Line 73... |
Line 73... |
output wire [31:0] o_I;
|
output wire [31:0] o_I;
|
output reg o_zI;
|
output reg o_zI;
|
output reg [3:0] o_cond;
|
output reg [3:0] o_cond;
|
output reg o_wF;
|
output reg o_wF;
|
output reg [3:0] o_op;
|
output reg [3:0] o_op;
|
output reg o_ALU, o_M, o_DV, o_FP, o_break, o_lock;
|
output reg o_ALU, o_M, o_DV, o_FP, o_break;
|
|
output wire o_lock;
|
output reg o_wR, o_rA, o_rB;
|
output reg o_wR, o_rA, o_rB;
|
output wire o_early_branch;
|
output wire o_early_branch;
|
output wire [(AW-1):0] o_branch_pc;
|
output wire [(AW-1):0] o_branch_pc;
|
output wire o_ljmp;
|
output wire o_ljmp;
|
output reg o_pipe;
|
output wire o_pipe;
|
|
|
wire dcdA_stall, dcdB_stall, dcdF_stall;
|
wire dcdA_stall, dcdB_stall, dcdF_stall;
|
wire o_dcd_early_branch;
|
wire o_dcd_early_branch;
|
wire [(AW-1):0] o_dcd_branch_pc;
|
wire [(AW-1):0] o_dcd_branch_pc;
|
reg o_dcdI, o_dcdIz;
|
reg o_dcdI, o_dcdIz;
|
|
`ifdef OPT_PIPELINED
|
|
reg r_lock, r_pipe;
|
|
`endif
|
|
|
|
|
wire [4:0] w_op;
|
wire [4:0] w_op;
|
wire w_ldi, w_mov, w_cmptst, w_ldixx, w_ALU;
|
wire w_ldi, w_mov, w_cmptst, w_ldilo, w_ALU, w_brev, w_noop;
|
wire [4:0] w_dcdR, w_dcdB, w_dcdA;
|
wire [4:0] w_dcdR, w_dcdB, w_dcdA;
|
wire w_dcdR_pc, w_dcdR_cc;
|
wire w_dcdR_pc, w_dcdR_cc;
|
wire w_dcdA_pc, w_dcdA_cc;
|
wire w_dcdA_pc, w_dcdA_cc;
|
wire w_dcdB_pc, w_dcdB_cc;
|
wire w_dcdB_pc, w_dcdB_cc;
|
wire [3:0] w_cond;
|
wire [3:0] w_cond;
|
wire w_wF, w_dcdM, w_dcdDV, w_dcdFP;
|
wire w_wF, w_dcdM, w_dcdDV, w_dcdFP;
|
wire w_wR, w_rA, w_rB, w_wR_n;
|
wire w_wR, w_rA, w_rB, w_wR_n;
|
wire w_ljmp;
|
wire w_ljmp;
|
|
wire [31:0] iword;
|
generate
|
|
if (EARLY_BRANCHING != 0)
|
|
assign w_ljmp = (iword == 32'h7c87c000);
|
|
else
|
|
assign w_ljmp = 1'b0;
|
|
endgenerate
|
|
|
|
|
|
wire [31:0] iword;
|
|
`ifdef OPT_VLIW
|
`ifdef OPT_VLIW
|
reg [16:0] r_nxt_half;
|
reg [16:0] r_nxt_half;
|
assign iword = (o_phase)
|
assign iword = (o_phase)
|
// set second half as a NOOP ... but really
|
// set second half as a NOOP ... but really
|
// shouldn't matter
|
// shouldn't matter
|
Line 117... |
Line 114... |
: i_instruction;
|
: i_instruction;
|
`else
|
`else
|
assign iword = { 1'b0, i_instruction[30:0] };
|
assign iword = { 1'b0, i_instruction[30:0] };
|
`endif
|
`endif
|
|
|
|
generate
|
|
if (EARLY_BRANCHING != 0)
|
|
assign w_ljmp = (iword == 32'h7c87c000);
|
|
else
|
|
assign w_ljmp = 1'b0;
|
|
endgenerate
|
|
|
|
|
assign w_op= iword[26:22];
|
assign w_op= iword[26:22];
|
assign w_mov = (w_op == 5'h0f);
|
assign w_mov = (w_op == 5'h0f);
|
assign w_ldi = (w_op[4:1] == 4'hb);
|
assign w_ldi = (w_op[4:1] == 4'hb);
|
|
assign w_brev = (w_op == 5'hc);
|
assign w_cmptst = (w_op[4:1] == 4'h8);
|
assign w_cmptst = (w_op[4:1] == 4'h8);
|
assign w_ldixx = (w_op[4:1] == 4'h4);
|
assign w_ldilo = (w_op[4:0] == 5'h9);
|
assign w_ALU = (~w_op[4]);
|
assign w_ALU = (~w_op[4]);
|
|
|
// 4 LUTs
|
// 4 LUTs
|
|
//
|
|
// Two parts to the result register: the register set, given for
|
|
// moves in i_word[18] but only for the supervisor, and the other
|
|
// four bits encoded in the instruction.
