OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_iwb_biu.v] - Diff between revs 10 and 141

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 10 Rev 141
Line 46... Line 46...
////                                                              ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//
//
// CVS Revision History
// CVS Revision History
//
//
// $Log: not supported by cvs2svn $
// $Log: or1200_iwb_biu.v,v $
 
// Revision 2.0  2010/06/30 11:00:00  ORSoC
 
// Major update: 
 
// This module is obsolete.
 
//
 
// Revision 1.2  2004/04/05 08:29:57  lampret
 
// Merged branch_qmem into main tree.
 
//
// Revision 1.1  2003/12/05 00:12:08  lampret
// Revision 1.1  2003/12/05 00:12:08  lampret
// New wb_biu for iwb interface.
// New wb_biu for iwb interface.
//
//
// Revision 1.6.4.1  2003/07/08 15:36:37  lampret
// Revision 1.6.4.1  2003/07/08 15:36:37  lampret
// Added embedded memory QMEM.
// Added embedded memory QMEM.
Line 105... Line 112...
// synopsys translate_off
// synopsys translate_off
`include "timescale.v"
`include "timescale.v"
// synopsys translate_on
// synopsys translate_on
`include "or1200_defines.v"
`include "or1200_defines.v"
 
 
module or1200_iwb_biu(
module or1200_iwb_biu();
        // RISC clock, reset and clock control
 
        clk, rst, clmode,
 
 
 
        // WISHBONE interface
 
        wb_clk_i, wb_rst_i, wb_ack_i, wb_err_i, wb_rty_i, wb_dat_i,
 
        wb_cyc_o, wb_adr_o, wb_stb_o, wb_we_o, wb_sel_o, wb_dat_o,
 
`ifdef OR1200_WB_CAB
 
        wb_cab_o,
 
`endif
 
`ifdef OR1200_WB_B3
 
        wb_cti_o, wb_bte_o,
 
`endif
 
 
 
        // Internal RISC bus
 
        biu_dat_i, biu_adr_i, biu_cyc_i, biu_stb_i, biu_we_i, biu_sel_i, biu_cab_i,
 
        biu_dat_o, biu_ack_o, biu_err_o
 
);
 
 
 
parameter dw = `OR1200_OPERAND_WIDTH;
 
parameter aw = `OR1200_OPERAND_WIDTH;
 
 
 
//
 
// RISC clock, reset and clock control
 
//
 
input                   clk;            // RISC clock
 
input                   rst;            // RISC reset
 
input   [1:0]            clmode;         // 00 WB=RISC, 01 WB=RISC/2, 10 N/A, 11 WB=RISC/4
 
 
 
//
 
// WISHBONE interface
 
//
 
input                   wb_clk_i;       // clock input
 
input                   wb_rst_i;       // reset input
 
input                   wb_ack_i;       // normal termination
 
input                   wb_err_i;       // termination w/ error
 
input                   wb_rty_i;       // termination w/ retry
 
input   [dw-1:0] wb_dat_i;       // input data bus
 
output                  wb_cyc_o;       // cycle valid output
 
output  [aw-1:0] wb_adr_o;       // address bus outputs
 
output                  wb_stb_o;       // strobe output
 
output                  wb_we_o;        // indicates write transfer
 
output  [3:0]            wb_sel_o;       // byte select outputs
 
output  [dw-1:0] wb_dat_o;       // output data bus
 
`ifdef OR1200_WB_CAB
 
output                  wb_cab_o;       // consecutive address burst
 
`endif
 
`ifdef OR1200_WB_B3
 
output  [2:0]            wb_cti_o;       // cycle type identifier
 
output  [1:0]            wb_bte_o;       // burst type extension
 
`endif
 
 
 
//
 
// Internal RISC interface
 
//
 
input   [dw-1:0] biu_dat_i;      // input data bus
 
input   [aw-1:0] biu_adr_i;      // address bus
 
input                   biu_cyc_i;      // WB cycle
 
input                   biu_stb_i;      // WB strobe
 
input                   biu_we_i;       // WB write enable
 
input                   biu_cab_i;      // CAB input
 
input   [3:0]            biu_sel_i;      // byte selects
 
output  [31:0]           biu_dat_o;      // output data bus
 
output                  biu_ack_o;      // ack output
 
output                  biu_err_o;      // err output
 
 
 
