OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [nog_patch_34/] [or1ksim/] [peripheral/] [dma.c] - Diff between revs 212 and 235

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 212 Rev 235
Line 1... Line 1...
/* dma.c -- Simulation of DMA
/* dma.c -- Simulation of DMA
   Copyright (C) 2001 by Erez Volk, erez@mailandnews.com
         Copyright (C) 2001 by Erez Volk, erez@opencores.org
 
 
   This file is part of OpenRISC 1000 Architectural Simulator.
   This file is part of OpenRISC 1000 Architectural Simulator.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
Line 26... Line 26...
 
 
#include "dma.h"
#include "dma.h"
#include "sim-config.h"
#include "sim-config.h"
#include "trace.h"
#include "trace.h"
#include "pic.h"
#include "pic.h"
 
#include "abstract.h"
#include "fields.h"
#include "fields.h"
 
 
/* TODO List:
 
 * - "Restarting DMA Transfers"
 
 */
 
 
 
/* The representation of the DMA controllers */
/* The representation of the DMA controllers */
static struct dma_controller dmas[NR_DMAS];
static struct dma_controller dmas[NR_DMAS];
 
 
 
static unsigned long dma_read32( unsigned long addr );
 
static void dma_write32( unsigned long addr, unsigned long value );
 
 
static unsigned long dma_read_ch_csr( struct dma_channel *channel );
static unsigned long dma_read_ch_csr( struct dma_channel *channel );
static void dma_write_ch_csr( struct dma_channel *channel, unsigned long value );
static void dma_write_ch_csr( struct dma_channel *channel, unsigned long value );
static void dma_controller_clock( struct dma_controller *dma );
static void dma_controller_clock( struct dma_controller *dma );
static void dma_load_descriptor( struct dma_channel *channel );
static void dma_load_descriptor( struct dma_channel *channel );
static void dma_init_transfer( struct dma_channel *channel );
static void dma_init_transfer( struct dma_channel *channel );
Line 54... Line 54...
{
{
    unsigned i;
    unsigned i;
 
 
    memset( dmas, 0, sizeof(dmas) );
    memset( dmas, 0, sizeof(dmas) );
 
 
    for ( i = 0; i < NR_DMAS; ++ i )
        for ( i = 0; i < NR_DMAS; ++ i ) {
    {
 
        struct dma_controller *dma = &(dmas[i]);
        struct dma_controller *dma = &(dmas[i]);
        unsigned channel_number;
        unsigned channel_number;
 
 
        dma->baseaddr = config.dmas[i].baseaddr;
        dma->baseaddr = config.dmas[i].baseaddr;
        for ( channel_number = 0; channel_number < DMA_NUM_CHANNELS; ++ channel_number )
                dma->irq = config.dmas[i].irq;
        {
                for ( channel_number = 0; channel_number < DMA_NUM_CHANNELS; ++ channel_number ) {
            dma->ch[channel_number].controller = &(dmas[i]);
            dma->ch[channel_number].controller = &(dmas[i]);
            dma->ch[channel_number].channel_number = channel_number;
            dma->ch[channel_number].channel_number = channel_number;
            dma->ch[channel_number].channel_mask = 1LU << channel_number;
            dma->ch[channel_number].channel_mask = 1LU << channel_number;
            dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 = 0xFFFFFFFC;
            dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 = 0xFFFFFFFC;
        }
        }
        if ( dma->baseaddr != 0 )
        if ( dma->baseaddr != 0 )
            register_memoryarea( dma->baseaddr, DMA_ADDR_SPACE, dma_read, dma_write );
                        register_memoryarea( dma->baseaddr, DMA_ADDR_SPACE, 4, dma_read32, dma_write32, 0 );
    }
    }
}
}
 
 
/* Print register values on stdout */
/* Print register values on stdout */
void dma_status( void )
void dma_status( void )
{
{
    unsigned i, j;
    unsigned i, j;
 
 
    for ( i = 0; i < NR_DMAS; ++ i )
        for ( i = 0; i < NR_DMAS; ++ i ) {
    {
 
        struct dma_controller *dma = &(dmas[i]);
        struct dma_controller *dma = &(dmas[i]);
 
 
        if ( dma->baseaddr == 0 )
        if ( dma->baseaddr == 0 )
            continue;
            continue;
 
