OpenCores
URL https://opencores.org/ocsvn/plasma/plasma/trunk

Subversion Repositories plasma

[/] [plasma/] [trunk/] [kernel/] [ethernet.c] - Diff between revs 385 and 416

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 385 Rev 416
Line 1... Line 0...
/*--------------------------------------------------------------------
 
 * TITLE: Plasma Ethernet MAC
 
 * AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
 
 * DATE CREATED: 1/12/08
 
 * FILENAME: ethernet.c
 
 * PROJECT: Plasma CPU core
 
 * COPYRIGHT: Software placed into the public domain by the author.
 
 *    Software 'as is' without warranty.  Author liable for nothing.
 
 * DESCRIPTION:
 
 *    Ethernet MAC implementation.
 
 *    Data is received from the Ethernet PHY four bits at a time.
 
 *    After 32-bits are received they are written to 0x13ff0000 + N.
 
 *    The data is received LSB first for each byte which requires the
 
 *    nibbles to be swapped.
 
 *    Transmit data is read from 0x13fe0000.  Write length/4+1 to
 
 *    ETHERNET_REG to start transfer.
 
 *--------------------------------------------------------------------*/
 
#include "plasma.h"
 
#include "rtos.h"
 
#include "tcpip.h"
 
 
 
#define POLYNOMIAL  0x04C11DB7   //CRC bit 33 is truncated
 
#define TOPBIT      (1<<31)
 
#define BYTE_EMPTY  0xde         //Data copied into receive buffer
 
#define COUNT_EMPTY 16           //Count to decide there isn't data
 
#define INDEX_MASK  0xffff       //Size of receive buffer
 
 
 
//void dump(const unsigned char *data, int length);
 
 
 
static unsigned char gDestMac[]={0x5d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
 
static unsigned int CrcTable[256];
 
static unsigned char reflect[256];
 
static unsigned char reflectNibble[256];
 
static OS_Semaphore_t *SemEthernet, *SemEthTransmit;
 
static int gIndex;          //byte index into 0x13ff0000 receive buffer
 
static int gCheckedBefore;
 
static int gEmptyBefore;
 
 
 
 
 
//Read received data from 0x13ff0000.  Data starts with 0x5d+MACaddress.
 
//Data is being received while processing the data.  Therefore,
 
//all errors require waiting and then re-processing the data
 
//to see if the error is fixed by receiving the rest of the packet.
 
int EthernetReceive(unsigned char *buffer, int length)
 
{
 
   int count;
 
   int start, i, j, shift, offset;
 
   int byte, byteNext;
 
   unsigned long crc;
 
   int byteCrc;
 
   volatile unsigned char *buf = (unsigned char*)ETHERNET_RECEIVE;
 
   int countEmpty, countEmptyGoal, countOk, needWait;
 
   int packetExpected;
 
 
 
   //Find the start of a frame
 
   countEmpty = 0;
 
   countOk = 0;
 
   needWait = 0;
 
   countEmptyGoal = COUNT_EMPTY;
 
   packetExpected = MemoryRead(IRQ_STATUS) & IRQ_ETHERNET_RECEIVE;
 
   if(packetExpected && buf[gIndex] == BYTE_EMPTY && gEmptyBefore)
 
   {
 
      //printf("Check ");
 
      countEmptyGoal = 1500;
 
   }
 
   MemoryRead(ETHERNET_REG);        //clear receive interrupt
 
   for(i = 0; i < INDEX_MASK; ++i)
 
   {
 
      //Check if partial packet possibly received
 
      if(needWait && gCheckedBefore == 0 && countOk != i && countEmpty != i)
 
      {
 
         gCheckedBefore = 1;
 
         //printf("W(%d,%d,%d)", i, countOk, countEmpty);
 
         return 0;                  //Wait for more data
 
      }
 
 
 
      //Detect start of frame
 
      byte = buf[(gIndex + i) & INDEX_MASK];
 
      if(byte == gDestMac[countOk] || (countOk && byte == 0xff))
 
      {
 
         if(++countOk == sizeof(gDestMac))
 
         {
 
            //Set bytes before 0x5d to BYTE_EMPTY
 
            offset = i - (int)sizeof(gDestMac);
 
            //if(offset > 3)
 
            //   printf("es%d ", offset);
 
            for(j = 0; j <= offset; ++j)
 
