OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [rel-0-3-0-rc2/] [or1ksim/] [cpu/] [common/] [abstract.c] - Diff between revs 1484 and 1486

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 1484 Rev 1486
Line 1... Line 1...
/* abstract.c -- Abstract entities
/* abstract.c -- Abstract entities
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
 
   Copyright (C) 2005 György `nog' Jeney, nog@sdf.lonestar.org
 
 
This file is part of OpenRISC 1000 Architectural Simulator.
This file is part of OpenRISC 1000 Architectural Simulator.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
Line 65... Line 66...
 
 
/* Temporary variable to increase speed.  */
/* Temporary variable to increase speed.  */
struct dev_memarea *cur_area;
struct dev_memarea *cur_area;
 
 
/* Pointer to memory controller device descriptor.  */
/* Pointer to memory controller device descriptor.  */
struct dev_memarea *mc_area = (struct dev_memarea *)0;
struct dev_memarea *mc_area = NULL;
 
 
/* These are set by mmu if cache inhibit bit is set for current acces.  */
/* These are set by mmu if cache inhibit bit is set for current acces.  */
int data_ci, insn_ci;
int data_ci, insn_ci;
 
 
/* Virtual address of current access. */
/* Virtual address of current access. */
oraddr_t cur_vadd;
static oraddr_t cur_vadd;
 
 
 
/* Read functions */
 
uint32_t eval_mem_32_inv(oraddr_t, void *);
 
uint16_t eval_mem_16_inv(oraddr_t, void *);
 
uint8_t eval_mem_8_inv(oraddr_t, void *);
 
uint32_t eval_mem_32_inv_direct(oraddr_t, void *);
 
uint16_t eval_mem_16_inv_direct(oraddr_t, void *);
 
uint8_t eval_mem_8_inv_direct(oraddr_t, void *);
 
 
 
/* Write functions */
 
void set_mem_32_inv(oraddr_t, uint32_t, void *);
 
void set_mem_16_inv(oraddr_t, uint16_t, void *);
 
void set_mem_8_inv(oraddr_t, uint8_t, void *);
 
void set_mem_32_inv_direct(oraddr_t, uint32_t, void *);
 
void set_mem_16_inv_direct(oraddr_t, uint16_t, void *);
 
void set_mem_8_inv_direct(oraddr_t, uint8_t, void *);
 
 
/* Calculates bit mask to fit the data */
/* Calculates bit mask to fit the data */
unsigned int bit_mask (uint32_t data) {
static unsigned int bit_mask (uint32_t data) {
  int i = 0;
  int i = 0;
  data--;
  data--;
  while (data >> i)
  while (data >> i)
    data |= 1 << i++;
    data |= 1 << i++;
  return data;
  return data;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   addr is inside the area, if addr & addr_mask == addr_compare
   addr is inside the area, if addr & addr_mask == addr_compare
   (used also by peripheral devices like 16450 UART etc.) */
   (used also by peripheral devices like 16450 UART etc.) */
void register_memoryarea_mask(oraddr_t addr_mask, oraddr_t addr_compare,
struct dev_memarea *register_memoryarea_mask(oraddr_t addr_mask,
                         uint32_t size, unsigned granularity, unsigned mc_dev,
                                             oraddr_t addr_compare,
                         uint32_t (readfunc)(oraddr_t, void *),
                                             uint32_t size, unsigned mc_dev)
                         void (writefunc)(oraddr_t, uint32_t, void *),
 
                         void *dat)
 
{
{
  struct dev_memarea **pptmp;
  struct dev_memarea **pptmp;
  unsigned int size_mask = bit_mask (size);
  unsigned int size_mask = bit_mask (size);
  int found_error = 0;
  int found_error = 0;
  addr_compare &= addr_mask;
  addr_compare &= addr_mask;
 
 
  debug(5, "addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %08"PRIx32", gran %iB\n",
  debug(5, "addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %08"PRIx32"\n",
        addr_mask, addr_compare, addr_compare | bit_mask (size), size,
        addr_mask, addr_compare, addr_compare | bit_mask (size), size);
        granularity);
 
  /* Go to the end of the list. */
  /* Go to the end of the list. */
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
    if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)
    if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)
     || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) {
     || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) {
      if (!found_error) {
      if (!found_error) {
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
        fprintf (stderr, "\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
                         ", size %08"PRIx32", gran %iB\n",
                         ", size %08"PRIx32"\n",
                 addr_mask, addr_compare, addr_compare | bit_mask (size), size,
                 addr_mask, addr_compare, addr_compare | bit_mask (size), size);
                 granularity);
 
      }
      }
      found_error = 1;
      found_error = 1;
      fprintf (stderr, "and\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
      fprintf (stderr, "and\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
                       ", size %08"PRIx32", gran %iB\n",
                       ", size %08"PRIx32"\n",
               (*pptmp)->addr_mask, (*pptmp)->addr_compare,
               (*pptmp)->addr_mask, (*pptmp)->addr_compare,
               (*pptmp)->addr_compare | (*pptmp)->size_mask,
               (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size);
               (*pptmp)->size, (*pptmp)->granularity);
 
    }
    }
 
 
  if (found_error)
  if (found_error)
    exit (-1);
    exit (-1);
 
 
Line 130... Line 142...
 
