OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [or1ksim/] [softfloat/] [softfloat.c] - Diff between revs 233 and 234

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 233 Rev 234
Line 3441... Line 3441...
        goto shiftRight1;
        goto shiftRight1;
    }
    }
    zSig0 = aSig + bSig;
    zSig0 = aSig + bSig;
    if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
    if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
 shiftRight1:
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, 
 
 No newline at end of file
 No newline at end of file
 
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 
    zSig0 |= LIT64( 0x8000000000000000 );
 
    ++zExp;
 
 roundAndPack:
 
    return
 
        roundAndPackFloatx80(
 
            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of subtracting the absolute values of the extended
 
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 
| difference is negated before being returned.  `zSign' is ignored if the
 
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
 
{
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig, bSig, zSig0, zSig1;
 
    int32 expDiff;
 
    floatx80 z;
 
 
 
    aSig = extractFloatx80Frac( a );
 
    aExp = extractFloatx80Exp( a );
 
    bSig = extractFloatx80Frac( b );
 
    bExp = extractFloatx80Exp( b );
 
    expDiff = aExp - bExp;
 
    if ( 0 < expDiff ) goto aExpBigger;
 
    if ( expDiff < 0 ) goto bExpBigger;
 
    if ( aExp == 0x7FFF ) {
 
        if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 
            return propagateFloatx80NaN( a, b );
 
        }
 
        float_raise( float_flag_invalid );
 
        z.low = floatx80_default_nan_low;
 
        z.high = floatx80_default_nan_high;
 
        return z;
 
    }
 
    if ( aExp == 0 ) {
 
        aExp = 1;
 
        bExp = 1;
 
    }
 
    zSig1 = 0;
 
    if ( bSig < aSig ) goto aBigger;
 
    if ( aSig < bSig ) goto bBigger;
 
    return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
 
 bExpBigger:
 
    if ( bExp == 0x7FFF ) {
 
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
    }
 
    if ( aExp == 0 ) ++expDiff;
 
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 
 bBigger:
 
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 
    zExp = bExp;
 
    zSign ^= 1;
 
    goto normalizeRoundAndPack;
 
 aExpBigger:
 
    if ( aExp == 0x7FFF ) {
 
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        return a;
 
    }
 
    if ( bExp == 0 ) --expDiff;
 
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 
 aBigger:
 
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 
    zExp = aExp;
 
 normalizeRoundAndPack:
 
    return
 
        normalizeRoundAndPackFloatx80(
 
            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of adding the extended double-precision floating-point
 
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_add( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign == bSign ) {
 
        return addFloatx80Sigs( a, b, aSign );
 
    }
 
    else {
 
        return subFloatx80Sigs( a, b, aSign );
 
    }
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of subtracting the extended double-precision floating-
 
| point values `a' and `b'.  The operation is performed according to the
 
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_sub( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign == bSign ) {
 
        return subFloatx80Sigs( a, b, aSign );
 
    }
 
    else {
 
        return addFloatx80Sigs( a, b, aSign );
 
    }
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of multiplying the extended double-precision floating-
 
| point values `a' and `b'.  The operation is performed according to the
 
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_mul( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig, bSig, zSig0, zSig1;
 
    floatx80 z;
 
 
 
    aSig = extractFloatx80Frac( a );
 
    aExp = extractFloatx80Exp( a );
 
    aSign = extractFloatx80Sign( a );
 
    bSig = extractFloatx80Frac( b );
 
    bExp = extractFloatx80Exp( b );
 
    bSign = extractFloatx80Sign( b );
 
    zSign = aSign ^ bSign;
 
    if ( aExp == 0x7FFF ) {
 
        if (    (bits64) ( aSig<<1 )
 
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 
            return propagateFloatx80NaN( a, b );
 
        }
 
        if ( ( bExp | bSig ) == 0 ) goto invalid;
 
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        if ( ( aExp | aSig ) == 0 ) {
 
 invalid:
 
            float_raise( float_flag_invalid );
 
            z.low = floatx80_default_nan_low;
 
            z.high = floatx80_default_nan_high;
 
            return z;
 
        }
 
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 
    }
 
    if ( bExp == 0 ) {
 
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 
    }
 
    zExp = aExp + bExp - 0x3FFE;
 
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
 
    if ( 0 < (sbits64) zSig0 ) {
 
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 
        --zExp;
 
    }
 
    return
 
        roundAndPackFloatx80(
 
            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of dividing the extended double-precision floating-point
 
| value `a' by the corresponding value `b'.  The operation is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_div( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig, bSig, zSig0, zSig1;
 
    bits64 rem0, rem1, rem2, term0, term1, term2;
 
    floatx80 z;
 