 
Line 91... Line 89...
        printf( "INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a );
        printf( "INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a );
        printf( "INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b );
        printf( "INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b );
        printf( "INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a );
        printf( "INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a );
        printf( "INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b );
        printf( "INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b );
 
 
        for ( j = 0; j < DMA_NUM_CHANNELS; ++ j )
                for ( j = 0; j < DMA_NUM_CHANNELS; ++ j ) {
        {
 
            struct dma_channel *channel = &(dma->ch[j]);
            struct dma_channel *channel = &(dma->ch[j]);
            if ( !channel->referenced )
            if ( !channel->referenced )
                continue;
                continue;
            printf( "CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr );
            printf( "CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr );
            printf( "CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz );
            printf( "CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz );
Line 110... Line 107...
    }
    }
}
}
 
 
 
 
/* Read a register */
/* Read a register */
unsigned long dma_read( unsigned long addr )
unsigned long dma_read32( unsigned long addr )
{
{
    unsigned i;
    unsigned i;
    struct dma_controller *dma = NULL;
    struct dma_controller *dma = NULL;
 
 
    for ( i = 0; i < NR_DMAS && dma == NULL; ++ i )
        for ( i = 0; i < NR_DMAS && dma == NULL; ++ i ) {
    {
 
        if ( addr >= dmas[i].baseaddr && addr < dmas[i].baseaddr + DMA_ADDR_SPACE )
        if ( addr >= dmas[i].baseaddr && addr < dmas[i].baseaddr + DMA_ADDR_SPACE )
            dma = &(dmas[i]);
            dma = &(dmas[i]);
    }
    }
 
 
    /* verify we found a controller */
    /* verify we found a controller */
    if ( dma == NULL )
        if ( dma == NULL ) {
    {
                fprintf( stderr, "dma_read32( 0x%08lX ): Out of range\n", addr );
        debug( "dma_read( 0x%08lX ): Out of range\n", addr );
 
        cont_run = 0;
        cont_run = 0;
        return 0;
        return 0;
    }
    }
 
 
    addr -= dma->baseaddr;
    addr -= dma->baseaddr;
 
 
    if ( addr % 4 != 0 )
        if ( addr % 4 != 0 ) {
    {
                fprintf( stderr, "dma_read32( 0x%08lX ): Not register-aligned\n", addr + dma->baseaddr );
        debug( "dma_read( 0x%08lX ): Not register-aligned\n", addr + dma->baseaddr );
 
        cont_run = 0;
        cont_run = 0;
        return 0;
        return 0;
    }
    }
 
 
    /* case of global (not per-channel) registers */
    /* case of global (not per-channel) registers */
    if ( addr < DMA_CH_BASE )
        if ( addr < DMA_CH_BASE ) {
    {
                switch( addr ) {
        switch( addr )
 
        {
 
        case DMA_CSR: return dma->regs.csr;
        case DMA_CSR: return dma->regs.csr;
        case DMA_INT_MSK_A: return dma->regs.int_msk_a;
        case DMA_INT_MSK_A: return dma->regs.int_msk_a;
        case DMA_INT_MSK_B: return dma->regs.int_msk_b;
        case DMA_INT_MSK_B: return dma->regs.int_msk_b;
        case DMA_INT_SRC_A: {
                case DMA_INT_SRC_A: return dma->regs.int_src_a;
            /* TODO: Doc doesn't say clear the bits, but this looks right. Check it */
                case DMA_INT_SRC_B: return dma->regs.int_src_b;
            unsigned long result = dma->regs.int_src_a;
 
            dma->regs.int_src_a = 0;
 
            return result;
 
        }
 
        case DMA_INT_SRC_B: {
 
            unsigned long result = dma->regs.int_src_b;
 
            dma->regs.int_src_b = 0;
 
            return result;
 
        }
 
        default:
        default:
            debug( "dma_read( 0x%08lX ): Illegal register\n", addr + dma->baseaddr );
                        fprintf( stderr, "dma_read32( 0x%08lX ): Illegal register\n", addr + dma->baseaddr );
            cont_run = 0;
            cont_run = 0;
            return 0;
            return 0;
        }
        }
    }
        } else {
    else
 