 
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->size = size;
  (*pptmp)->size = size;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->granularity = granularity;
  (*pptmp)->log = NULL;
  (*pptmp)->readfunc = readfunc;
  (*pptmp)->valid = 1;
  (*pptmp)->writefunc = writefunc;
 
  (*pptmp)->log = 0;
 
  (*pptmp)->delayr = 2;
 
  (*pptmp)->delayw = 2;
 
  (*pptmp)->priv_dat = dat;
 
  (*pptmp)->chip_select = -1;
 
  (*pptmp)->next = NULL;
  (*pptmp)->next = NULL;
 
 
 
  return *pptmp;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   Memory areas should be aligned. Memory area is rounded up to
   Memory areas should be aligned. Memory area is rounded up to
   fit the nearest 2^n aligment.
   fit the nearest 2^n aligment.
   (used also by peripheral devices like 16450 UART etc.)
   (used also by peripheral devices like 16450 UART etc.)
   If mc_dev is 1, this means that this device will be checked first for match
   If mc_dev is 1, this device will be checked first for a match
   and will be accessed in case of overlaping memory spaces.
   and will be accessed in case of overlaping memory areas.
   Only one device can have this set to 1 (used for memory controller) */
   Only one device can have this set to 1 (used for memory controller) */
void register_memoryarea(oraddr_t addr, uint32_t size, unsigned granularity,
struct dev_memarea *reg_mem_area(oraddr_t addr, uint32_t size, unsigned mc_dev,
                         unsigned mc_dev,
                                 struct mem_ops *ops)
                         uint32_t (readfunc)(oraddr_t, void *),
 
                         void (writefunc)(oraddr_t, uint32_t, void *),
 
                         void *dat)
 
{
{
  unsigned int size_mask = bit_mask (size);
  unsigned int size_mask = bit_mask (size);
  unsigned int addr_mask = ~size_mask;
  unsigned int addr_mask = ~size_mask;
  register_memoryarea_mask (addr_mask, addr & addr_mask,
  struct dev_memarea *mem;
                      size_mask + 1, granularity, mc_dev,
 
                      readfunc, writefunc, dat);
  mem = register_memoryarea_mask(addr_mask, addr & addr_mask, size_mask + 1,
 
                                 mc_dev);
 
 
 
  memcpy(&mem->ops, ops, sizeof(struct mem_ops));
 
  memcpy(&mem->direct_ops, ops, sizeof(struct mem_ops));
 
 
 
  if(!ops->readfunc32) {
 
    mem->ops.readfunc32 = eval_mem_32_inv;
 
    mem->direct_ops.readfunc32 = eval_mem_32_inv_direct;
 
    mem->direct_ops.read_dat32 = mem;
 
  }
 
  if(!ops->readfunc16) {
 
    mem->ops.readfunc16 = eval_mem_16_inv;
 
    mem->direct_ops.readfunc16 = eval_mem_16_inv_direct;
 
    mem->direct_ops.read_dat16 = mem;
 
  }
 
  if(!ops->readfunc8) {
 
    mem->ops.readfunc8 = eval_mem_8_inv;
 
    mem->direct_ops.readfunc8 = eval_mem_8_inv_direct;
 
    mem->direct_ops.read_dat8 = mem;
 
  }
 
 
 
  if(!ops->writefunc32) {
 
    mem->ops.writefunc32 = set_mem_32_inv;
 
    mem->direct_ops.writefunc32 = set_mem_32_inv_direct;
 
    mem->direct_ops.write_dat32 = mem;
 
  }
 
  if(!ops->writefunc16) {
 
    mem->ops.writefunc16 = set_mem_16_inv;
 
    mem->direct_ops.writefunc16 = set_mem_16_inv_direct;
 
    mem->direct_ops.write_dat16 = mem;
 
  }
 
  if(!ops->writefunc8) {
 
    mem->ops.writefunc8 = set_mem_8_inv;
 
    mem->direct_ops.writefunc8 = set_mem_8_inv_direct;
 
    mem->direct_ops.write_dat8 = mem;
 
  }
 
 
 
  if(!ops->writeprog) {
 
    mem->ops.writeprog = mem->ops.writefunc32;
 
    mem->ops.writeprog_dat = mem->ops.write_dat32;
 
  }
 
 
 
  if(ops->log) {
 
    if(!(mem->log = fopen(ops->log, "w")))
 
      PRINTF("ERR: Unable to open %s to log memory acesses to\n", ops->log);
}
}
 
 
 
  return mem;
 
}
 
 
/* Check if access is to registered area of memory. */
/* Check if access is to registered area of memory. */
inline struct dev_memarea *verify_memoryarea(oraddr_t addr)
inline struct dev_memarea *verify_memoryarea(oraddr_t addr)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
Line 183... Line 235...
    if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
    if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
      return cur_area = ptmp;
      return cur_area = ptmp;
  return cur_area = NULL;
  return cur_area = NULL;
}
}
 
 
/* Finds the memory area for the address and adjust the read and write delays for it. */
/* Sets the valid bit (Used only by memory controllers) */
void adjust_rw_delay(oraddr_t memaddr, unsigned int delayr, unsigned int delayw)
void set_mem_valid(struct dev_memarea *mem, int valid)
{
{
  if (verify_memoryarea(memaddr)) {
  mem->valid = valid;
    cur_area->delayr = delayr;
 
    cur_area->delayw = delayw;
 
  }
  }
 
 
 
/* Adjusts the read and write delays for the memory area pointed to by mem. */
 
void adjust_rw_delay(struct dev_memarea *mem, int delayr, int delayw)
 
{
 
  mem->ops.delayr = delayr;
 
  mem->ops.delayw = delayw;
}
}
 
 
/* for cpu accesses
uint8_t eval_mem_8_inv(oraddr_t memaddr, void *dat)
 *
 
 * STATISTICS: check cpu/common/parse.c
 
 */
 
inline uint32_t evalsim_mem32(oraddr_t memaddr)
 
{
{
        return(evalsim_mem32_atomic(memaddr, 1));
  except_handle(EXCEPT_BUSERR, cur_vadd);
 
  return 0;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do */
uint16_t eval_mem_16_inv(oraddr_t memaddr, void *dat)
inline uint32_t evalsim_mem32_void(oraddr_t memaddr)
 
{
{
        return(evalsim_mem32_atomic(memaddr, 0));
  except_handle(EXCEPT_BUSERR, cur_vadd);
 
  return 0;
}
}
 
 
uint32_t evalsim_mem32_atomic(oraddr_t memaddr, int cpu_access)
uint32_t eval_mem_32_inv(oraddr_t memaddr, void *dat)
{
{
  uint32_t temp = 0;
  except_handle(EXCEPT_BUSERR, cur_vadd);
 
  return 0;
 