 
 
    aSig = extractFloatx80Frac( a );
 
    aExp = extractFloatx80Exp( a );
 
    aSign = extractFloatx80Sign( a );
 
    bSig = extractFloatx80Frac( b );
 
    bExp = extractFloatx80Exp( b );
 
    bSign = extractFloatx80Sign( b );
 
    zSign = aSign ^ bSign;
 
    if ( aExp == 0x7FFF ) {
 
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        if ( bExp == 0x7FFF ) {
 
            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
            goto invalid;
 
        }
 
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        return packFloatx80( zSign, 0, 0 );
 
    }
 
    if ( bExp == 0 ) {
 
        if ( bSig == 0 ) {
 
            if ( ( aExp | aSig ) == 0 ) {
 
 invalid:
 
                float_raise( float_flag_invalid );
 
                z.low = floatx80_default_nan_low;
 
                z.high = floatx80_default_nan_high;
 
                return z;
 
            }
 
            float_raise( float_flag_divbyzero );
 
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
        }
 
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 
    }
 
    zExp = aExp - bExp + 0x3FFE;
 
    rem1 = 0;
 
    if ( bSig <= aSig ) {
 
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
 
        ++zExp;
 
    }
 
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 
    mul64To128( bSig, zSig0, &term0, &term1 );
 
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 
    while ( (sbits64) rem0 < 0 ) {
 
        --zSig0;
 
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 
    }
 
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
 
    if ( (bits64) ( zSig1<<1 ) <= 8 ) {
 
        mul64To128( bSig, zSig1, &term1, &term2 );
 
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 
        while ( (sbits64) rem1 < 0 ) {
 
            --zSig1;
 
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 
        }
 
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
 
    }
 
    return
 
        roundAndPackFloatx80(
 
            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the remainder of the extended double-precision floating-point value
 
| `a' with respect to the corresponding value `b'.  The operation is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_rem( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, expDiff;
 
    bits64 aSig0, aSig1, bSig;
 
    bits64 q, term0, term1, alternateASig0, alternateASig1;
 
    floatx80 z;
 
 
 
    aSig0 = extractFloatx80Frac( a );
 
    aExp = extractFloatx80Exp( a );
 
    aSign = extractFloatx80Sign( a );
 
    bSig = extractFloatx80Frac( b );
 
    bExp = extractFloatx80Exp( b );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aExp == 0x7FFF ) {
 
        if (    (bits64) ( aSig0<<1 )
 
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 
            return propagateFloatx80NaN( a, b );
 
        }
 
        goto invalid;
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 
        return a;
 
    }
 
    if ( bExp == 0 ) {
 
        if ( bSig == 0 ) {
 
 invalid:
 
            float_raise( float_flag_invalid );
 
            z.low = floatx80_default_nan_low;
 
            z.high = floatx80_default_nan_high;
 
            return z;
 
        }
 
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
 
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 
    }
 
    bSig |= LIT64( 0x8000000000000000 );
 
    zSign = aSign;
 
    expDiff = aExp - bExp;
 
    aSig1 = 0;
 
    if ( expDiff < 0 ) {
 
        if ( expDiff < -1 ) return a;
 
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 
        expDiff = 0;
 
    }
 
    q = ( bSig <= aSig0 );
 
    if ( q ) aSig0 -= bSig;
 
    expDiff -= 64;
 
    while ( 0 < expDiff ) {
 
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 
        q = ( 2 < q ) ? q - 2 : 0;
 
        mul64To128( bSig, q, &term0, &term1 );
 
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 
        expDiff -= 62;
 
    }
 
    expDiff += 64;
 
    if ( 0 < expDiff ) {
 
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 
        q = ( 2 < q ) ? q - 2 : 0;
 
        q >>= 64 - expDiff;
 
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
 
            ++q;
 
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 
        }
 
    }
 
    else {
 
        term1 = 0;
 
        term0 = bSig;
 
    }
 
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 
              && ( q & 1 ) )
 
       ) {
 
        aSig0 = alternateASig0;
 
        aSig1 = alternateASig1;
 
        zSign = ! zSign;
 
    }
 
    return
 
        normalizeRoundAndPackFloatx80(
 
            80, zSign, bExp + expDiff, aSig0, aSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the square root of the extended double-precision floating-point
 
| value `a'.  The operation is performed according to the IEC/IEEE Standard
 
| for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 floatx80_sqrt( floatx80 a )
 