            {
 
               buf[gIndex] = BYTE_EMPTY;
 
               gIndex = (gIndex + 1) & INDEX_MASK;
 
            }
 
            break;
 
         }
 
      }
 
      else
 
      {
 
         //if(countOk)
 
         //   printf("N%d ", countOk);
 
         if(countOk == 3 && byte == BYTE_EMPTY)
 
            needWait = 1;
 
         if(byte == 0x5d)
 
            countOk = 1;
 
         else
 
            countOk = 0;
 
      }
 
 
 
      //Check if remainder of buffer is empty
 
      if(byte == BYTE_EMPTY)
 
      {
 
         if(++countEmpty >= countEmptyGoal)
 
         {
 
            //Set skiped bytes to BYTE_EMPTY
 
            //if(i - countEmpty > 3)
 
            //{
 
            //   printf("eb%d \n", i - countEmpty);
 
            //   //dump((char*)buf+gIndex, 0x200);
 
            //}
 
            for(j = 0; j <= i - countEmpty; ++j)
 
            {
 
               buf[gIndex] = BYTE_EMPTY;
 
               gIndex = (gIndex + 1) & INDEX_MASK;
 
            }
 
            gCheckedBefore = 0;
 
            if(countEmpty >= i && packetExpected)
 
               gEmptyBefore = 1;
 
            return 0;
 
         }
 
      }
 
      else
 
      {
 
         if(countEmpty > 2 || (countEmpty > 0 && countEmpty == i))
 
            needWait = 1;
 
         countEmpty = 0;
 
         gEmptyBefore = 0;
 
      }
 
   }
 
 
 
   //Found start of frame.  Now find end of frame and check CRC.
 
   start = gIndex;
 
   gIndex = (gIndex + 1) & INDEX_MASK;           //skip 0x5d byte
 
   crc = 0xffffffff;
 
   for(count = 0; count < length; )
 
   {
 
      byte = buf[gIndex];
 
      gIndex = (gIndex + 1) & INDEX_MASK;
 
 
 
      byte = ((byte << 4) & 0xf0) | (byte >> 4); //swap nibbles
 
      buffer[count++] = (unsigned char)byte;
 
      byte = reflect[byte] ^ (crc >> 24);        //calculate CRC32
 
      crc = CrcTable[byte] ^ (crc << 8);
 
      if(count >= 40)
 
      {
 
         //Check if CRC matches to detect end of frame
 
         byteCrc = reflectNibble[crc >> 24];
 
         byteNext = buf[gIndex];
 
         if(byteCrc == byteNext)
 
         {
 
            for(i = 1; i < 4; ++i)
 
            {
 
               shift = 24 - (i << 3);
 
               byteCrc = reflectNibble[(crc >> shift) & 0xff];
 
               byteNext = buf[(gIndex + i) & 0xffff];
 
               if(byteCrc != byteNext)
 
               {
 
                  //printf("nope %d %d 0x%x 0x%x\n", count, i, byteCrc, byteNext);
 
                  i = 99;
 
               }
 
            }
 
            if(i == 4)
 
            {
 
               //Found end of frame -- set used bytes to BYTE_EMPTY
 
               //printf("Found it! %d\n", count);
 
               gIndex = (gIndex + 4) & INDEX_MASK;
 
               for(i = 0; i < count+5; ++i)
 
                  buf[(start + i) & INDEX_MASK] = BYTE_EMPTY;
 
               while(gIndex & 3)
 
               {
 
                  buf[gIndex] = BYTE_EMPTY;
 
                  gIndex = (gIndex + 1) & INDEX_MASK;
 
               }
 
               gCheckedBefore = 0;
 
               return count;
 
            }
 
         }
 
      }
 
   }
 
   gIndex = start;
 
   if(gCheckedBefore)
 
   {
 
      //printf("CRC failure\n");
 
      buf[gIndex] = BYTE_EMPTY;
 
   }
 
   gCheckedBefore = 1;
 
   return 0;        //wait for more data
 
}
 
 
 
 
 
//Copy transmit data to 0x13fe0000 with preamble and CRC32
 
void EthernetTransmit(unsigned char *buffer, int length)
 
{
 
   int i, byte, shift;
 
   unsigned long crc;
 
   volatile unsigned char *buf = (unsigned char*)ETHERNET_TRANSMIT;
 