}
 
 
  if (verify_memoryarea(memaddr)) {
void set_mem_8_inv(oraddr_t memaddr, uint8_t val, void *dat)
    switch(cur_area->granularity) {
{
    case 4:
  except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat);
 
      break;
 
    case 1:
 
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 24;
 
      temp |= cur_area->readfunc(memaddr + 1, cur_area->priv_dat) << 16;
 
      temp |= cur_area->readfunc(memaddr + 2, cur_area->priv_dat) << 8;
 
      temp |= cur_area->readfunc(memaddr + 3, cur_area->priv_dat);
 
      break;
 
    case 2:
 
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 16;
 
      temp |= cur_area->readfunc(memaddr + 2, cur_area->priv_dat);
 
      break;
 
    default:
 
      /* if you add new memory granularity be sure to check the formula
 
       * below for the read delay and fix it if necessery
 
       */
 
      PRINTF("unknown/unhandled memory granularuty\n");
 
      exit(-1);
 
    }
    }
    if (cpu_access)
 
      runtime.sim.mem_cycles += cur_area->delayr * (4 / cur_area->granularity);
void set_mem_16_inv(oraddr_t memaddr, uint16_t val, void *dat)
 
{
 
  except_handle(EXCEPT_BUSERR, cur_vadd);
  }
  }
  return temp;
 
 
void set_mem_32_inv(oraddr_t memaddr, uint32_t val, void *dat)
 
{
 
  except_handle(EXCEPT_BUSERR, cur_vadd);
}
}
 
 
/* for cpu accesses */
uint8_t eval_mem_8_inv_direct(oraddr_t memaddr, void *dat)
inline uint16_t evalsim_mem16(oraddr_t memaddr)
 
{
{
        return(evalsim_mem16_atomic(memaddr, 1));
  struct dev_memarea *mem = dat;
 
 
 
  PRINTF("ERROR: Invalid 8-bit direct read from memory %"PRIxADDR"\n",
 
         mem->addr_compare | memaddr);
 
  return 0;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do */
uint16_t eval_mem_16_inv_direct(oraddr_t memaddr, void *dat)
inline uint16_t evalsim_mem16_void(oraddr_t memaddr)
 
{
{
        return(evalsim_mem16_atomic(memaddr, 0));
  struct dev_memarea *mem = dat;
}
 
 
  PRINTF("ERROR: Invalid 16-bit direct read from memory %"PRIxADDR"\n",
uint16_t evalsim_mem16_atomic(oraddr_t memaddr, int cpu_access)
         mem->addr_compare | memaddr);
{
  return 0;
  uint32_t temp = 0;
 
 
 
  if (verify_memoryarea(memaddr)) {
 
    switch(cur_area->granularity) {
 
    case 1:
 
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 8;
 
      temp |= cur_area->readfunc(memaddr + 1, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayr * 2;
 
      break;
 
    case 2:
 
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayr;
 
      break;
 
    case 4:
 
      temp = evalsim_mem32_atomic (memaddr & ~UINT32_C(3), cpu_access);
 
      if (memaddr & 2)
 
        temp &= 0xffff;
 
      else
 
        temp >>= 16;
 
      break;
 
    default:
 
      /* if you add new memory granularity be sure to check the formula
 
       * below for the read delay and fix it if necessery
 
       */
 
      PRINTF("unknown/unhandled memory granularuty\n");
 
      exit(-1);
 
    }
    }
 
 
 
uint32_t eval_mem_32_inv_direct(oraddr_t memaddr, void *dat)
 
{
 
  struct dev_memarea *mem = dat;
 
 
 
  PRINTF("ERROR: Invalid 32-bit direct read from memory %"PRIxADDR"\n",
 
         mem->addr_compare | memaddr);
 
  return 0;
  }
  }
  return temp;
 
 
void set_mem_8_inv_direct(oraddr_t memaddr, uint8_t val, void *dat)
 
{
 
  struct dev_memarea *mem = dat;
 
 
 
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
 
         mem->addr_compare | memaddr);
}
}
 
 
/* for cpu accesses */
void set_mem_16_inv_direct(oraddr_t memaddr, uint16_t val, void *dat)
inline uint8_t evalsim_mem8(oraddr_t memaddr)
 
{
{
        return(evalsim_mem8_atomic(memaddr, 1));
  struct dev_memarea *mem = dat;
 
 
 
  PRINTF("ERROR: Invalid 16-bit direct write to memory %"PRIxADDR"\n",
 
         mem->addr_compare | memaddr);
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do */
void set_mem_32_inv_direct(oraddr_t memaddr, uint32_t val, void *dat)
inline uint8_t evalsim_mem8_void(oraddr_t memaddr)
 
{
{
        return(evalsim_mem8_atomic(memaddr, 0));
  struct dev_memarea *mem = dat;
 
 
 
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
 
         mem->addr_compare | memaddr);
}
}
 
 
uint8_t evalsim_mem8_atomic(oraddr_t memaddr, int cpu_access)
/* For cpu accesses
 
 *
 
 * NOTE: This function _is_ only called from eval_mem32 below and
 
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 
 */
 
inline uint32_t evalsim_mem32(oraddr_t memaddr, oraddr_t vaddr)
{
{
  uint32_t temp = 0;
  struct dev_memarea *mem;
 
 
  if (verify_memoryarea(memaddr)) {
  if((mem = verify_memoryarea(memaddr))) {
    switch(cur_area->granularity) {
    runtime.sim.mem_cycles += mem->ops.delayr;
    case 1:
    return mem->ops.readfunc32(memaddr & mem->size_mask, mem->ops.read_dat32);
      temp = cur_area->readfunc(memaddr, cur_area->priv_dat);
  } else {
      if (cpu_access)
    PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n",
        runtime.sim.mem_cycles += cur_area->delayr;
           memaddr);
      break;
    except_handle(EXCEPT_BUSERR, vaddr);
    case 2:
  }
      temp = evalsim_mem16_atomic (memaddr & ~ADDR_C(1), cpu_access);
 
      if (memaddr & 1)
  return 0;
        temp &= 0xff;
}
      else
 
        temp >>= 8;
/* For cpu accesses
      break;
 *
    case 4:
 * NOTE: This function _is_ only called from eval_mem16 below and
      temp = evalsim_mem32_atomic (memaddr & ~ADDR_C(3), cpu_access);
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
      temp >>= 8 * (3 - (memaddr & 3));
 
      temp &= 0xff;
 
      break;
 
    default:
 
