 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_PCREL32:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        value += addend;
 
        value -= 8;
 
        bfd_put_32 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_PCREL64:
 
      {
 
        /* If this is a call to a function defined in another dynamic
 
           library, then redirect the call to the local stub for this
 
           function.  */
 
        if (sym_sec == NULL || sym_sec->output_section == NULL)
 
          value = (hh->stub_offset + hppa_info->stub_sec->output_offset
 
                   + hppa_info->stub_sec->output_section->vma);
 
 
 
        /* Turn VALUE into a proper PC relative address.  */
 
        value -= (offset + input_section->output_offset
 
                  + input_section->output_section->vma);
 
 
 
        value += addend;
 
        value -= 8;
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_FPTR64:
 
      {
 
        bfd_vma off;
 
 
 
        /* We may still need to create the FPTR itself if it was for
 
           a local symbol.  */
 
        if (hh == NULL)
 
          {
 
            bfd_vma *local_opd_offsets;
 
 
 
            if (local_offsets == NULL)
 
              abort ();
 
 
 
            local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
 
            off = local_opd_offsets[r_symndx];
 
 
 
            /* The last bit records whether we've already initialised
 
               this local .opd entry.  */
 
            if ((off & 1) != 0)
 
              {
 
                BFD_ASSERT (off != (bfd_vma) -1);
 
                off &= ~1;
 
              }
 
            else
 
              {
 
                /* The first two words of an .opd entry are zero.  */
 
                memset (hppa_info->opd_sec->contents + off, 0, 16);
 
 
 
                /* The next word is the address of the function.  */
 
                bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
 
                            (hppa_info->opd_sec->contents + off + 16));
 
 
 
                /* The last word is our local __gp value.  */
 
                value = _bfd_get_gp_value
 
                          (hppa_info->opd_sec->output_section->owner);
 
                bfd_put_64 (hppa_info->opd_sec->owner, value,
 
                            hppa_info->opd_sec->contents + off + 24);
 
              }
 
          }
 
        else
 
          off = hh->opd_offset;
 
 
 
        if (hh == NULL || hh->want_opd)
 
          /* We want the value of the OPD offset for this symbol.  */
 
          value = (off
 
                   + hppa_info->opd_sec->output_offset
 
                   + hppa_info->opd_sec->output_section->vma);
 
        else
 
          /* We want the address of the symbol.  */
 
          value += addend;
 
 
 
        bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    case R_PARISC_SECREL32:
 
      if (sym_sec)
 
        value -= sym_sec->output_section->vma;
 
      bfd_put_32 (input_bfd, value + addend, hit_data);
 
      return bfd_reloc_ok;
 
 
 
    case R_PARISC_SEGREL32:
 
    case R_PARISC_SEGREL64:
 
      {
 
        /* If this is the first SEGREL relocation, then initialize
 
           the segment base values.  */
 
        if (hppa_info->text_segment_base == (bfd_vma) -1)
 
          bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
 
                                 hppa_info);
 
 
 
        /* VALUE holds the absolute address.  We want to include the
 
           addend, then turn it into a segment relative address.
 
 
 
           The segment is derived from SYM_SEC.  We assume that there are
 
           only two segments of note in the resulting executable/shlib.
 
           A readonly segment (.text) and a readwrite segment (.data).  */
 
        value += addend;
 
 
 
        if (sym_sec->flags & SEC_CODE)
 
          value -= hppa_info->text_segment_base;
 
        else
 
          value -= hppa_info->data_segment_base;
 
 
 
        if (r_type == R_PARISC_SEGREL32)
 
          bfd_put_32 (input_bfd, value, hit_data);
 
        else
 
          bfd_put_64 (input_bfd, value, hit_data);
 
        return bfd_reloc_ok;
 
      }
 
 
 
    /* Something we don't know how to handle.  */
 
    default:
 
      return bfd_reloc_notsupported;
 
    }
 
 
 
  /* Update the instruction word.  */
 
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
 
  return bfd_reloc_ok;
 
}
 
 
 
/* Relocate an HPPA ELF section.  */
 
 
 
static bfd_boolean
 
elf64_hppa_relocate_section (bfd *output_bfd,
 
                           struct bfd_link_info *info,
 
                           bfd *input_bfd,
 
                           asection *input_section,
 
                           bfd_byte *contents,
 
                           Elf_Internal_Rela *relocs,
 
                           Elf_Internal_Sym *local_syms,
 
                           asection **local_sections)
 
{
 
  Elf_Internal_Shdr *symtab_hdr;
 
  Elf_Internal_Rela *rel;
 
  Elf_Internal_Rela *relend;
 
  struct elf64_hppa_link_hash_table *hppa_info;
 
 
 
  hppa_info = hppa_link_hash_table (info);
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
 
 
 
  rel = relocs;
 
  relend = relocs + input_section->reloc_count;
 
  for (; rel < relend; rel++)
 
    {
 
      int r_type;
 
      reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
 
      unsigned long r_symndx;
 
      struct elf_link_hash_entry *eh;
 