{
 
    flag aSign;
 
    int32 aExp, zExp;
 
    bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 
    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 
    floatx80 z;
 
 
 
    aSig0 = extractFloatx80Frac( a );
 
    aExp = extractFloatx80Exp( a );
 
    aSign = extractFloatx80Sign( a );
 
    if ( aExp == 0x7FFF ) {
 
        if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
 
        if ( ! aSign ) return a;
 
        goto invalid;
 
    }
 
    if ( aSign ) {
 
        if ( ( aExp | aSig0 ) == 0 ) return a;
 
 invalid:
 
        float_raise( float_flag_invalid );
 
        z.low = floatx80_default_nan_low;
 
        z.high = floatx80_default_nan_high;
 
        return z;
 
    }
 
    if ( aExp == 0 ) {
 
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 
    }
 
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 
    doubleZSig0 = zSig0<<1;
 
    mul64To128( zSig0, zSig0, &term0, &term1 );
 
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 
    while ( (sbits64) rem0 < 0 ) {
 
        --zSig0;
 
        doubleZSig0 -= 2;
 
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 
    }
 
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
 
        if ( zSig1 == 0 ) zSig1 = 1;
 
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 
        mul64To128( zSig1, zSig1, &term2, &term3 );
 
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 
        while ( (sbits64) rem1 < 0 ) {
 
            --zSig1;
 
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 
            term3 |= 1;
 
            term2 |= doubleZSig0;
 
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 
        }
 
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 
    }
 
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 
    zSig0 |= doubleZSig0;
 
    return
 
        roundAndPackFloatx80(
 
            floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is
 
| equal to the corresponding value `b', and 0 otherwise.  The comparison is
 
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_eq( floatx80 a, floatx80 b )
 
{
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        if (    floatx80_is_signaling_nan( a )
 
             || floatx80_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    return
 
           ( a.low == b.low )
 
        && (    ( a.high == b.high )
 
             || (    ( a.low == 0 )
 
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 
           );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is
 
| less than or equal to the corresponding value `b', and 0 otherwise.  The
 
| comparison is performed according to the IEC/IEEE Standard for Binary
 
| Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_le( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 == 0 );
 
    }
 
    return
 
          aSign ? le128( b.high, b.low, a.high, a.low )
 
        : le128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is
 
| less than the corresponding value `b', and 0 otherwise.  The comparison
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_lt( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 != 0 );
 
    }
 
    return
 
          aSign ? lt128( b.high, b.low, a.high, a.low )
 
        : lt128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is equal
 
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
 
| raised if either operand is a NaN.  Otherwise, the comparison is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_eq_signaling( floatx80 a, floatx80 b )
 
{
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    return
 
           ( a.low == b.low )
 
        && (    ( a.high == b.high )
 
             || (    ( a.low == 0 )
 
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 
           );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is less
 
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 
| do not cause an exception.  Otherwise, the comparison is performed according
 
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_le_quiet( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        if (    floatx80_is_signaling_nan( a )
 
             || floatx80_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 == 0 );
 
    }
 
    return
 
          aSign ? le128( b.high, b.low, a.high, a.low )
 
        : le128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the extended double-precision floating-point value `a' is less
 
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 
| an exception.  Otherwise, the comparison is performed according to the
 
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag floatx80_lt_quiet( floatx80 a, floatx80 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 
       ) {
 
        if (    floatx80_is_signaling_nan( a )
 
             || floatx80_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    aSign = extractFloatx80Sign( a );
 
    bSign = extractFloatx80Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 != 0 );
 
    }
 
    return
 
          aSign ? lt128( b.high, b.low, a.high, a.low )
 
        : lt128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
#endif
 
 
 
#ifdef FLOAT128
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the 32-bit two's complement integer format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic---which means in particular that the conversion is rounded
 
| according to the current rounding mode.  If `a' is a NaN, the largest
 
| positive integer is returned.  Otherwise, if the conversion overflows, the
 
| largest integer with the same sign as `a' is returned.
 
*----------------------------------------------------------------------------*/
 
 
 
int32 float128_to_int32( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp, shiftCount;
 
    bits64 aSig0, aSig1;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 
    aSig0 |= ( aSig1 != 0 );
 
    shiftCount = 0x4028 - aExp;
 
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 
    return roundAndPackInt32( aSign, aSig0 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the 32-bit two's complement integer format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic, except that the conversion is always rounded toward zero.  If
 
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 
| conversion overflows, the largest integer with the same sign as `a' is
 
| returned.
 