      /* if you add new memory granularity be sure to check the formula
 
       * below for the read delay and fix it if necessery
 
       */
       */
      PRINTF("unknown/unhandled memory granularuty\n");
inline uint16_t evalsim_mem16(oraddr_t memaddr, oraddr_t vaddr)
      exit(-1);
{
 
  struct dev_memarea *mem;
 
 
 
  if((mem = verify_memoryarea(memaddr))) {
 
    runtime.sim.mem_cycles += mem->ops.delayr;
 
    return mem->ops.readfunc16(memaddr & mem->size_mask, mem->ops.read_dat16);
 
  } else {
 
    PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR")\n",
 
           memaddr);
 
    except_handle(EXCEPT_BUSERR, vaddr);
    }
    }
 
 
 
  return 0;
  }
  }
  return temp;
 
 
/* For cpu accesses
 
 *
 
 * NOTE: This function _is_ only called from eval_mem8 below and
 
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 
 */
 
inline uint8_t evalsim_mem8(oraddr_t memaddr, oraddr_t vaddr)
 
{
 
  struct dev_memarea *mem;
 
 
 
  if((mem = verify_memoryarea(memaddr))) {
 
    runtime.sim.mem_cycles += mem->ops.delayr;
 
    return mem->ops.readfunc8(memaddr & mem->size_mask, mem->ops.read_dat8);
 
  } else {
 
    PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR")\n",
 
           memaddr);
 
    except_handle(EXCEPT_BUSERR, vaddr);
 
  }
 
 
 
  return 0;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version.
/* Returns 32-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint32_t eval_mem32(oraddr_t memaddr,int* breakpoint)
uint32_t eval_mem32(oraddr_t memaddr,int* breakpoint)
{
{
  uint32_t temp;
  uint32_t temp;
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_READ);
    mprofile (memaddr, MPROF_32 | MPROF_READ);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
Line 351... Line 415...
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  phys_memaddr = dmmu_translate(memaddr, 0);
 
 
  memaddr = dmmu_translate(memaddr, 0);
 
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = dc_simulate_read(memaddr, 4);
    temp = dc_simulate_read(phys_memaddr, memaddr, 4);
  else {
  else
    temp = evalsim_mem32(memaddr);
    temp = evalsim_mem32(phys_memaddr, memaddr);
    if (!cur_area) {
 
      PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n",
 
             memaddr);
 
      except_handle(EXCEPT_BUSERR, cur_vadd);
 
      temp = 0;
 
    }
 
  }
 
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
 
 
  return temp;
  return temp;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do
/* for simulator accesses, the ones that cpu wouldn't do
 *
 *
 * STATISTICS OK
 * STATISTICS OK
 */
 */
uint32_t eval_direct32(oraddr_t memaddr, int *breakpoint, int through_mmu,
uint32_t eval_direct32(oraddr_t memaddr, int *breakpoint, int through_mmu,
                       int through_dc)
                       int through_dc)
{
{
  uint32_t temp;
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
      return 0;
      return 0;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    temp = dc_simulate_read(memaddr, 4);
    return dc_simulate_read(phys_memaddr, memaddr, 4);
  else {
  else {
    temp = evalsim_mem32_void(memaddr);
    if((mem = verify_memoryarea(phys_memaddr)))
    if (!cur_area) {
      return mem->direct_ops.readfunc32(phys_memaddr & mem->size_mask,
      PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR
                                        mem->direct_ops.read_dat32);
             ") in eval_direct32()\n", memaddr);
    else
      except_handle(EXCEPT_BUSERR, cur_vadd);
      PRINTF("ERR: 32-bit read out of memory area: %"PRIxADDR" (physical: %"
      temp = 0;
             PRIxADDR"\n", memaddr, phys_memaddr);
    }
 
  }
  }
 
 
  return temp;
  return 0;
}
}
 
 
 
 
/* Returns 32-bit values from mem array. Big endian version.
/* Returns 32-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint32_t eval_insn(oraddr_t memaddr, int* breakpoint)
uint32_t eval_insn(oraddr_t memaddr, int* breakpoint)
{
{
  uint32_t temp;
  uint32_t temp;
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
#if !(DYNAMIC_EXECUTION)
#if !(DYNAMIC_EXECUTION)
  memaddr = immu_translate(memaddr);
  phys_memaddr = immu_translate(memaddr);
 
 
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
#endif
#endif
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);
 
 
  if (config.ic.enabled)
  if (config.ic.enabled)
    temp = ic_simulate_fetch(memaddr);
    temp = ic_simulate_fetch(phys_memaddr, memaddr);
  else {
  else
    temp = evalsim_mem32(memaddr);
    temp = evalsim_mem32(phys_memaddr, memaddr);
    if (!cur_area) {
 
      PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n",
 
             memaddr);
 
      except_handle(EXCEPT_BUSERR, cur_vadd);
 
      temp = 0;
 
    }
 
  }
 
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);
  return temp;
  return temp;
}
}
Line 459... Line 508...
uint32_t eval_insn_direct(oraddr_t memaddr, int* breakpoint, int through_mmu)
uint32_t eval_insn_direct(oraddr_t memaddr, int* breakpoint, int through_mmu)
{
{
  uint32_t temp;
  uint32_t temp;
  int brk;
  int brk;
 
 
  cur_vadd = memaddr;
 
 
 
  if(through_mmu)
  if(through_mmu)
    memaddr = peek_into_itlb(memaddr);
    memaddr = peek_into_itlb(memaddr);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress, memaddr);
    *breakpoint += CheckDebugUnit(DebugLoadAddress, memaddr);
Line 483... Line 530...
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint16_t eval_mem16(oraddr_t memaddr,int* breakpoint)
uint16_t eval_mem16(oraddr_t memaddr,int* breakpoint)
{
{
  uint16_t temp;
  uint16_t temp;
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_READ);
    mprofile (memaddr, MPROF_16 | MPROF_READ);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
Line 495... Line 543...
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  phys_memaddr = dmmu_translate(memaddr, 0);
 
 
  memaddr = dmmu_translate(memaddr, 0);
 