    {
 
        /* case of per-channel registers */
        /* case of per-channel registers */
        unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
        unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
        addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
        addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
        switch( addr )
                switch( addr ) {
        {
 
        case DMA_CH_CSR: return dma_read_ch_csr( &(dma->ch[chno]) );
        case DMA_CH_CSR: return dma_read_ch_csr( &(dma->ch[chno]) );
        case DMA_CH_SZ: return dma->ch[chno].regs.sz;
        case DMA_CH_SZ: return dma->ch[chno].regs.sz;
        case DMA_CH_A0: return dma->ch[chno].regs.a0;
        case DMA_CH_A0: return dma->ch[chno].regs.a0;
        case DMA_CH_AM0: return dma->ch[chno].regs.am0;
        case DMA_CH_AM0: return dma->ch[chno].regs.am0;
        case DMA_CH_A1: return dma->ch[chno].regs.a1;
        case DMA_CH_A1: return dma->ch[chno].regs.a1;
Line 200... Line 180...
}
}
 
 
 
 
 
 
/* Write a register */
/* Write a register */
void dma_write( unsigned long addr, unsigned long value )
void dma_write32( unsigned long addr, unsigned long value )
{
{
    unsigned i;
    unsigned i;
    struct dma_controller *dma = NULL;
    struct dma_controller *dma = NULL;
 
 
    /* Find which controller this is */
    /* Find which controller this is */
    for ( i = 0; i < NR_DMAS && dma == NULL; ++ i )
        for ( i = 0; i < NR_DMAS && dma == NULL; ++ i ) {
    {
 
        if ( (addr >= dmas[i].baseaddr) && (addr < dmas[i].baseaddr + DMA_ADDR_SPACE) )
        if ( (addr >= dmas[i].baseaddr) && (addr < dmas[i].baseaddr + DMA_ADDR_SPACE) )
            dma = &(dmas[i]);
            dma = &(dmas[i]);
    }
    }
 
 
    /* verify we found a controller */
    /* verify we found a controller */
    if ( dma == NULL )
        if ( dma == NULL ) {
    {
                fprintf( stderr, "dma_write32( 0x%08lX ): Out of range\n", addr );
        debug( "dma_write( 0x%08lX ): Out of range\n", addr );
 
        cont_run = 0;
        cont_run = 0;
        return;
        return;
    }
    }
 
 
    addr -= dma->baseaddr;
    addr -= dma->baseaddr;
 
 
    if ( addr % 4 != 0 )
        if ( addr % 4 != 0 ) {
    {
                fprintf( stderr, "dma_write32( 0x%08lX, 0x%08lX ): Not register-aligned\n", addr + dma->baseaddr, value );
        debug( "dma_write( 0x%08lX ): Not register-aligned\n", addr + dma->baseaddr );
 
        cont_run = 0;
        cont_run = 0;
        return;
        return;
    }
    }
 
 
    /* case of global (not per-channel) registers */
    /* case of global (not per-channel) registers */
    if ( addr < DMA_CH_BASE )
        if ( addr < DMA_CH_BASE ) {
    {
                switch( addr ) {
        switch( addr )
 
        {
 
        case DMA_CSR:
        case DMA_CSR:
            if ( TEST_FLAG( value, DMA_CSR, PAUSE ) )
            if ( TEST_FLAG( value, DMA_CSR, PAUSE ) )
                debug( "dma: PAUSE not implemented\n" );
                                fprintf( stderr, "dma: PAUSE not implemented\n" );
            break;
            break;
 
 
        case DMA_INT_MSK_A: dma->regs.int_msk_a = value; break;
        case DMA_INT_MSK_A: dma->regs.int_msk_a = value; break;
        case DMA_INT_MSK_B: dma->regs.int_msk_b = value; break;
        case DMA_INT_MSK_B: dma->regs.int_msk_b = value; break;
        case DMA_INT_SRC_A: dma->regs.int_src_a = value; break;
        case DMA_INT_SRC_A: dma->regs.int_src_a = value; break;
        case DMA_INT_SRC_B: dma->regs.int_src_b = value; break;
        case DMA_INT_SRC_B: dma->regs.int_src_b = value; break;
        default:
        default:
            debug( "dma_write( 0x%08lX ): Illegal register\n", addr + dma->baseaddr );
                        fprintf( stderr, "dma_write32( 0x%08lX ): Illegal register\n", addr + dma->baseaddr );
            cont_run = 0;
            cont_run = 0;
            return;
            return;
        }
        }
    }
        } else {
    else
 