*----------------------------------------------------------------------------*/
 
 
 
int32 float128_to_int32_round_to_zero( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp, shiftCount;
 
    bits64 aSig0, aSig1, savedASig;
 
    int32 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    aSig0 |= ( aSig1 != 0 );
 
    if ( 0x401E < aExp ) {
 
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 
        goto invalid;
 
    }
 
    else if ( aExp < 0x3FFF ) {
 
        if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
 
        return 0;
 
    }
 
    aSig0 |= LIT64( 0x0001000000000000 );
 
    shiftCount = 0x402F - aExp;
 
    savedASig = aSig0;
 
    aSig0 >>= shiftCount;
 
    z = aSig0;
 
    if ( aSign ) z = - z;
 
    if ( ( z < 0 ) ^ aSign ) {
 
 invalid:
 
        float_raise( float_flag_invalid );
 
        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 
    }
 
    if ( ( aSig0<<shiftCount ) != savedASig ) {
 
        float_exception_flags |= float_flag_inexact;
 
    }
 
    return z;
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the 64-bit two's complement integer format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic---which means in particular that the conversion is rounded
 
| according to the current rounding mode.  If `a' is a NaN, the largest
 
| positive integer is returned.  Otherwise, if the conversion overflows, the
 
| largest integer with the same sign as `a' is returned.
 
*----------------------------------------------------------------------------*/
 
 
 
int64 float128_to_int64( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp, shiftCount;
 
    bits64 aSig0, aSig1;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 
    shiftCount = 0x402F - aExp;
 
    if ( shiftCount <= 0 ) {
 
        if ( 0x403E < aExp ) {
 
            float_raise( float_flag_invalid );
 
            if (    ! aSign
 
                 || (    ( aExp == 0x7FFF )
 
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
 
                    )
 
               ) {
 
                return LIT64( 0x7FFFFFFFFFFFFFFF );
 
            }
 
            return (sbits64) LIT64( 0x8000000000000000 );
 
        }
 
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 
    }
 
    else {
 
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 
    }
 
    return roundAndPackInt64( aSign, aSig0, aSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the 64-bit two's complement integer format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic, except that the conversion is always rounded toward zero.
 
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 
| the conversion overflows, the largest integer with the same sign as `a' is
 
| returned.
 
*----------------------------------------------------------------------------*/
 
 
 
int64 float128_to_int64_round_to_zero( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp, shiftCount;
 
    bits64 aSig0, aSig1;
 
    int64 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 
    shiftCount = aExp - 0x402F;
 
    if ( 0 < shiftCount ) {
 
        if ( 0x403E <= aExp ) {
 
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
 
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
 
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
 
                if ( aSig1 ) float_exception_flags |= float_flag_inexact;
 
            }
 
            else {
 
                float_raise( float_flag_invalid );
 
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
 
                }
 
            }
 
            return (sbits64) LIT64( 0x8000000000000000 );
 
        }
 
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 
        if ( (bits64) ( aSig1<<shiftCount ) ) {
 
            float_exception_flags |= float_flag_inexact;
 
        }
 
    }
 
    else {
 
        if ( aExp < 0x3FFF ) {
 
            if ( aExp | aSig0 | aSig1 ) {
 
                float_exception_flags |= float_flag_inexact;
 
            }
 
            return 0;
 
        }
 
        z = aSig0>>( - shiftCount );
 
        if (    aSig1
 
             || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 
            float_exception_flags |= float_flag_inexact;
 
        }
 
    }
 
    if ( aSign ) z = - z;
 
    return z;
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the single-precision floating-point format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float32 float128_to_float32( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp;
 
    bits64 aSig0, aSig1;
 
    bits32 zSig;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) {
 
            return commonNaNToFloat32( float128ToCommonNaN( a ) );
 
        }
 
        return packFloat32( aSign, 0xFF, 0 );
 
    }
 
    aSig0 |= ( aSig1 != 0 );
 
    shift64RightJamming( aSig0, 18, &aSig0 );
 
    zSig = aSig0;
 
    if ( aExp || zSig ) {
 
        zSig |= 0x40000000;
 
        aExp -= 0x3F81;
 
    }
 
    return roundAndPackFloat32( aSign, aExp, zSig );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the double-precision floating-point format.  The conversion
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float64 float128_to_float64( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp;
 
    bits64 aSig0, aSig1;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) {
 
            return commonNaNToFloat64( float128ToCommonNaN( a ) );
 
        }
 
        return packFloat64( aSign, 0x7FF, 0 );
 
    }
 
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 
    aSig0 |= ( aSig1 != 0 );
 
    if ( aExp || aSig0 ) {
 
        aSig0 |= LIT64( 0x4000000000000000 );
 
        aExp -= 0x3C01;
 