 
 
   OS_SemaphorePend(SemEthTransmit, OS_WAIT_FOREVER);
 
 
 
   //Wait for previous transfer to complete
 
   for(i = 0; i < 10000; ++i)
 
   {
 
      if(MemoryRead(IRQ_STATUS) & IRQ_ETHERNET_TRANSMIT)
 
         break;
 
   }
 
   //if(i > 100)
 
   //   printf("wait=%d ", i);
 
 
 
   Led(2, 2);
 
   while(length < 60 || (length & 3) != 0)
 
      buffer[length++] = 0;
 
 
 
   //Start of Ethernet frame
 
   for(i = 0; i < 7; ++i)
 
      buf[i] = 0x55;
 
   buf[7] = 0x5d;
 
 
 
   //Calculate CRC32
 
   crc = 0xffffffff;
 
   for(i = 0; i < length; ++i)
 
   {
 
      byte = buffer[i];
 
      buf[i + 8] = (unsigned char)((byte << 4) | (byte >> 4)); //swap nibbles
 
      byte = reflect[byte] ^ (crc >> 24);        //calculate CRC32
 
      crc = CrcTable[byte] ^ (crc << 8);
 
   }
 
 
 
   //Output CRC32
 
   for(i = 0; i < 4; ++i)
 
   {
 
      shift = 24 - (i << 3);
 
      byte = reflectNibble[(crc >> shift) & 0xff];
 
      buf[length + 8 + i] = (unsigned char)byte;
 
   }
 
 
 
   //Start transfer
 
   length = (length + 12 + 4) >> 2;
 
   MemoryWrite(ETHERNET_REG, length);
 
   Led(2, 0);
 
 
 
   OS_SemaphorePost(SemEthTransmit);
 
}
 
 
 
 
 
void EthernetThread(void *arg)
 
{
 
   int length;
 
   int rc;
 
   unsigned int ticks, ticksLast=0;
 
   IPFrame *ethFrame=NULL;
 
   static int ethErrorCount=0;
 
   (void)arg;
 
 
 
   for(;;)
 
   {
 
      OS_InterruptMaskSet(IRQ_ETHERNET_RECEIVE);
 
      OS_SemaphorePend(SemEthernet, 50);  //wait for interrupt
 
 
 
      //Process all received packets
 
      for(;;)
 
      {
 
         if(ethFrame == NULL)
 
            ethFrame = IPFrameGet(FRAME_COUNT_RCV);
 
         if(ethFrame == NULL)
 
         {
 
            OS_ThreadSleep(50);
 
            break;
 
         }
 
         length = EthernetReceive(ethFrame->packet, PACKET_SIZE);
 
         if(length == 0)
 
         {
 
#if 1       //Disable this on quiet networks
 
            //No Ethernet packets seen for 60 seconds?
 
            if(++ethErrorCount >= 120)
 
            {
 
               printf("\nEthernetInit\n");
 
               ethErrorCount = 0;
 
               EthernetInit(NULL);  //Need to re-initialize
 
            }
 
#endif
 
            break;
 
         }
 
         ethErrorCount = 0;
 
         Led(1, 1);
 
         rc = IPProcessEthernetPacket(ethFrame, length);
 
         Led(1, 0);
 
         if(rc)
 
            ethFrame = NULL;
 
      }
 
 
 
      ticks = OS_ThreadTime();
 
      if(ticks - ticksLast >= 50)
 
      {
 
         IPTick();
 
         ticksLast = ticks;
 
      }
 
   }
 
}
 
 
 
 
 
void EthernetIsr(void *arg)
 
{
 
   (void)arg;
 
   OS_InterruptMaskClear(IRQ_ETHERNET_TRANSMIT | IRQ_ETHERNET_RECEIVE);
 
   OS_SemaphorePost(SemEthernet);
 
}
 
 
 
 
 
/******************* CRC32 calculations **********************
 
 * The CRC32 code is modified from Michale Barr's article in
 
 * Embedded Systems Programming January 2000.
 