|
|
//
|
assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie,
|
assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie,
|
iword[30:27] };
|
iword[30:27] };
|
|
// 2 LUTs
|
|
//
|
|
// If the result register is either CC or PC, and this would otherwise
|
|
// be a floating point instruction with floating point opcode of 0,
|
|
// then this is a NOOP.
|
|
assign w_noop = (w_op[4:0] == 5'h18)&&(w_dcdR[3:1] == 3'h7);
|
|
|
// 4 LUTs
|
// 4 LUTs
|
assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie,
|
assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie,
|
iword[17:14] };
|
iword[17:14] };
|
|
|
// 0 LUTs
|
// 0 LUTs
|
Line 173... |
Line 191... |
||((w_dcdM)&&(w_op[0]))
|
||((w_dcdM)&&(w_op[0]))
|
// Test/compares
|
// Test/compares
|
||(w_op[4:1]== 4'h8);
|
||(w_op[4:1]== 4'h8);
|
// 1 LUTs -- do we read a register for operand B? Specifically, do
|
// 1 LUTs -- do we read a register for operand B? Specifically, do
|
// we need to stall if the register is not (yet) ready?
|
// we need to stall if the register is not (yet) ready?
|
assign w_rB = (w_mov)||((iword[18])&&((~w_ldi)&&(~w_ldixx)));
|
assign w_rB = (w_mov)||((iword[18])&&(~w_ldi));
|
// 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR
|
// 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR
|
assign w_wR_n = ((w_dcdM)&&(w_op[0]))
|
assign w_wR_n = ((w_dcdM)&&(w_op[0]))
|
||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7))
|
||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7))
|
||(w_cmptst);
|
||(w_cmptst);
|
assign w_wR = ~w_wR_n;
|
assign w_wR = ~w_wR_n;
|
Line 186... |
Line 204... |
//
|
//
|
// This'd be 4 LUTs, save that we have the carve out for NOOPs
|
// This'd be 4 LUTs, save that we have the carve out for NOOPs
|
// and writes to the PC/CC register(s).
|
// and writes to the PC/CC register(s).
|
assign w_wF = (w_cmptst)
|
assign w_wF = (w_cmptst)
|
||((w_cond[3])&&((w_dcdFP)||(w_dcdDV)
|
||((w_cond[3])&&((w_dcdFP)||(w_dcdDV)
|
||((w_ALU)&&(~w_mov)&&(~w_ldixx)
|
||((w_ALU)&&(~w_mov)&&(~w_ldilo)&&(~w_brev)
|
&&(iword[30:28] != 3'h7))));
|
&&(iword[30:28] != 3'h7))));
|
|
|
// Bottom 13 bits: no LUT's
|
// Bottom 13 bits: no LUT's
|
// w_dcd[12: 0] -- no LUTs
|
// w_dcd[12: 0] -- no LUTs
|
// w_dcd[ 13] -- 2 LUTs
|
// w_dcd[ 13] -- 2 LUTs
|
Line 269... |
Line 287... |
else if ((IMPLEMENT_FPU==0)&&(w_dcdFP))
|
else if ((IMPLEMENT_FPU==0)&&(w_dcdFP))
|
o_illegal <= 1'b1;
|
o_illegal <= 1'b1;
|
|
|
if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)
|
if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)
|
&&(
|
&&(
|
(w_op[2:0] != 3'h2) // LOCK
|
(w_op[2:0] != 3'h1) // BREAK
|
&&(w_op[2:0] != 3'h1) // BREAK
|
`ifdef OPT_PIPELINED
|
|
&&(w_op[2:0] != 3'h2) // LOCK
|
|
`endif
|
&&(w_op[2:0] != 3'h0))) // NOOP
|
&&(w_op[2:0] != 3'h0))) // NOOP
|
o_illegal <= 1'b1;
|
o_illegal <= 1'b1;
|
end
|
end
|
|
|
|
|
Line 311... |
Line 331... |
// already done the rest of the decode necessary to
|
// already done the rest of the decode necessary to
|
// settle between the other instructions. For example,
|
// settle between the other instructions. For example,
|
// o_FP plus these four bits uniquely defines the FP
|
// o_FP plus these four bits uniquely defines the FP
|
// instruction, o_DV plus the bottom of these defines
|
// instruction, o_DV plus the bottom of these defines
|
// the divide, etc.
