Line 30... |
Line 30... |
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
|
`define LONG_MPY
|
module cpuops(i_clk,i_rst, i_ce, i_valid, i_op, i_a, i_b, o_c, o_f, o_valid,
|
module cpuops(i_clk,i_rst, i_ce, i_valid, i_op, i_a, i_b, o_c, o_f, o_valid,
|
o_illegal, o_busy);
|
o_illegal, o_busy);
|
parameter IMPLEMENT_MPY = 1;
|
parameter IMPLEMENT_MPY = 1;
|
input i_clk, i_rst, i_ce;
|
input i_clk, i_rst, i_ce;
|
input [3:0] i_op;
|
input [3:0] i_op;
|
Line 88... |
Line 89... |
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
||(i_op == 4'h6) // LSL
|
||(i_op == 4'h6) // LSL
|
||(i_op == 4'h5)); // LSR
|
||(i_op == 4'h5)); // LSR
|
|
|
|
`ifdef LONG_MPY
|
|
reg mpyhi;
|
|
wire mpybusy;
|
|
`endif
|
|
|
// A 4-way multiplexer can be done in one 6-LUT.
|
// A 4-way multiplexer can be done in one 6-LUT.
|
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
|
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
|
// the Xilinx multiplexer fabric that follows.
|
// the Xilinx multiplexer fabric that follows.
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
Line 111... |
Line 116... |
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
|
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
|
`ifndef LONG_MPY
|
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
|
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
|
|
`endif
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
// 4'h1010: The unimplemented MPYU,
|
// 4'h1010: The unimplemented MPYU,
|
// 4'h1011: and here for the unimplemented MPYS
|
// 4'h1011: and here for the unimplemented MPYS
|
4'b1100: o_c <= w_brev_result; // BREV
|
4'b1100: o_c <= w_brev_result; // BREV
|
4'b1101: o_c <= w_popc_result; // POPC
|
4'b1101: o_c <= w_popc_result; // POPC
|
Line 126... |
Line 133... |
|
|
assign o_busy = 1'b0;
|
assign o_busy = 1'b0;
|
|
|
reg r_illegal;
|
reg r_illegal;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_illegal <= (i_ce)&&((i_op == 4'h3)||(i_op == 4'h4));
|
r_illegal <= (i_ce)&&((i_op == 4'ha)||(i_op == 4'hb)
|
|
`ifdef LONG_MPY
|
|
||(i_op == 4'h8)
|
|
`endif
|
|
);
|
assign o_illegal = r_illegal;
|
assign o_illegal = r_illegal;
|
end else begin
|
end else begin
|
//
|
//
|
// Multiply pre-logic
|
// Multiply pre-logic
|
//
|
//
|
|
`ifdef LONG_MPY
|
|
reg [63:0] r_mpy_result;
|
|
if (IMPLEMENT_MPY == 1)
|
|
begin // Our two clock option (one clock extra)
|
|
reg signed [64:0] r_mpy_a_input, r_mpy_b_input;
|
|
reg mpypipe, x;
|
|
initial mpypipe = 1'b0;
|
|
always @(posedge i_clk)
|
|
mpypipe <= (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'h8));
|
|
always @(posedge i_clk)
|
|
if (i_ce)
|
|
begin
|
|
r_mpy_a_input <= {{(33){(i_a[31])&(i_op[0])}},
|
|
i_a[31:0]};
|
|
r_mpy_b_input <= {{(33){(i_b[31])&(i_op[0])}},
|
|
i_b[31:0]};
|
|
end
|
|
always @(posedge i_clk)
|
|
if (mpypipe)
|
|
{x, r_mpy_result} = r_mpy_a_input
|
|
* r_mpy_b_input;
|
|
always @(posedge i_clk)
|
|
if (i_ce)
|
|
mpyhi = i_op[1];
|
|
assign mpybusy = mpypipe;
|
|
end else if (IMPLEMENT_MPY == 2)
|
|
begin // The three clock option
|
|
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
|
reg r_mpy_signed;
|
|
reg [1:0] mpypipe;
|
|
|
|
// First clock, latch in the inputs
|
|
always @(posedge i_clk)
|
|
begin
|
|
// mpypipe indicates we have a multiply in the
|
|
// pipeline. In this case, the multiply
|
|
// pipeline is a two stage pipeline, so we need
|
|
// two bits in the pipe.