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = (uint16_t)dc_simulate_read(memaddr, 2);
    temp = dc_simulate_read(phys_memaddr, memaddr, 2);
  else {
  else
    temp = evalsim_mem16(memaddr);
    temp = evalsim_mem16(phys_memaddr, memaddr);
    if (!cur_area) {
 
      PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR")\n",
 
             memaddr);
 
      except_handle(EXCEPT_BUSERR, cur_vadd);
 
      temp = 0;
 
    }
 
  }
 
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
 
 
  return temp;
  return temp;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do
/* for simulator accesses, the ones that cpu wouldn't do
 *
 *
 * STATISTICS OK.
 * STATISTICS OK.
 */
 */
uint16_t eval_direct16(oraddr_t memaddr, int *breakpoint, int through_mmu,
uint16_t eval_direct16(oraddr_t memaddr, int *breakpoint, int through_mmu,
                       int through_dc)
                       int through_dc)
{
{
  uint32_t temp;
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
      return 0;
      return 0;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    temp = dc_simulate_read(memaddr, 2);
    return dc_simulate_read(phys_memaddr, memaddr, 2);
  else {
  else {
    temp = evalsim_mem16_void(memaddr);
    if((mem = verify_memoryarea(phys_memaddr)))
    if (!cur_area) {
      return mem->direct_ops.readfunc16(phys_memaddr & mem->size_mask,
      PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR
                                        mem->direct_ops.read_dat16);
             ") in eval_direct16()\n", memaddr);
    else
      except_handle(EXCEPT_BUSERR, cur_vadd);
      PRINTF("ERR: 16-bit read out of memory area: %"PRIxADDR" (physical: %"
      temp = 0;
             PRIxADDR"\n", memaddr, phys_memaddr);
    }
 
  }
  }
 
 
  return temp;
  return 0;
}
}
 
 
 
 
/* Returns 8-bit values from mem array.
/* Returns 8-bit values from mem array.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint8_t eval_mem8(oraddr_t memaddr,int* breakpoint)
uint8_t eval_mem8(oraddr_t memaddr,int* breakpoint)
{
{
  uint8_t temp;
  uint8_t temp;
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_READ);
    mprofile (memaddr, MPROF_8 | MPROF_READ);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  phys_memaddr = dmmu_translate(memaddr, 0);
 
 
  memaddr = dmmu_translate(memaddr, 0);
 
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = (uint8_t)dc_simulate_read(memaddr, 1);
    temp = dc_simulate_read(phys_memaddr, memaddr, 1);
  else {
  else
    temp = evalsim_mem8(memaddr);
    temp = evalsim_mem8(phys_memaddr, memaddr);
    if (!cur_area) {
 
      PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR")\n",
 
             memaddr);
 
      except_handle(EXCEPT_BUSERR, cur_vadd);
 
      temp = 0;
 
    }
 
  }
 
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
Line 597... Line 628...
 * STATISTICS OK.
 * STATISTICS OK.
 */
 */
uint8_t eval_direct8(oraddr_t memaddr, int *breakpoint, int through_mmu,
uint8_t eval_direct8(oraddr_t memaddr, int *breakpoint, int through_mmu,
                     int through_dc)
                     int through_dc)
{
{
  uint8_t temp;
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    temp = (unsigned char)dc_simulate_read(memaddr, 1);
    return dc_simulate_read(phys_memaddr, memaddr, 1);
  else {
  else {
    temp = evalsim_mem8_void(memaddr);
    if((mem = verify_memoryarea(phys_memaddr)))
    if (!cur_area) {
      return mem->direct_ops.readfunc8(phys_memaddr & mem->size_mask,
      PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR
                                       mem->direct_ops.read_dat8);
             ") in eval_direct8()\n", memaddr);
    else
      except_handle(EXCEPT_BUSERR, cur_vadd);
      PRINTF("ERR: 8-bit read out of memory area: %"PRIxADDR" (physical: %"
      temp = 0;
             PRIxADDR"\n", memaddr, phys_memaddr);
    }
 
  }
 
  return temp;
 
}
}
 
 
/* for cpu accesses */
  return 0;
inline void setsim_mem32(oraddr_t memaddr, uint32_t value)
 
{
 
  return(setsim_mem32_atomic(memaddr, value, 1));
 
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do */
/* For cpu accesses
inline void setsim_mem32_void(oraddr_t memaddr, uint32_t value)
 *
{
 * NOTE: This function _is_ only called from set_mem32 below and
  return(setsim_mem32_atomic(memaddr, value, 0));
 * dc_simulate_write.  _Don't_ call it from anywere else.
}
 
 
 
void setsim_mem32_atomic(oraddr_t memaddr, uint32_t value, int cpu_access)
 
{
 
  if (verify_memoryarea(memaddr)) {
 
    switch(cur_area->granularity) {
 
    case 4:
 
      cur_area->writefunc(memaddr, value, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw;
 
      break;
 
    case 1:
 
      cur_area->writefunc(memaddr    , (value >> 24) & 0xFF, cur_area->priv_dat);
 
      cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF, cur_area->priv_dat);
 
      cur_area->writefunc(memaddr + 2, (value >>  8) & 0xFF, cur_area->priv_dat);
 
      cur_area->writefunc(memaddr + 3, (value      ) & 0xFF, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw * 4;
 
      break;
 
    case 2:
 
      cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF, cur_area->priv_dat);
 
      cur_area->writefunc(memaddr + 2, value & 0xFFFF, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw * 2;
 
      break;
 
    default:
 
      /* if you add new memory granularity be sure to check the formula
 
       * below for the read delay and fix it if necessery
 
       */
       */
      PRINTF("unknown/unhandled memory granularuty\n");
inline void setsim_mem32(oraddr_t memaddr, oraddr_t vaddr, uint32_t value)
      exit(-1);
{
    }
  struct dev_memarea *mem;
#if DYNAMIC_EXECUTION
 