      Elf_Internal_Sym *sym;
 
      asection *sym_sec;
 
      bfd_vma relocation;
 
      bfd_reloc_status_type r;
 
      bfd_boolean warned_undef;
 
 
 
      r_type = ELF_R_TYPE (rel->r_info);
 
      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
 
        {
 
          bfd_set_error (bfd_error_bad_value);
 
          return FALSE;
 
        }
 
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
 
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
 
        continue;
 
 
 
      /* This is a final link.  */
 
      r_symndx = ELF_R_SYM (rel->r_info);
 
      eh = NULL;
 
      sym = NULL;
 
      sym_sec = NULL;
 
      warned_undef = FALSE;
 
      if (r_symndx < symtab_hdr->sh_info)
 
        {
 
          /* This is a local symbol, hh defaults to NULL.  */
 
          sym = local_syms + r_symndx;
 
          sym_sec = local_sections[r_symndx];
 
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
 
        }
 
      else
 
        {
 
          /* This is not a local symbol.  */
 
          bfd_boolean unresolved_reloc;
 
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
 
 
 
          /* It seems this can happen with erroneous or unsupported
 
             input (mixing a.out and elf in an archive, for example.)  */
 
          if (sym_hashes == NULL)
 
            return FALSE;
 
 
 
          eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
 
 
 
          while (eh->root.type == bfd_link_hash_indirect
 
                 || eh->root.type == bfd_link_hash_warning)
 
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
 
          warned_undef = FALSE;
 
          unresolved_reloc = FALSE;
 
          relocation = 0;
 
          if (eh->root.type == bfd_link_hash_defined
 
              || eh->root.type == bfd_link_hash_defweak)
 
            {
 
              sym_sec = eh->root.u.def.section;
 
              if (sym_sec == NULL
 
                  || sym_sec->output_section == NULL)
 
                /* Set a flag that will be cleared later if we find a
 
                   relocation value for this symbol.  output_section
 
                   is typically NULL for symbols satisfied by a shared
 
                   library.  */
 
                unresolved_reloc = TRUE;
 
              else
 
                relocation = (eh->root.u.def.value
 
                              + sym_sec->output_section->vma
 
                              + sym_sec->output_offset);
 
            }
 
          else if (eh->root.type == bfd_link_hash_undefweak)
 
            ;
 
          else if (info->unresolved_syms_in_objects == RM_IGNORE
 
                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
 
            ;
 
          else if (!info->relocatable
 
                   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
 
            continue;
 
          else if (!info->relocatable)
 
            {
 
              bfd_boolean err;
 
              err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
 
                     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
 
              if (!info->callbacks->undefined_symbol (info,
 
                                                      eh->root.root.string,
 
                                                      input_bfd,
 
                                                      input_section,
 
                                                      rel->r_offset, err))
 
                return FALSE;
 
              warned_undef = TRUE;
 
            }
 
 
 
          if (!info->relocatable
 
              && relocation == 0
 
              && eh->root.type != bfd_link_hash_defined
 
              && eh->root.type != bfd_link_hash_defweak
 
              && eh->root.type != bfd_link_hash_undefweak)
 
            {
 
              if (info->unresolved_syms_in_objects == RM_IGNORE
 
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
 
                  && eh->type == STT_PARISC_MILLI)
 
                {
 
                  if (! info->callbacks->undefined_symbol
 
                      (info, eh_name (eh), input_bfd,
 
                       input_section, rel->r_offset, FALSE))
 
                    return FALSE;
 
                  warned_undef = TRUE;
 
                }
 
            }
 
        }
 
 
 
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
 
        {
 
          /* For relocs against symbols from removed linkonce sections,
 
             or sections discarded by a linker script, we just want the
 
             section contents zeroed.  Avoid any special processing.  */
 
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
 
          rel->r_info = 0;
 
          rel->r_addend = 0;
 
          continue;
 
        }
 
 
 
      if (info->relocatable)
 
        continue;
 
 
 
      r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
 
                                        input_section, contents,
 
                                        relocation, info, sym_sec,
 
                                        eh);
 
 
 
      if (r != bfd_reloc_ok)
 
        {
 
          switch (r)
 
            {
 
            default:
 
              abort ();
 
            case bfd_reloc_overflow:
 
              {
 
                const char *sym_name;
 
 
 
                if (eh != NULL)
 
                  sym_name = NULL;
 
                else
 
                  {
 
                    sym_name = bfd_elf_string_from_elf_section (input_bfd,
 
                                                                symtab_hdr->sh_link,
 
                                                                sym->st_name);
 
                    if (sym_name == NULL)
 
                      return FALSE;
 
                    if (*sym_name == '\0')
 
                      sym_name = bfd_section_name (input_bfd, sym_sec);
 
                  }
 
 
 
                if (!((*info->callbacks->reloc_overflow)
 
                      (info, (eh ? &eh->root : NULL), sym_name,
 
                       howto->name, (bfd_vma) 0, input_bfd,
 
                       input_section, rel->r_offset)))
 
                  return FALSE;
 
              }
 
              break;
 
            }
 
        }
 
    }
 
  return TRUE;
 
}
 
 
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
{
{
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.