|
|
mpypipe[0] <= (i_ce)&&((i_op[3:1]==3'h5)
|
|
||(i_op[3:0]==4'h8));
|
|
mpypipe[1] <= mpypipe[0];
|
|
|
|
if (i_op[0]) // i.e. if signed multiply
|
|
begin
|
|
r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
|
|
r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
|
|
end else begin
|
|
r_mpy_a_input <= i_a[31:0];
|
|
r_mpy_b_input <= i_b[31:0];
|
|
end
|
|
// The signed bit really only matters in the
|
|
// case of 64 bit multiply. We'll keep track
|
|
// of it, though, and pretend in all other
|
|
// cases.
|
|
r_mpy_signed <= i_op[0];
|
|
|
|
if (i_ce)
|
|
mpyhi = i_op[1];
|
|
end
|
|
|
|
assign mpybusy = |mpypipe;
|
|
|
|
// Second clock, do the multiplies, get the "partial
|
|
// products". Here, we break our input up into two
|
|
// halves,
|
|
//
|
|
// A = (2^16 ah + al)
|
|
// B = (2^16 bh + bl)
|
|
//
|
|
// and use these to compute partial products.
|
|
//
|
|
// AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
|
|
//
|
|
// Since we're following the FOIL algorithm to get here,
|
|
// we'll name these partial products according to FOIL.
|
|
//
|
|
// The trick is what happens if A or B is signed. In
|
|
// those cases, the real value of A will not be given by
|
|
// A = (2^16 ah + al)
|
|
// but rather
|
|
// A = (2^16 ah[31^] + al) - 2^31
|
|
// (where we have flipped the sign bit of A)
|
|
// and so ...
|
|
//
|
|
// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
|
|
// = 2^32(ah*bh)
|
|
// +2^16 (ah*bl+al*bh)
|
|
// +(al*bl)
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al)
|
|
// - 2^62
|
|
// = 2^32(ah*bh)
|
|
// +2^16 (ah*bl+al*bh)
|
|
// +(al*bl)
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
|
|
//
|
|
reg [31:0] pp_f, pp_l; // pp_o, pp_i, pp_l;
|
|
reg [32:0] pp_oi;
|
|
reg [32:0] pp_s;
|
|
always @(posedge i_clk)
|
|
begin
|
|
pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
|
|
pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0]
|
|
+ r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
|
|
pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
|
|
// And a special one for the sign
|
|
if (r_mpy_signed)
|
|
pp_s <= 32'h8000_0000-(
|
|
r_mpy_a_input[31:0]
|
|
+ r_mpy_b_input[31:0]);
|
|
else
|
|
pp_s <= 33'h0;
|
|
end
|
|
|
|
// Third clock, add the results and produce a product
|
|
always @(posedge i_clk)
|
|
begin
|
|
r_mpy_result[15:0] <= pp_l[15:0];
|
|
r_mpy_result[63:16] <=
|
|
{ 32'h00, pp_l[31:16] }
|
|
+ { 15'h00, pp_oi }
|
|
+ { pp_s, 15'h00 }
|
|
+ { pp_f, 16'h00 };
|
|
end
|
|
end // Fourth clock -- results are available for writeback.