    /* FIXME: Do this with mprotect() */
 
    struct dyn_page *dp;
 
 
 
    /* Since the locations 0x0-0xff are nearly always written to in an exception
  if((mem = verify_memoryarea(memaddr))) {
     * handler, ignore any writes to these locations.  If code ends up jumping
    cur_vadd = vaddr;
     * out there, we'll recompile when the jump actually happens. */
    runtime.sim.mem_cycles += mem->ops.delayw;
    if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty)
    mem->ops.writefunc32(memaddr & mem->size_mask, value, mem->ops.write_dat32);
      dirtyfy_page(dp);
#if DYNAMIC_EXECUTION
 
    dyn_checkwrite(memaddr);
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (32-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (32-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* for cpu accesses */
/* For cpu accesses
inline void setsim_mem16(oraddr_t memaddr, uint16_t value)
 *
{
 * NOTE: This function _is_ only called from set_mem16 below and
  return(setsim_mem16_atomic(memaddr, value, 1));
 * dc_simulate_write.  _Don't_ call it from anywere else.
}
 */
 
inline void setsim_mem16(oraddr_t memaddr, oraddr_t vaddr, uint16_t value)
/* for simulator accesses, the ones that cpu wouldn't do */
 
inline void setsim_mem16_void(oraddr_t memaddr, uint16_t value)
 
{
{
  return(setsim_mem16_atomic(memaddr, value, 0));
  struct dev_memarea *mem;
}
 
 
 
void setsim_mem16_atomic(oraddr_t memaddr, uint16_t value, int cpu_access)
  if((mem = verify_memoryarea(memaddr))) {
{
    cur_vadd = vaddr;
  uint32_t temp;
    runtime.sim.mem_cycles += mem->ops.delayw;
  if (verify_memoryarea(memaddr)) {
    mem->ops.writefunc16(memaddr & mem->size_mask, value, mem->ops.write_dat16);
    switch(cur_area->granularity) {
 
    case 1:
 
      cur_area->writefunc(memaddr, (value >> 8) & 0xFF, cur_area->priv_dat);
 
      cur_area->writefunc(memaddr + 1, value & 0xFF, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw * 2;
 
      break;
 
    case 2:
 
      cur_area->writefunc(memaddr, value & 0xFFFF, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw;
 
      break;
 
    case 4:
 
      temp = evalsim_mem32_void(memaddr & ~ADDR_C(3));
 
      temp &= 0xffff << ((memaddr & 2) ? 16 : 0);
 
      temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16);
 
      setsim_mem32_atomic(memaddr & ~ADDR_C(3), temp, cpu_access);
 
      break;
 
    default:
 
      /* if you add new memory granularity be sure to check the formula
 
       * below for the read delay and fix it if necessery
 
       */
 
      PRINTF("unknown/unhandled memory granularuty\n");
 
      exit(-1);
 
    }
 
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
    /* FIXME: Do this with mprotect() */
    dyn_checkwrite(memaddr);
    struct dyn_page *dp;
 
 
 
    /* Since the locations 0x0-0xff are nearly always written to in an exception
 
     * handler, ignore any writes to these locations.  If code ends up jumping
 
     * out there, we'll recompile when the jump actually happens. */
 
 
 
    if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty)
 
      dirtyfy_page(dp);
 
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (16-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (16-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* for cpu accesses */
/* For cpu accesses
inline void setsim_mem8(oraddr_t memaddr, uint8_t value)
 *
{
 * NOTE: This function _is_ only called from set_mem8 below and
  return(setsim_mem8_atomic(memaddr, value, 1));
 * dc_simulate_write.  _Don't_ call it from anywere else.
}
 */
 
inline void setsim_mem8(oraddr_t memaddr, oraddr_t vaddr, uint8_t value)
/* for simulator accesses, the ones that cpu wouldn't do */
 
inline void setsim_mem8_void(oraddr_t memaddr, uint8_t value)
 
{
{
  return(setsim_mem8_atomic(memaddr, value, 0));
  struct dev_memarea *mem;
}
 
 
 
void setsim_mem8_atomic(oraddr_t memaddr, uint8_t value, int cpu_access)
  if((mem = verify_memoryarea(memaddr))) {
{
    cur_vadd = vaddr;
  uint32_t temp;
    runtime.sim.mem_cycles += mem->ops.delayw;
  if (verify_memoryarea(memaddr)) {
    mem->ops.writefunc8(memaddr & mem->size_mask, value, mem->ops.write_dat8);
    switch (cur_area->granularity) {
 
    case 1:
 
      cur_area->writefunc(memaddr, value, cur_area->priv_dat);
 
      if (cpu_access)
 
        runtime.sim.mem_cycles += cur_area->delayw;
 
      break;
 
    case 2:
 
      temp = evalsim_mem16_void (memaddr & ~ADDR_C(1));
 
      temp &= 0xff << ((memaddr & 1) ? 8 : 0);
 
      temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8);
 
      setsim_mem16_atomic (memaddr & ~ADDR_C(1), temp, cpu_access);
 
      break;
 
    case 4:
 
      temp = evalsim_mem32_void (memaddr & ~ADDR_C(3));
 
      temp &= ~(0xff << (8 * (3 - (memaddr & 3))));
 
      temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3)));
 
      setsim_mem32_atomic (memaddr & ~ADDR_C(3), temp, cpu_access);
 
      break;
 
    }
 
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
    /* FIXME: Do this with mprotect() */
    dyn_checkwrite(memaddr);
    struct dyn_page *dp;
 
 
 
    /* Since the locations 0x0-0xff are nearly always written to in an exception
 
     * handler, ignore any writes to these locations.  If code ends up jumping
 
     * out there, we'll recompile when the jump actually happens. */
 
 
 
    if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty)
 
      dirtyfy_page(dp);
 