    }
 
    return roundAndPackFloat64( aSign, aExp, aSig0 );
 
 
 
}
 
 
 
#ifdef FLOATX80
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of converting the quadruple-precision floating-point
 
| value `a' to the extended double-precision floating-point format.  The
 
| conversion is performed according to the IEC/IEEE Standard for Binary
 
| Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
floatx80 float128_to_floatx80( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp;
 
    bits64 aSig0, aSig1;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) {
 
            return commonNaNToFloatx80( float128ToCommonNaN( a ) );
 
        }
 
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 
    }
 
    else {
 
        aSig0 |= LIT64( 0x0001000000000000 );
 
    }
 
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 
    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
 
 
 
}
 
 
 
#endif
 
 
 
/*----------------------------------------------------------------------------
 
| Rounds the quadruple-precision floating-point value `a' to an integer, and
 
| returns the result as a quadruple-precision floating-point value.  The
 
| operation is performed according to the IEC/IEEE Standard for Binary
 
| Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_round_to_int( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp;
 
    bits64 lastBitMask, roundBitsMask;
 
    int8 roundingMode;
 
    float128 z;
 
 
 
    aExp = extractFloat128Exp( a );
 
    if ( 0x402F <= aExp ) {
 
        if ( 0x406F <= aExp ) {
 
            if (    ( aExp == 0x7FFF )
 
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 
               ) {
 
                return propagateFloat128NaN( a, a );
 
            }
 
            return a;
 
        }
 
        lastBitMask = 1;
 
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 
        roundBitsMask = lastBitMask - 1;
 
        z = a;
 
        roundingMode = float_rounding_mode;
 
        if ( roundingMode == float_round_nearest_even ) {
 
            if ( lastBitMask ) {
 
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 
            }
 
            else {
 
                if ( (sbits64) z.low < 0 ) {
 
                    ++z.high;
 
                    if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
 
                }
 
            }
 
        }
 
        else if ( roundingMode != float_round_to_zero ) {
 
            if (   extractFloat128Sign( z )
 
                 ^ ( roundingMode == float_round_up ) ) {
 
                add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
 
            }
 
        }
 
        z.low &= ~ roundBitsMask;
 
    }
 
    else {
 
        if ( aExp < 0x3FFF ) {
 
            if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 
            float_exception_flags |= float_flag_inexact;
 
            aSign = extractFloat128Sign( a );
 
            switch ( float_rounding_mode ) {
 
             case float_round_nearest_even:
 
                if (    ( aExp == 0x3FFE )
 
                     && (   extractFloat128Frac0( a )
 
                          | extractFloat128Frac1( a ) )
 
                   ) {
 
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
 
                }
 
                break;
 
             case float_round_down:
 
                return
 
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 
                    : packFloat128( 0, 0, 0, 0 );
 
             case float_round_up:
 
                return
 
                      aSign ? packFloat128( 1, 0, 0, 0 )
 
                    : packFloat128( 0, 0x3FFF, 0, 0 );
 
            }
 
            return packFloat128( aSign, 0, 0, 0 );
 
        }
 
        lastBitMask = 1;
 
        lastBitMask <<= 0x402F - aExp;
 
        roundBitsMask = lastBitMask - 1;
 
        z.low = 0;
 
        z.high = a.high;
 
        roundingMode = float_rounding_mode;
 
        if ( roundingMode == float_round_nearest_even ) {
 
            z.high += lastBitMask>>1;
 
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 
                z.high &= ~ lastBitMask;
 
            }
 
        }
 
        else if ( roundingMode != float_round_to_zero ) {
 
            if (   extractFloat128Sign( z )
 
                 ^ ( roundingMode == float_round_up ) ) {
 
                z.high |= ( a.low != 0 );
 
                z.high += roundBitsMask;
 
            }
 
        }
 
        z.high &= ~ roundBitsMask;
 
    }
 
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 
        float_exception_flags |= float_flag_inexact;
 
    }
 
    return z;
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of adding the absolute values of the quadruple-precision
 
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 
| before being returned.  `zSign' is ignored if the result is a NaN.
 
| The addition is performed according to the IEC/IEEE Standard for Binary
 
| Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
 
{
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 
    int32 expDiff;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    bSig1 = extractFloat128Frac1( b );
 
    bSig0 = extractFloat128Frac0( b );
 
    bExp = extractFloat128Exp( b );
 
    expDiff = aExp - bExp;
 
    if ( 0 < expDiff ) {
 
        if ( aExp == 0x7FFF ) {
 
            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 
            return a;
 