//
 
// Registers
 
//
 
reg     [1:0]            valid_div;      // Used for synchronization
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
reg     [aw-1:0] wb_adr_o;       // address bus outputs
 
reg                     wb_cyc_o;       // cycle output
 
reg                     wb_stb_o;       // strobe output
 
reg                     wb_we_o;        // indicates write transfer
 
reg     [3:0]            wb_sel_o;       // byte select outputs
 
`ifdef OR1200_WB_CAB
 
reg                     wb_cab_o;       // CAB output
 
`endif
 
`ifdef OR1200_WB_B3
 
reg     [1:0]            burst_len;      // burst counter
 
reg     [2:0]            wb_cti_o;       // cycle type identifier
 
`endif
 
reg     [dw-1:0] wb_dat_o;       // output data bus
 
`endif
 
`ifdef OR1200_REGISTERED_INPUTS
 
reg                     long_ack_o;     // normal termination
 
reg                     long_err_o;     // error termination
 
reg     [dw-1:0] biu_dat_o;      // output data bus
 
`else
 
wire                    long_ack_o;     // normal termination
 
wire                    long_err_o;     // error termination
 
`endif
 
wire                    aborted;        // Graceful abort
 
reg                     aborted_r;      // Graceful abort
 
wire                    retry;          // Retry
 
`ifdef OR1200_WB_RETRY
 
reg     [`OR1200_WB_RETRY-1:0] retry_cntr;       // Retry counter
 
`endif
 
reg                     previous_complete;
 
wire                    same_addr;
 
wire                    repeated_access;
 
reg                     repeated_access_ack;
 
reg     [dw-1:0] wb_dat_r;       // saved previous data read
 
 
 
//
 
// WISHBONE I/F <-> Internal RISC I/F conversion
 
//
 
 
 
//
 
// Address bus
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_adr_o <= #1 {aw{1'b0}};
 
        else if ((biu_cyc_i & biu_stb_i) & ~wb_ack_i & ~aborted & ~(wb_stb_o & ~wb_ack_i) | biu_cab_i & (previous_complete | biu_ack_o))
 
                wb_adr_o <= #1 biu_adr_i;
 
`else
 
assign wb_adr_o = biu_adr_i;
 
`endif
 
 
 
//
 
// Same access as previous one, store previous read data
 
//
 
assign same_addr = wb_adr_o == biu_adr_i;
 
assign repeated_access = same_addr & previous_complete;
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_dat_r <= #1 32'h0000_0000;
 
        else if (wb_ack_i)
 
                wb_dat_r <= #1 wb_dat_i;
 
 
 
always @(posedge clk or posedge rst)
 
        if (rst)
 
                repeated_access_ack <= #1 1'b0;
 
        else if (repeated_access & biu_cyc_i & biu_stb_i)
 
                repeated_access_ack <= #1 1'b1;
 
        else
 
                repeated_access_ack <= #1 1'b0;
 
 
 
//
 
// Previous access completed
 
//
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                previous_complete <= #1 1'b1;
 
        else if (wb_ack_i & biu_cyc_i & biu_stb_i)
 
                previous_complete <= #1 1'b1;
 
        else if ((biu_cyc_i & biu_stb_i) & ~wb_ack_i & ~aborted & ~(wb_stb_o & ~wb_ack_i))
 
                previous_complete <= #1 1'b0;
 
 
 
//
 
// Input data bus
 
//
 
`ifdef OR1200_REGISTERED_INPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                biu_dat_o <= #1 32'h0000_0000;
 
        else if (wb_ack_i)
 
                biu_dat_o <= #1 wb_dat_i;
 
`else
 
assign biu_dat_o = repeated_access_ack ? wb_dat_r : wb_dat_i;
 
`endif
 
 
 