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (8-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (8-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* Set mem, 32-bit. Big endian version.
/* Set mem, 32-bit. Big endian version.
 *
 *
Line 798... Line 728...
 *                 wether this is cpu or architectual access is yet to
 *                 wether this is cpu or architectual access is yet to
 *                 be decided)
 *                 be decided)
 */
 */
void set_mem32(oraddr_t memaddr, uint32_t value, int* breakpoint)
void set_mem32(oraddr_t memaddr, uint32_t value, int* breakpoint)
{
{
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = dmmu_translate(memaddr, 1);;
  memaddr = dmmu_translate(memaddr, 1);;
 
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending)
  if (except_pending)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, value, 4);
  if(config.dc.enabled)
 
    dc_simulate_write(phys_memaddr, memaddr, value, 4);
 
  else
 
    setsim_mem32(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %08"PRIx32"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %08"PRIx32"\n", memaddr,
             value);
             value);
}
}
Line 830... Line 764...
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct32(oraddr_t memaddr, uint32_t value,int* breakpoint,
void set_direct32(oraddr_t memaddr, uint32_t value,int* breakpoint,
                  int through_mmu, int through_dc)
                  int through_mmu, int through_dc)
{
{
 
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    memaddr = peek_into_dtlb(memaddr, 1, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 1, through_dc);
  }
  }
 
 
 
  if(through_dc)
  /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count,
    dc_simulate_write(memaddr, memaddr, value, 4);
   *                and possibly also memory access times.
  else {
   */
    if((mem = verify_memoryarea(phys_memaddr)))
  if (!through_dc)
      mem->direct_ops.writefunc32(phys_memaddr & mem->size_mask, value,
    PRINTF("WARNING: statistics might not be OK\n");
                                  mem->direct_ops.write_dat32);
  dc_simulate_write(memaddr, value, 4);
    else
 
      PRINTF("ERR: 32-bit write out of memory area: %"PRIxADDR" (physical: %"
 
             PRIxADDR")\n", memaddr, phys_memaddr);
 
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %08"PRIx32"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %08"PRIx32"\n",
             memaddr, value);
             memaddr, value);
}
}
Line 862... Line 801...
 
 
/* Set mem, 16-bit. Big endian version. */
/* Set mem, 16-bit. Big endian version. */
 
 
void set_mem16(oraddr_t memaddr, uint16_t value, int* breakpoint)
void set_mem16(oraddr_t memaddr, uint16_t value, int* breakpoint)
{
{
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = dmmu_translate(memaddr, 1);;
  memaddr = dmmu_translate(memaddr, 1);;
 
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending)
  if (except_pending)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, value, 2);
  if(config.dc.enabled)
 
    dc_simulate_write(phys_memaddr, memaddr, value, 2);
 
  else
 
    setsim_mem16(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %04"PRIx16"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %04"PRIx16"\n", memaddr,
             value);
             value);
}
}
Line 894... Line 837...
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct16(oraddr_t memaddr, uint16_t value, int* breakpoint,
void set_direct16(oraddr_t memaddr, uint16_t value, int* breakpoint,
                  int through_mmu, int through_dc)
                  int through_mmu, int through_dc)
{
{
 
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
  }
 
 
  /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count,
  if(through_dc)
   *                and possibly also memory access times.
    dc_simulate_write(memaddr, memaddr, value, 2);
   */
  else {
  if (!through_dc)
    if((mem = verify_memoryarea(phys_memaddr)))
    PRINTF("WARNING: statistics might not be OK\n");
      mem->direct_ops.writefunc16(phys_memaddr & mem->size_mask, value,
  dc_simulate_write(memaddr, value, 2);
                                  mem->direct_ops.write_dat16);
 
    else
 
      PRINTF("ERR: 16-bit write out of memory area: %"PRIxADDR" (physical: %"
 
             PRIxADDR"\n", memaddr, phys_memaddr);
 
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %04"PRIx16"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %04"PRIx16"\n",
             memaddr, value);
             memaddr, value);
}
}
 
 
/* Set mem, 8-bit. */
/* Set mem, 8-bit. */
 
 
void set_mem8(oraddr_t memaddr, uint8_t value, int* breakpoint)
void set_mem8(oraddr_t memaddr, uint8_t value, int* breakpoint)
{
{
 
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
 
 
  phys_memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending) return;
  if (except_pending) return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, value, 1);
  if(config.dc.enabled)
 
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
 
  else
 
    setsim_mem8(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %02"PRIx8"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %02"PRIx8"\n", memaddr,
             value);
             value);
}
}
Line 950... Line 904...
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct8(oraddr_t memaddr, uint8_t value, int* breakpoint,
void set_direct8(oraddr_t memaddr, uint8_t value, int* breakpoint,
                 int through_mmu, int through_dc)
                 int through_mmu, int through_dc)
{
{
 
  oraddr_t phys_memaddr;
 
  struct dev_memarea *mem;
 
 
  cur_vadd = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
  }
 
 
  /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count,
  if(through_dc)
   *                and possibly also memory access times.
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
   */
  else {
  if (!through_dc)
    if((mem = verify_memoryarea(phys_memaddr)))
    PRINTF("WARNING: statistics might not be OK\n");
      mem->direct_ops.writefunc8(phys_memaddr & mem->size_mask, value,
  dc_simulate_write(memaddr, value, 1);
                                 mem->direct_ops.write_dat8);
 
    else
 
      PRINTF("ERR: 8-bit write out of memory area: %"PRIxADDR" (physical: %"
 
             PRIxADDR"\n", memaddr, phys_memaddr);
 
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %02"PRIx8"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %02"PRIx8"\n",
             memaddr, value);
             memaddr, value);
}
}
 
 
 
 
 
/* set_program32 - same as set_direct32, but it also writes to memory that is
 
 *                 non-writeable to the rest of the sim.  Used to do program
 
 *                 loading.
 