        }
 
        if ( bExp == 0 ) {
 
            --expDiff;
 
        }
 
        else {
 
            bSig0 |= LIT64( 0x0001000000000000 );
 
        }
 
        shift128ExtraRightJamming(
 
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 
        zExp = aExp;
 
    }
 
    else if ( expDiff < 0 ) {
 
        if ( bExp == 0x7FFF ) {
 
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
            return packFloat128( zSign, 0x7FFF, 0, 0 );
 
        }
 
        if ( aExp == 0 ) {
 
            ++expDiff;
 
        }
 
        else {
 
            aSig0 |= LIT64( 0x0001000000000000 );
 
        }
 
        shift128ExtraRightJamming(
 
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 
        zExp = bExp;
 
    }
 
    else {
 
        if ( aExp == 0x7FFF ) {
 
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 
                return propagateFloat128NaN( a, b );
 
            }
 
            return a;
 
        }
 
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 
        if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
 
        zSig2 = 0;
 
        zSig0 |= LIT64( 0x0002000000000000 );
 
        zExp = aExp;
 
        goto shiftRight1;
 
    }
 
    aSig0 |= LIT64( 0x0001000000000000 );
 
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 
    --zExp;
 
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
 
    ++zExp;
 
 shiftRight1:
 
    shift128ExtraRightJamming(
 
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 
 roundAndPack:
 
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of subtracting the absolute values of the quadruple-
 
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
 
| difference is negated before being returned.  `zSign' is ignored if the
 
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
 
{
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 
    int32 expDiff;
 
    float128 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    bSig1 = extractFloat128Frac1( b );
 
    bSig0 = extractFloat128Frac0( b );
 
    bExp = extractFloat128Exp( b );
 
    expDiff = aExp - bExp;
 
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 
    if ( 0 < expDiff ) goto aExpBigger;
 
    if ( expDiff < 0 ) goto bExpBigger;
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 
            return propagateFloat128NaN( a, b );
 
        }
 
        float_raise( float_flag_invalid );
 
        z.low = float128_default_nan_low;
 
        z.high = float128_default_nan_high;
 
        return z;
 
    }
 
    if ( aExp == 0 ) {
 
        aExp = 1;
 
        bExp = 1;
 
    }
 
    if ( bSig0 < aSig0 ) goto aBigger;
 
    if ( aSig0 < bSig0 ) goto bBigger;
 
    if ( bSig1 < aSig1 ) goto aBigger;
 
    if ( aSig1 < bSig1 ) goto bBigger;
 
    return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
 
 bExpBigger:
 
    if ( bExp == 0x7FFF ) {
 
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 
    }
 
    if ( aExp == 0 ) {
 
        ++expDiff;
 
    }
 
    else {
 
        aSig0 |= LIT64( 0x4000000000000000 );
 
    }
 
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 
    bSig0 |= LIT64( 0x4000000000000000 );
 
 bBigger:
 
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 
    zExp = bExp;
 
    zSign ^= 1;
 
    goto normalizeRoundAndPack;
 
 aExpBigger:
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 
        return a;
 
    }
 
    if ( bExp == 0 ) {
 
        --expDiff;
 
    }
 
    else {
 
        bSig0 |= LIT64( 0x4000000000000000 );
 
    }
 
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 
    aSig0 |= LIT64( 0x4000000000000000 );
 
 aBigger:
 
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 
    zExp = aExp;
 
 normalizeRoundAndPack:
 
    --zExp;
 
    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of adding the quadruple-precision floating-point values
 
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 
| for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_add( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign == bSign ) {
 
        return addFloat128Sigs( a, b, aSign );
 
    }
 
    else {
 
        return subFloat128Sigs( a, b, aSign );
 
    }
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of subtracting the quadruple-precision floating-point
 
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_sub( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign == bSign ) {
 
        return subFloat128Sigs( a, b, aSign );
 
    }
 
    else {
 
        return addFloat128Sigs( a, b, aSign );
 
    }
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of multiplying the quadruple-precision floating-point
 
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_mul( float128 a, float128 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 
    float128 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    bSig1 = extractFloat128Frac1( b );
 
    bSig0 = extractFloat128Frac0( b );
 
    bExp = extractFloat128Exp( b );
 
    bSign = extractFloat128Sign( b );
 
    zSign = aSign ^ bSign;
 
    if ( aExp == 0x7FFF ) {
 
        if (    ( aSig0 | aSig1 )
 
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 
            return propagateFloat128NaN( a, b );
 