//
 
// Output data bus
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_dat_o <= #1 {dw{1'b0}};
 
        else if ((biu_cyc_i & biu_stb_i) & ~wb_ack_i & ~aborted)
 
                wb_dat_o <= #1 biu_dat_i;
 
`else
 
assign wb_dat_o = biu_dat_i;
 
`endif
 
 
 
//
 
// Valid_div counts RISC clock cycles by modulo 4
 
// and is used to synchronize external WB i/f to
 
// RISC clock
 
//
 
always @(posedge clk or posedge rst)
 
        if (rst)
 
                valid_div <= #1 2'b0;
 
        else
 
                valid_div <= #1 valid_div + 1'd1;
 
 
 
//
 
// biu_ack_o is one RISC clock cycle long long_ack_o.
 
// long_ack_o is one, two or four RISC clock cycles long because
 
// WISHBONE can work at 1, 1/2 or 1/4 RISC clock.
 
//
 
assign biu_ack_o = (repeated_access_ack | long_ack_o) & ~aborted_r
 
`ifdef OR1200_CLKDIV_2_SUPPORTED
 
                & (valid_div[0] | ~clmode[0])
 
`ifdef OR1200_CLKDIV_4_SUPPORTED
 
                & (valid_div[1] | ~clmode[1])
 
`endif
 
`endif
 
                ;
 
 
 
//
 
// Acknowledgment of the data to the RISC
 
//
 
// long_ack_o
 
//
 
`ifdef OR1200_REGISTERED_INPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                long_ack_o <= #1 1'b0;
 
        else
 
                long_ack_o <= #1 wb_ack_i & ~aborted;
 
`else
 
assign long_ack_o = wb_ack_i;
 
`endif
 
 
 
//
 
// biu_err_o is one RISC clock cycle long long_err_o.
 
// long_err_o is one, two or four RISC clock cycles long because
 
// WISHBONE can work at 1, 1/2 or 1/4 RISC clock.
 
//
 
assign biu_err_o = long_err_o
 
`ifdef OR1200_CLKDIV_2_SUPPORTED
 
                & (valid_div[0] | ~clmode[0])
 
`ifdef OR1200_CLKDIV_4_SUPPORTED
 
                & (valid_div[1] | ~clmode[1])
 
`endif
 
`endif
 
                ;
 
 
 
//
 
// Error termination
 
//
 
// long_err_o
 
//
 
`ifdef OR1200_REGISTERED_INPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                long_err_o <= #1 1'b0;
 
        else
 
                long_err_o <= #1 wb_err_i & ~aborted;
 
`else
 
assign long_err_o = wb_err_i & ~aborted_r;
 
`endif
 
 
 
//
 
// Retry counter
 
//
 
// Assert 'retry' when 'wb_rty_i' is sampled high and keep it high
 
// until retry counter doesn't expire
 
// 
 
`ifdef OR1200_WB_RETRY
 
assign retry = wb_rty_i | (|retry_cntr);
 
`else
 
assign retry = 1'b0;
 
`endif
 
`ifdef OR1200_WB_RETRY
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                retry_cntr <= #1 1'b0;
 
        else if (wb_rty_i)
 
                retry_cntr <= #1 {`OR1200_WB_RETRY{1'b1}};
 
        else if (retry_cntr)
 
                retry_cntr <= #1 retry_cntr - 7'd1;
 
`endif
 
 
 
//
 
// Graceful completion of aborted transfers
 
//
 
// Assert 'aborted' when 1) current transfer is in progress (wb_stb_o; which
 
// we know is only asserted together with wb_cyc_o) 2) and in next WB clock cycle
 
// wb_stb_o would be deasserted (biu_cyc_i and biu_stb_i are low) 3) and
 
// there is no termination of current transfer in this WB clock cycle (wb_ack_i
 
// and wb_err_i are low).
 
// 'aborted_r' is registered 'aborted' and extended until this "aborted" transfer
 
// is properly terminated with wb_ack_i/wb_err_i.
 