|
// the divide, etc.
|
o_op <= (w_ldi)? 4'hf:w_op[3:0];
|
o_op <= (w_ldi)||(w_noop)? 4'hf:w_op[3:0];
|
|
|
// Default values
|
// Default values
|
o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR};
|
o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR};
|
o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA};
|
o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA};
|
o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB};
|
o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB};
|
Line 323... |
Line 343... |
o_rA <= w_rA;
|
o_rA <= w_rA;
|
o_rB <= w_rB;
|
o_rB <= w_rB;
|
r_I <= w_I;
|
r_I <= w_I;
|
o_zI <= w_Iz;
|
o_zI <= w_Iz;
|
|
|
o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst); // 1 LUT
|
// Turn a NOOP into an ALU operation--subtract in
|
|
// particular, although it doesn't really matter as long
|
|
// as it doesn't take longer than one clock. Note
|
|
// also that this depends upon not setting any registers
|
|
// or flags, which should already be true.
|
|
o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst)||(w_noop); // 2 LUT
|
o_M <= w_dcdM;
|
o_M <= w_dcdM;
|
o_DV <= w_dcdDV;
|
o_DV <= w_dcdDV;
|
o_FP <= w_dcdFP;
|
o_FP <= w_dcdFP;
|
|
|
o_break <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b001);
|
o_break <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b001);
|
o_lock <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b010);
|
`ifdef OPT_PIPELINED
|
|
r_lock <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b010);
|
|
`endif
|
`ifdef OPT_VLIW
|
`ifdef OPT_VLIW
|
r_nxt_half <= { iword[31], iword[13:5],
|
r_nxt_half <= { iword[31], iword[13:5],
|
((iword[21])? iword[20:19] : 2'h0),
|
((iword[21])? iword[20:19] : 2'h0),
|
iword[4:0] };
|
iword[4:0] };
|
`endif
|
`endif
|
end
|
end
|
|
|
|
`ifdef OPT_PIPELINED
|
|
assign o_lock = r_lock;
|
|
`else
|
|
assign o_lock = 1'b0;
|
|
`endif
|
|
|
generate
|
generate
|
if (EARLY_BRANCHING!=0)
|
if (EARLY_BRANCHING!=0)
|
begin
|
begin
|
reg r_early_branch, r_ljmp;
|
reg r_early_branch, r_ljmp;
|
reg [(AW-1):0] r_branch_pc;
|
reg [(AW-1):0] r_branch_pc;
|
Line 408... |
Line 441... |
// by one
|
// by one
|
// Note that we're not using iword here ... there's a lot of logic
|
// Note that we're not using iword here ... there's a lot of logic
|
// taking place, and it's only valid if the new word is not compressed.
|
// taking place, and it's only valid if the new word is not compressed.
|
//
|
//
|
reg r_valid;
|
reg r_valid;
|
|
`ifdef OPT_PIPELINED
|
|
reg r_pipe;
|
|
initial r_pipe = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_ce)
|
if (i_ce)
|
o_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31])
|
r_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31])
|
&&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22])
|
&&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22])
|
&&(i_instruction[17:14] == o_dcdB[3:0])
|
&&(i_instruction[17:14] == o_dcdB[3:0])
|
|
&&(i_instruction[17:14] != o_dcdA[3:0])
|
&&(i_gie == o_gie)
|
&&(i_gie == o_gie)
|
&&((i_instruction[21:19]==o_cond[2:0])
|
&&((i_instruction[21:19]==o_cond[2:0])
|
||(o_cond[2:0] == 3'h0))
|
||(o_cond[2:0] == 3'h0))
|
&&((i_instruction[13:0]==r_I[13:0])
|
&&((i_instruction[13:0]==r_I[13:0])
|
||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1)));
|
||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1)));
|
|
assign o_pipe = r_pipe;
|
|
`else
|
|
assign o_pipe = 1'b0;
|
|
`endif
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_valid <= 1'b0;
|
r_valid <= 1'b0;
|
else if ((i_ce)&&(o_ljmp))
|
else if ((i_ce)&&(o_ljmp))
|
r_valid <= 1'b0;
|
r_valid <= 1'b0;
|