        }
 
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 
 invalid:
 
            float_raise( float_flag_invalid );
 
            z.low = float128_default_nan_low;
 
            z.high = float128_default_nan_high;
 
            return z;
 
        }
 
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 
    }
 
    if ( bExp == 0 ) {
 
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 
    }
 
    zExp = aExp + bExp - 0x4000;
 
    aSig0 |= LIT64( 0x0001000000000000 );
 
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 
    zSig2 |= ( zSig3 != 0 );
 
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
 
        shift128ExtraRightJamming(
 
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 
        ++zExp;
 
    }
 
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the result of dividing the quadruple-precision floating-point value
 
| `a' by the corresponding value `b'.  The operation is performed according to
 
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_div( float128 a, float128 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, zExp;
 
    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 
    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 
    float128 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    bSig1 = extractFloat128Frac1( b );
 
    bSig0 = extractFloat128Frac0( b );
 
    bExp = extractFloat128Exp( b );
 
    bSign = extractFloat128Sign( b );
 
    zSign = aSign ^ bSign;
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 
        if ( bExp == 0x7FFF ) {
 
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
            goto invalid;
 
        }
 
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
        return packFloat128( zSign, 0, 0, 0 );
 
    }
 
    if ( bExp == 0 ) {
 
        if ( ( bSig0 | bSig1 ) == 0 ) {
 
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 
 invalid:
 
                float_raise( float_flag_invalid );
 
                z.low = float128_default_nan_low;
 
                z.high = float128_default_nan_high;
 
                return z;
 
            }
 
            float_raise( float_flag_divbyzero );
 
            return packFloat128( zSign, 0x7FFF, 0, 0 );
 
        }
 
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 
    }
 
    zExp = aExp - bExp + 0x3FFD;
 
    shortShift128Left(
 
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
 
    shortShift128Left(
 
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 
        ++zExp;
 
    }
 
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 
    while ( (sbits64) rem0 < 0 ) {
 
        --zSig0;
 
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 
    }
 
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 
        while ( (sbits64) rem1 < 0 ) {
 
            --zSig1;
 
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 
        }
 
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 
    }
 
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the remainder of the quadruple-precision floating-point value `a'
 
| with respect to the corresponding value `b'.  The operation is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_rem( float128 a, float128 b )
 
{
 
    flag aSign, bSign, zSign;
 
    int32 aExp, bExp, expDiff;
 
    bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 
    bits64 allZero, alternateASig0, alternateASig1, sigMean1;
 
    sbits64 sigMean0;
 
    float128 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    bSig1 = extractFloat128Frac1( b );
 
    bSig0 = extractFloat128Frac0( b );
 
    bExp = extractFloat128Exp( b );
 
    bSign = extractFloat128Sign( b );
 
    if ( aExp == 0x7FFF ) {
 
        if (    ( aSig0 | aSig1 )
 
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 
            return propagateFloat128NaN( a, b );
 
        }
 
        goto invalid;
 
    }
 
    if ( bExp == 0x7FFF ) {
 
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 
        return a;
 
    }
 
    if ( bExp == 0 ) {
 
        if ( ( bSig0 | bSig1 ) == 0 ) {
 
 invalid:
 
            float_raise( float_flag_invalid );
 
            z.low = float128_default_nan_low;
 
            z.high = float128_default_nan_high;
 
            return z;
 
        }
 
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 
    }
 
    if ( aExp == 0 ) {
 
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
 
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 
    }
 
    expDiff = aExp - bExp;
 
    if ( expDiff < -1 ) return a;
 
    shortShift128Left(
 
        aSig0 | LIT64( 0x0001000000000000 ),
 
        aSig1,
 
        15 - ( expDiff < 0 ),
 
        &aSig0,
 
        &aSig1
 
    );
 
    shortShift128Left(
 
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 
    q = le128( bSig0, bSig1, aSig0, aSig1 );
 
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 
    expDiff -= 64;
 
    while ( 0 < expDiff ) {
 
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 
        q = ( 4 < q ) ? q - 4 : 0;
 
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 
        expDiff -= 61;
 
    }
 
    if ( -64 < expDiff ) {
 
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 
        q = ( 4 < q ) ? q - 4 : 0;
 
        q >>= - expDiff;
 
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 
        expDiff += 52;
 
        if ( expDiff < 0 ) {
 
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 
        }
 
        else {
 
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 
        }
 
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 
    }
 
    else {
 
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 
    }
 
    do {
 
        alternateASig0 = aSig0;
 
        alternateASig1 = aSig1;
 
        ++q;
 