 */
 
void set_program32(oraddr_t memaddr, uint32_t value)
 
{
 
  struct dev_memarea *mem;
 
 
 
  if (memaddr & 3) {
 
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
 
    return;
 
  }
 
 
 
  if((mem = verify_memoryarea(memaddr))) {
 
    mem->ops.writeprog(memaddr & mem->size_mask, value, mem->ops.writeprog_dat);
 
  } else
 
    PRINTF("ERR: 32-bit program load out of memory area: %"PRIxADDR"\n",
 
           memaddr);
 
}
 
 
void dumpmemory(oraddr_t from, oraddr_t to, int disasm, int nl)
void dumpmemory(oraddr_t from, oraddr_t to, int disasm, int nl)
{
{
  oraddr_t i, j;
  oraddr_t i, j;
  struct label_entry *tmp;
  struct label_entry *tmp;
  int ilen = disasm ? 4 : 16;
  int ilen = disasm ? 4 : 16;
Line 1019... Line 999...
    if (nl)
    if (nl)
      PRINTF ("\n");
      PRINTF ("\n");
  }
  }
}
}
 
 
uint32_t simmem_read_word(oraddr_t addr, void *priv_dat) {
 
  return *(uint32_t *)(priv_dat + (addr & cur_area->size_mask));
 
}
 
 
 
void simmem_write_word(oraddr_t addr, uint32_t value, void *priv_dat) {
 
  *(uint32_t *)(priv_dat + (addr & cur_area->size_mask)) = value;
 
}
 
 
 
uint32_t simmem_read_zero(oraddr_t addr, void *dat) {
 
  if (config.sim.verbose)
 
    fprintf (stderr, "WARNING: memory read from non-read memory area 0x%"
 
                     PRIxADDR".\n", addr);
 
  return 0;
 
}
 
 
 
void simmem_write_null(oraddr_t addr, uint32_t value, void *dat) {
 
  if (config.sim.verbose)
 
    fprintf (stderr, "WARNING: memory write to 0x%"PRIxADDR", non-write memory area (value 0x%08"PRIx32").\n", addr, value);
 
}
 
 
 
/* Initialize memory table from a config struct */
 
 
 
void init_memory_table ()
 
{
 
  /* If nothing was defined, use default memory block */
 
  if (config.memory.nmemories) {
 
    int i;
 
    for (i = 0; i < config.memory.nmemories; i++) {
 
      oraddr_t start = config.memory.table[i].baseaddr;
 
      uint32_t length = config.memory.table[i].size;
 
      char *type = config.memory.table[i].name;
 
      int rd = config.memory.table[i].delayr;
 
      int wd = config.memory.table[i].delayw;
 
      int ce = config.memory.table[i].ce;
 
      void *mem = malloc (length);
 
 
 
      if (config.sim.verbose)
 
        debug (1, "%"PRIxADDR" %08"PRIx32" (%"PRIi32" KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n",
 
          start, length, length >> 10, type, ce, rd, wd);
 
 
 
      if (!mem) {
 
        fprintf (stderr, "Failed to allocate sim memory. Aborting\n");
 
        exit (-1);
 
      }
 
 
 
      register_memoryarea(start, length, 4, 0, &simmem_read_word,
 
                          &simmem_write_word, mem);
 
      cur_area->chip_select = ce;
 
      cur_area->valid = 1;
 
      cur_area->delayw = wd;
 
      cur_area->delayr = rd;
 
      if (config.memory.table[i].log[0] != '\0') {
 
        if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL)
 
          fprintf (stderr, "WARNING: Cannot open '%s'.\n",
 
                   config.memory.table[i].log);
 
      } else
 
        cur_area->log = NULL;
 
    }
 
    PRINTF ("\n");
 
  } else {
 
    void *mem = malloc (DEFAULT_MEMORY_LEN);
 
    if (config.sim.verbose)
 
      fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n");
 
 
 
    if (!mem) {
 
      fprintf (stderr, "Failed to allocate sim memory. Aborting\n");
 
      exit (-1);
 
    }
 
 
 
    register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0,
 
                        &simmem_read_word, &simmem_write_word, mem);
 
    cur_area->chip_select = 0;
 
    cur_area->valid = 1;
 
    cur_area->delayw = 1;
 
    cur_area->delayr = 1;
 
    cur_area->log = NULL;
 
  }
 
}
 
 
 
/* Changes read/write memory in read/write only */
 
 
 
void lock_memory_table ()
 
{
 
  struct dev_memarea *ptmp;
 
 
 
  /* Check list of registered devices. */
 
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
 
    if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word)
 
      ptmp->readfunc = &simmem_read_zero;
 
    if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word)
 
      ptmp->writefunc = &simmem_write_null;
 
 
 
    /* If this mem area is not for memory chip under MC control
 
       then this area is valid all the time */
 
    if (ptmp->readfunc != &simmem_read_word) {
 
      ptmp->valid = 1;
 
      ptmp->chip_select = -1;
 
    }
 
  }
 
}
 
 
 
/* Closes files, etc. */
/* Closes files, etc. */
 
 
void done_memory_table ()
void done_memory_table (void)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
Line 1135... Line 1014...
  }
  }
}
}
 
 
/* Displays current memory configuration */
/* Displays current memory configuration */
 
 
void memory_table_status ()
void memory_table_status (void)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    PRINTF ("addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %"PRIx32
    PRINTF ("addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %"PRIx32"\n",
            ", gran %iB\n",
 
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->size, ptmp->granularity);
      ptmp->size);
    PRINTF ("\t");
    PRINTF ("\t");
    if (ptmp->delayr >= 0)
    if (ptmp->ops.delayr >= 0)
      PRINTF ("read delay = %i cycles, ", ptmp->delayr);
      PRINTF ("read delay = %i cycles, ", ptmp->ops.delayr);
    else
    else
      PRINTF ("reads not possible, ");
      PRINTF ("reads not possible, ");
 
 
    if (ptmp->delayw >= 0)
    if (ptmp->ops.delayw >= 0)
      PRINTF ("write delay = %i cycles", ptmp->delayw);
      PRINTF ("write delay = %i cycles", ptmp->ops.delayw);
    else
    else
      PRINTF ("writes not possible");
      PRINTF ("writes not possible");
 
 
    if (ptmp->log)
    if (ptmp->log)
      PRINTF (", (logged)\n");
      PRINTF (", (logged)\n");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.