    {
 
        /* case of per-channel registers */
        /* case of per-channel registers */
        unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
        unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
        struct dma_channel *channel = &(dma->ch[chno]);
        struct dma_channel *channel = &(dma->ch[chno]);
        channel->referenced = 1;
        channel->referenced = 1;
        addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
        addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
        switch( addr )
                switch( addr ) {
        {
 
        case DMA_CSR: dma_write_ch_csr( &(dma->ch[chno]), value ); break;
        case DMA_CSR: dma_write_ch_csr( &(dma->ch[chno]), value ); break;
        case DMA_CH_SZ: channel->regs.sz = value; break;
        case DMA_CH_SZ: channel->regs.sz = value; break;
        case DMA_CH_A0: channel->regs.a0 = value; break;
        case DMA_CH_A0: channel->regs.a0 = value; break;
        case DMA_CH_AM0: channel->regs.am0 = value; break;
        case DMA_CH_AM0: channel->regs.am0 = value; break;
        case DMA_CH_A1: channel->regs.a1 = value; break;
        case DMA_CH_A1: channel->regs.a1 = value; break;
Line 307... Line 279...
void clear_dma_nd_i( unsigned dma_controller, unsigned channel )
void clear_dma_nd_i( unsigned dma_controller, unsigned channel )
{
{
    dmas[dma_controller].ch[channel].dma_nd_i = 0;
    dmas[dma_controller].ch[channel].dma_nd_i = 0;
}
}
 
 
unsigned check_dma_acq_o( unsigned dma_controller, unsigned channel )
unsigned check_dma_ack_o( unsigned dma_controller, unsigned channel )
{
{
    return dmas[dma_controller].ch[channel].dma_acq_o;
        return dmas[dma_controller].ch[channel].dma_ack_o;
}
}
 
 
 
 
 
 
/* Simulation hook. Must be called every clock cycle to simulate DMA. */
/* Simulation hook. Must be called every clock cycle to simulate DMA. */
void dma_clock()
void dma_clock()
{
{
    unsigned i;
    unsigned i;
    for ( i = 0; i < NR_DMAS; ++ i )
        for ( i = 0; i < NR_DMAS; ++ i ) {
    {
 
        if ( dmas[i].baseaddr != 0 )
        if ( dmas[i].baseaddr != 0 )
            dma_controller_clock( &(dmas[i]) );
            dma_controller_clock( &(dmas[i]) );
    }
    }
}
}
 
 
Line 335... Line 306...
void dma_controller_clock( struct dma_controller *dma )
void dma_controller_clock( struct dma_controller *dma )
{
{
    unsigned chno, i;
    unsigned chno, i;
    int breakpoint = 0;
    int breakpoint = 0;
 
 
    for ( chno = 0; chno < DMA_NUM_CHANNELS; ++ chno )
        for ( chno = 0; chno < DMA_NUM_CHANNELS; ++ chno ) {
    {
 
        struct dma_channel *channel = &(dma->ch[chno]);
        struct dma_channel *channel = &(dma->ch[chno]);
 
 
        /* check if this channel is enabled */
        /* check if this channel is enabled */
        if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN ) )
        if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN ) )
            continue;
            continue;
 
 
        /* Do we need to abort? */
        /* Do we need to abort? */
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, STOP ) )
                if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, STOP ) ) {
        {
                        fprintf( stderr, "DMA: STOP requested\n" );
            debug( "DMA: STOP requested\n" );
 
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
 
 
            if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_ERR ) &&
            if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_ERR ) &&
                 (channel->controller->regs.int_msk_a & channel->channel_mask) )
                                         (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
            {
 
                SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
                SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
                channel->controller->regs.int_src_a = channel->channel_mask;
                channel->controller->regs.int_src_a = channel->channel_mask;
                report_interrupt( INT_DMA );
                                report_interrupt( channel->controller->irq );
            }
            }
 
 
            continue;
            continue;
        }
        }
 
 
        /* In HW Handshake mode, only work when dma_req_i asserted */
        /* In HW Handshake mode, only work when dma_req_i asserted */
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, MODE ) &&
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, MODE ) &&
             !channel->dma_req_i )
                                 !channel->dma_req_i ) {
        {
                        fprintf( stderr, "DMA: Waiting for HW handshake\n" );
            debug( "DMA: Waiting for HW handshake\n" );
 
            continue;
            continue;
        }
        }
 
 
        /* If this is the first cycle of the transfer, initialize our state */
        /* If this is the first cycle of the transfer, initialize our state */
        if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY ) )
                if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY ) ) {
        {
 
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
            CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
 
 
            /* If using linked lists, copy the appropriate fields to our registers */
            /* If using linked lists, copy the appropriate fields to our registers */
Line 387... Line 353...
 