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 
    } while ( 0 <= (sbits64) aSig0 );
 
    add128(
 
        aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
 
    if (    ( sigMean0 < 0 )
 
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 
        aSig0 = alternateASig0;
 
        aSig1 = alternateASig1;
 
    }
 
    zSign = ( (sbits64) aSig0 < 0 );
 
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 
    return
 
        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns the square root of the quadruple-precision floating-point value `a'.
 
| The operation is performed according to the IEC/IEEE Standard for Binary
 
| Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
float128 float128_sqrt( float128 a )
 
{
 
    flag aSign;
 
    int32 aExp, zExp;
 
    bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 
    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 
    float128 z;
 
 
 
    aSig1 = extractFloat128Frac1( a );
 
    aSig0 = extractFloat128Frac0( a );
 
    aExp = extractFloat128Exp( a );
 
    aSign = extractFloat128Sign( a );
 
    if ( aExp == 0x7FFF ) {
 
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
 
        if ( ! aSign ) return a;
 
        goto invalid;
 
    }
 
    if ( aSign ) {
 
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 
 invalid:
 
        float_raise( float_flag_invalid );
 
        z.low = float128_default_nan_low;
 
        z.high = float128_default_nan_high;
 
        return z;
 
    }
 
    if ( aExp == 0 ) {
 
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 
    }
 
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 
    aSig0 |= LIT64( 0x0001000000000000 );
 
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 
    doubleZSig0 = zSig0<<1;
 
    mul64To128( zSig0, zSig0, &term0, &term1 );
 
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 
    while ( (sbits64) rem0 < 0 ) {
 
        --zSig0;
 
        doubleZSig0 -= 2;
 
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 
    }
 
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 
        if ( zSig1 == 0 ) zSig1 = 1;
 
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 
        mul64To128( zSig1, zSig1, &term2, &term3 );
 
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 
        while ( (sbits64) rem1 < 0 ) {
 
            --zSig1;
 
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 
            term3 |= 1;
 
            term2 |= doubleZSig0;
 
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 
        }
 
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 
    }
 
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 
    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
 
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_eq( float128 a, float128 b )
 
{
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        if (    float128_is_signaling_nan( a )
 
             || float128_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    return
 
           ( a.low == b.low )
 
        && (    ( a.high == b.high )
 
             || (    ( a.low == 0 )
 
                  && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 
           );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is less than
 
| or equal to the corresponding value `b', and 0 otherwise.  The comparison
 
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 
| Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_le( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 == 0 );
 
    }
 
    return
 
          aSign ? le128( b.high, b.low, a.high, a.low )
 
        : le128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is less than
 
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_lt( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 != 0 );
 
    }
 
    return
 
          aSign ? lt128( b.high, b.low, a.high, a.low )
 
        : lt128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
 
| the corresponding value `b', and 0 otherwise.  The invalid exception is
 
| raised if either operand is a NaN.  Otherwise, the comparison is performed
 
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_eq_signaling( float128 a, float128 b )
 
{
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        float_raise( float_flag_invalid );
 
        return 0;
 
    }
 
    return
 
           ( a.low == b.low )
 
        && (    ( a.high == b.high )
 
             || (    ( a.low == 0 )
 
                  && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 
           );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is less than
 
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 
| cause an exception.  Otherwise, the comparison is performed according to the
 
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_le_quiet( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        if (    float128_is_signaling_nan( a )
 
             || float128_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 == 0 );
 
    }
 
    return
 
          aSign ? le128( b.high, b.low, a.high, a.low )
 
        : le128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
/*----------------------------------------------------------------------------
 
| Returns 1 if the quadruple-precision floating-point value `a' is less than
 
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 
| Standard for Binary Floating-Point Arithmetic.
 
*----------------------------------------------------------------------------*/
 
 
 
flag float128_lt_quiet( float128 a, float128 b )
 
{
 
    flag aSign, bSign;
 
 
 
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
 
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 
       ) {
 
        if (    float128_is_signaling_nan( a )
 
             || float128_is_signaling_nan( b ) ) {
 
            float_raise( float_flag_invalid );
 
        }
 
        return 0;
 
    }
 
    aSign = extractFloat128Sign( a );
 
    bSign = extractFloat128Sign( b );
 
    if ( aSign != bSign ) {
 
        return
 
               aSign
 
            && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 
                 != 0 );
 
    }
 
    return
 
          aSign ? lt128( b.high, b.low, a.high, a.low )
 
        : lt128( a.high, a.low, b.high, b.low );
 
 
 
}
 
 
 
#endif
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.