|
|
`else
|
wire signed [16:0] w_mpy_a_input, w_mpy_b_input;
|
wire signed [16:0] w_mpy_a_input, w_mpy_b_input;
|
wire [33:0] w_mpy_result;
|
wire [33:0] w_mpy_result;
|
reg [31:0] r_mpy_result;
|
reg [31:0] r_mpy_result;
|
assign w_mpy_a_input ={ ((i_a[15])&(i_op[0])), i_a[15:0] };
|
assign w_mpy_a_input ={ ((i_a[15])&(i_op[0])), i_a[15:0] };
|
assign w_mpy_b_input ={ ((i_b[15])&(i_op[0])), i_b[15:0] };
|
assign w_mpy_b_input ={ ((i_b[15])&(i_op[0])), i_b[15:0] };
|
assign w_mpy_result = w_mpy_a_input * w_mpy_b_input;
|
assign w_mpy_result = w_mpy_a_input * w_mpy_b_input;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_ce)
|
if (i_ce)
|
r_mpy_result = w_mpy_result[31:0];
|
r_mpy_result = w_mpy_result[31:0];
|
|
`endif
|
|
|
//
|
//
|
// The master ALU case statement
|
// The master ALU case statement
|
//
|
//
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
Line 159... |
Line 296... |
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0011: o_c <= i_a | i_b; // Or
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
|
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
|
`ifdef LONG_MPY
|
|
4'b1000: o_c <= r_mpy_result[31:0]; // MPY
|
|
`else
|
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
|
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
|
|
`endif
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
|
`ifdef LONG_MPY
|
|
4'b1010: o_c <= r_mpy_result[63:32]; // MPYHU
|
|
4'b1011: o_c <= r_mpy_result[63:32]; // MPYHS
|
|
`else
|
4'b1010: o_c <= r_mpy_result; // MPYU
|
4'b1010: o_c <= r_mpy_result; // MPYU
|
4'b1011: o_c <= r_mpy_result; // MPYS
|
4'b1011: o_c <= r_mpy_result; // MPYS
|
|
`endif
|
4'b1100: o_c <= w_brev_result; // BREV
|
4'b1100: o_c <= w_brev_result; // BREV
|
4'b1101: o_c <= w_popc_result; // POPC
|
4'b1101: o_c <= w_popc_result; // POPC
|
4'b1110: o_c <= w_rol_result; // ROL
|
4'b1110: o_c <= w_rol_result; // ROL
|
default: o_c <= i_b; // MOV, LDI
|
default: o_c <= i_b; // MOV, LDI
|
endcase
|
endcase
|
end else if (r_busy)
|
end else if (r_busy)
|
|
`ifdef LONG_MPY
|
|
o_c <= (mpyhi)?r_mpy_result[63:32]:r_mpy_result[31:0];
|
|
`else
|
o_c <= r_mpy_result;
|
o_c <= r_mpy_result;
|
|
`endif
|
|
|
reg r_busy;
|
reg r_busy;
|
initial r_busy = 1'b0;
|
initial r_busy = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_busy <= (~i_rst)&&(i_ce)&&(i_valid)
|
r_busy <= (~i_rst)&&(i_ce)&&(i_valid)
|
|
`ifdef LONG_MPY
|
|
&&((i_op[3:1] == 3'h5)
|
|
||(i_op[3:0] == 4'h8))||mpybusy;
|
|
`else
|
&&(i_op[3:1] == 3'h5);
|
&&(i_op[3:1] == 3'h5);
|
|
`endif
|
|
|
assign o_busy = r_busy;
|
assign o_busy = r_busy;
|
|
|
assign o_illegal = 1'b0;
|
assign o_illegal = 1'b0;
|
end endgenerate
|
end endgenerate
|
Line 193... |
Line 348... |
initial o_valid = 1'b0;
|
initial o_valid = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
o_valid <= 1'b0;
|
o_valid <= 1'b0;
|
else
|
else
|
o_valid <= (i_ce)&&(i_valid)&&(i_op[3:1] != 3'h5)
|
o_valid <= (i_ce)&&(i_valid)
|
||(o_busy);
|
`ifdef LONG_MPY
|
|
&&(i_op[3:1] != 3'h5)&&(i_op[3:0] != 4'h8)
|
|
||(o_busy)&&(~mpybusy);
|
|
`else
|
|
&&(i_op[3:1] != 3'h5)||(o_busy);
|
|
`endif
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|