 * A CRC is really modulo-2 binary division.  Substraction means XOR. */
 
static unsigned int Reflect(unsigned int value, int bits)
 
{
 
   unsigned int num=0;
 
   int i;
 
   for(i = 0; i < bits; ++i)
 
   {
 
      num = (num << 1) | (value & 1);
 
      value >>= 1;
 
   }
 
   return num;
 
}
 
 
 
 
 
static void CrcInit(void)
 
{
 
   unsigned int remainder;
 
   int dividend, bit, i;
 
 
 
   //Compute the remainder of each possible dividend
 
   for(dividend = 0; dividend < 256; ++dividend)
 
   {
 
      //Start with the dividend followed by zeros
 
      remainder = dividend << 24;
 
      //Perform modulo-2 division, a bit at a time
 
      for(bit = 8; bit > 0; --bit)
 
      {
 
         //Try to divide the current data bit
 
         if(remainder & TOPBIT)
 
            remainder = (remainder << 1) ^ POLYNOMIAL;
 
         else
 
            remainder = remainder << 1;
 
      }
 
      CrcTable[dividend] = remainder;
 
   }
 
   for(i = 0; i < 256; ++i)
 
   {
 
      reflect[i] = (unsigned char)Reflect(i, 8);
 
      reflectNibble[i] = (unsigned char)((Reflect((i >> 4) ^ 0xf, 4) << 4) |
 
         Reflect(i ^ 0xf, 4));
 
   }
 
}
 
 
 
 
 
static void SpinWait(int clocks)
 
{
 
   int value = *(volatile int*)COUNTER_REG + clocks;
 
   while(*(volatile int*)COUNTER_REG - value < 0)
 
      ;
 
}
 
 
 
 
 
void EthernetInit(unsigned char MacAddress[6])
 
{
 
   //Format of SMI data: 0101 A4:A0 R4:R0 00 D15:D0
 
   unsigned long data=0x5f800100; //SMI R0 = 10Mbps full duplex
 
   //unsigned long data=0x5f800000; //SMI R0 = 10Mbps half duplex
 
   int i, value;
 
   volatile unsigned char *buf = (unsigned char*)ETHERNET_RECEIVE;
 
 
 
   CrcInit();
 
   if(MacAddress)
 
   {
 
      for(i = 0; i < 6; ++i)
 
      {
 
         value = MacAddress[i];
 
         gDestMac[i+1] = (unsigned char)((value >> 4) | (value << 4));
 
      }
 
   }
 
 
 
   //Configure Ethernet PHY for 10Mbps full duplex via SMI interface
 
   MemoryWrite(GPIO0_OUT, ETHERNET_MDIO | ETHERNET_MDIO_WE | ETHERENT_MDC);
 
   for(i = 0; i < 34; ++i)
 
   {
 
      MemoryWrite(GPIO0_OUT, ETHERENT_MDC);    //clock high
 
      SpinWait(10);
 
      MemoryWrite(GPIO0_CLEAR, ETHERENT_MDC);  //clock low
 
      SpinWait(10);
 
   }
 
   for(i = 31; i >= 0; --i)
 
   {
 
      value = (data >> i) & 1;
 
      if(value)
 
         MemoryWrite(GPIO0_OUT, ETHERNET_MDIO);
 
      else
 
         MemoryWrite(GPIO0_CLEAR, ETHERNET_MDIO);
 
      MemoryWrite(GPIO0_OUT, ETHERENT_MDC);    //clock high
 
      SpinWait(10);
 
      MemoryWrite(GPIO0_CLEAR, ETHERENT_MDC);  //clock low
 
      SpinWait(10);
 
   }
 
   MemoryWrite(GPIO0_CLEAR, ETHERNET_MDIO_WE | ETHERNET_ENABLE);
 
 
 
   //Clear receive buffer
 
   for(i = 0; i <= INDEX_MASK; ++i)
 
      buf[i] = BYTE_EMPTY;
 
 
 
   if(SemEthernet == NULL)
 
   {
 
      SemEthernet = OS_SemaphoreCreate("eth", 0);
 
      SemEthTransmit = OS_SemaphoreCreate("ethT", 1);
 
      OS_ThreadCreate("eth", EthernetThread, NULL, 240, 0);
 
   }
 
 
 
   //Setup interrupts for receiving data
 
   OS_InterruptRegister(IRQ_ETHERNET_RECEIVE, EthernetIsr);
 
 
 
   //Start receive DMA
 
   MemoryWrite(GPIO0_OUT, ETHERNET_ENABLE);
 
}
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.