// 
 
assign aborted = wb_stb_o & ~(biu_cyc_i & biu_stb_i) & ~(wb_ack_i | wb_err_i);
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                aborted_r <= #1 1'b0;
 
        else if (wb_ack_i | wb_err_i)
 
                aborted_r <= #1 1'b0;
 
        else if (aborted)
 
                aborted_r <= #1 1'b1;
 
 
 
//
 
// WB cyc_o
 
//
 
// Either 1) normal transfer initiated by biu_cyc_i (and biu_cab_i if
 
// bursts are enabled) and possibly suspended by 'retry'
 
// or 2) extended "aborted" transfer
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_cyc_o <= #1 1'b0;
 
        else
 
`ifdef OR1200_NO_BURSTS
 
                wb_cyc_o <= #1 biu_cyc_i & ~wb_ack_i & ~retry & ~repeated_access | aborted & ~wb_ack_i;
 
`else
 
                wb_cyc_o <= #1 biu_cyc_i & ~wb_ack_i & ~retry & ~repeated_access | biu_cab_i | aborted & ~wb_ack_i;
 
`endif
 
`else
 
`ifdef OR1200_NO_BURSTS
 
assign wb_cyc_o = biu_cyc_i & ~retry;
 
`else
 
assign wb_cyc_o = biu_cyc_i | biu_cab_i & ~retry;
 
`endif
 
`endif
 
 
 
//
 
// WB stb_o
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_stb_o <= #1 1'b0;
 
        else
 
                wb_stb_o <= #1 (biu_cyc_i & biu_stb_i) & ~wb_ack_i & ~retry & ~repeated_access | aborted & ~wb_ack_i;
 
`else
 
assign wb_stb_o = biu_cyc_i & biu_stb_i;
 
`endif
 
 
 
//
 
// WB we_o
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_we_o <= #1 1'b0;
 
        else
 
                wb_we_o <= #1 biu_cyc_i & biu_stb_i & biu_we_i | aborted & wb_we_o;
 
`else
 
assign wb_we_o = biu_cyc_i & biu_stb_i & biu_we_i;
 
`endif
 
 
 
//
 
// WB sel_o
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_sel_o <= #1 4'b0000;
 
        else
 
                wb_sel_o <= #1 biu_sel_i;
 
`else
 
assign wb_sel_o = biu_sel_i;
 
`endif
 
 
 
`ifdef OR1200_WB_CAB
 
//
 
// WB cab_o
 
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_cab_o <= #1 1'b0;
 
        else
 
                wb_cab_o <= #1 biu_cab_i;
 
`else
 
assign wb_cab_o = biu_cab_i;
 
`endif
 
`endif
 
 
 
`ifdef OR1200_WB_B3
 
//
 
// Count burst beats
 
//
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                burst_len <= #1 2'b00;
 
        else if (biu_cab_i && burst_len && wb_ack_i)
 
                burst_len <= #1 burst_len - 1'b1;
 
        else if (~biu_cab_i)
 
                burst_len <= #1 2'b11;
 
 
 
//
        // THIS MODULE IS OBSOLETE !!! 
// WB cti_o
        // COMPLETELY REWRITTEN or1200_wb_biu.v IS USED INSTEAD !!!
//
 
`ifdef OR1200_REGISTERED_OUTPUTS
 
always @(posedge wb_clk_i or posedge wb_rst_i)
 
        if (wb_rst_i)
 
                wb_cti_o <= #1 3'b000;  // classic cycle
 
`ifdef OR1200_NO_BURSTS
 
        else
 
                wb_cti_o <= #1 3'b111;  // end-of-burst
 
`else
 
        else if (biu_cab_i && burst_len[1])
 
                wb_cti_o <= #1 3'b010;  // incrementing burst cycle
 
        else if (biu_cab_i && wb_ack_i)
 
                wb_cti_o <= #1 3'b111;  // end-of-burst
 
`endif  // OR1200_NO_BURSTS
 
`else
 
Unsupported !!!;
 
`endif
 
 
 
//
 
// WB bte_o
 
//
 
assign wb_bte_o = 2'b01;        // 4-beat wrap burst
 
 
 
`endif  // OR1200_WB_B3
 
 
 
endmodule
endmodule
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.