 
            /* Set our internal status */
            /* Set our internal status */
            dma_init_transfer( channel );
            dma_init_transfer( channel );
 
 
            /* Might need to skip descriptor */
            /* Might need to skip descriptor */
            if ( CHANNEL_ND_I( channel ) )
                        if ( CHANNEL_ND_I( channel ) ) {
            {
                                fprintf( stderr, "DMA: dma_nd_i asserted before dma_req_i, skipping descriptor\n" );
                debug( "DMA: dma_nd_i asserted before dma_req_i, skipping descriptor\n" );
 
                dma_channel_terminate_transfer( channel, 0 );
                dma_channel_terminate_transfer( channel, 0 );
                continue;
                continue;
            }
            }
        }
        }
 
 
Line 404... Line 369...
        masked_increase( &(channel->source), channel->source_mask );
        masked_increase( &(channel->source), channel->source_mask );
        masked_increase( &(channel->destination), channel->destination_mask );
        masked_increase( &(channel->destination), channel->destination_mask );
        ++ channel->words_transferred;
        ++ channel->words_transferred;
 
 
        /* Have we finished a whole chunk? */
        /* Have we finished a whole chunk? */
        channel->dma_acq_o = (channel->words_transferred % channel->chunk_size == 0);
                channel->dma_ack_o = (channel->words_transferred % channel->chunk_size == 0);
 
 
        /* When done with a chunk, check for dma_nd_i */
        /* When done with a chunk, check for dma_nd_i */
        if ( CHANNEL_ND_I( channel ) )
                if ( CHANNEL_ND_I( channel ) ) {
        {
                        fprintf( stderr, "DMA: dma_nd_i asserted, \n" );
            debug( "DMA: dma_nd_i asserted, \n" );
 
            dma_channel_terminate_transfer( channel, 0 );
            dma_channel_terminate_transfer( channel, 0 );
            continue;
            continue;
        }
        }
 
 
        /* Are we done? */
        /* Are we done? */
Line 463... Line 427...
 
 
/* Take care of transfer termination */
/* Take care of transfer termination */
void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt )
void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt )
{
{
    /* Might be working in a linked list */
    /* Might be working in a linked list */
    if ( channel->load_next_descriptor_when_done )
        if ( channel->load_next_descriptor_when_done ) {
    {
 
        dma_load_descriptor( channel );
        dma_load_descriptor( channel );
        dma_init_transfer( channel );
        dma_init_transfer( channel );
        return;
        return;
    }
    }
 
 
    /* Might be in auto-restart mode */
    /* Might be in auto-restart mode */
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, ARS ) )
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, ARS ) ) {
    {
 
        dma_init_transfer( channel );
        dma_init_transfer( channel );
        return;
        return;
    }
    }
 
 
    /* If needed, write amount of data transferred back to memory */
    /* If needed, write amount of data transferred back to memory */
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, SZ_WB ) &&
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, SZ_WB ) &&
         TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) )
                         TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) ) {
    {
 
        int breakpoint = 0;
        int breakpoint = 0;
        unsigned long desc_csr = eval_mem32( channel->regs.desc + DMA_DESC_CSR, &breakpoint );
        unsigned long desc_csr = eval_mem32( channel->regs.desc + DMA_DESC_CSR, &breakpoint );
        /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
        /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
        unsigned long remaining_words = channel->total_size - channel->words_transferred;
        unsigned long remaining_words = channel->total_size - channel->words_transferred;
        SET_FIELD( channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words );
        SET_FIELD( channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words );
Line 495... Line 456...
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
 
 
    /* If needed, generate interrupt */
    /* If needed, generate interrupt */
    if ( generate_interrupt )
        if ( generate_interrupt ) {
    {
 
        /* TODO: Which channel should we interrupt? */
        /* TODO: Which channel should we interrupt? */
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_DONE ) &&
        if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_DONE ) &&
             (channel->controller->regs.int_msk_a & channel->channel_mask) )
                                 (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
        {
 
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
            SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
            channel->controller->regs.int_src_a = channel->channel_mask;
            channel->controller->regs.int_src_a = channel->channel_mask;
            report_interrupt( INT_DMA );
                        report_interrupt( channel->controller->irq );
        }
        }
    }
    }
}
}
 
 
/* Utility function: Add 4 to a value with a mask */
/* Utility function: Add 4 to a value with a mask */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.