Line 21... |
Line 21... |
-- synchronously sampled on both edges of "rxclk".
|
-- synchronously sampled on both edges of "rxclk".
|
--
|
--
|
-- Stage B: The input signals are re-registered on the rising edge of "rxclk"
|
-- Stage B: The input signals are re-registered on the rising edge of "rxclk"
|
-- for further processing. This implies that every rising edge of "rxclk"
|
-- for further processing. This implies that every rising edge of "rxclk"
|
-- produces two new samples of "spw_di" and two new samples of "spw_si".
|
-- produces two new samples of "spw_di" and two new samples of "spw_si".
|
-- Some preparation is done for data/strobe decoding.
|
|
--
|
--
|
-- Stage C: Transitions in input signals are detected by comparing the XOR
|
-- Stage C: Transitions in input signals are detected by comparing the XOR
|
-- of data and strobe to the XOR of the previous data and strobe samples.
|
-- of data and strobe to the XOR of the previous data and strobe samples.
|
-- If there is a difference, we know that either data or strobe has changed
|
-- If there is a difference, we know that either data or strobe has changed
|
-- and the new value of data is a valid new bit. Every rising edge of "rxclk"
|
-- and the new value of data is a valid new bit. Every rising edge of "rxclk"
|
-- thus produces either zero, one or two new data bits.
|
-- thus produces either zero, or one or two new data bits.
|
--
|
--
|
-- Received data bits are pushed into a cyclic buffer. A two-hot array marks
|
-- Stage D: Received bits are collected in groups of "rxchunk" bits
|
-- the two positions where the next received bits will go into the buffer.
|
-- (unless rxchunk=1, in which case groups of 2 bits are used). Complete
|
-- In addition, a 4-step gray-encoded counter "headptr" indicates the current
|
-- groups are pushed into an 8-deep cyclic buffer. A 3-bit counter "headptr"
|
-- position in the cyclic buffer.
|
-- indicates the current position in the cyclic buffer.
|
--
|
--
|
-- The contents of the cyclic buffer and the head pointer are re-registered
|
-- The system clock domain reads bit groups from the cyclic buffer. A tail
|
-- on the rising edge of the system clock. A binary counter "tailptr" points
|
-- pointer indicates the next location to read from the buffer. A comparison
|
-- to next group of bits to read from the cyclic buffer. A comparison between
|
-- between the "tailptr" and a re-synchronized copy of the "headptr" determines
|
-- "tailptr" and "headptr" determines whether those bits have already been
|
-- whether valid bits are available in the buffer.
|
-- received and safely stored in the buffer.
|
--
|
|
-- Activity detection is based on a 3-bit counter "bitcnt". This counter is
|
|
-- incremented whenever the rxclk domain receives 1 or 2 new bits. The system
|
|
-- clock domain monitors a re-synchronized copy of the activity counter to
|
|
-- determine whether it has been updated since the previous system clock cycle.
|
--
|
--
|
-- Implementation guidelines
|
-- Implementation guidelines
|
-- -------------------------
|
-- -------------------------
|
--
|
--
|
-- IOB flip-flops must be used to sample spw_di and spw_si.
|
-- IOB flip-flops must be used to sample spw_di and spw_si.
|
Line 60... |
Line 63... |
--
|
--
|
|
|
library ieee;
|
library ieee;
|
use ieee.std_logic_1164.all;
|
use ieee.std_logic_1164.all;
|
use ieee.numeric_std.all;
|
use ieee.numeric_std.all;
|
|
use work.spwpkg.all;
|
|
|
entity spwrecvfront_fast is
|
entity spwrecvfront_fast is
|
|
|
generic (
|
generic (
|
-- Number of bits to pass to the application per system clock.
|
-- Number of bits to pass to the application per system clock.
|
Line 99... |
Line 103... |
-- Turn off FSM extraction.
|
-- Turn off FSM extraction.
|
-- Without this, XST will happily apply one-hot encoding to rrx.headptr.
|
-- Without this, XST will happily apply one-hot encoding to rrx.headptr.
|
attribute FSM_EXTRACT: string;
|
attribute FSM_EXTRACT: string;
|
attribute FSM_EXTRACT of spwrecvfront_fast: entity is "NO";
|
attribute FSM_EXTRACT of spwrecvfront_fast: entity is "NO";
|
|
|
-- Turn off register replication.
|
|
-- Without this, XST will happily replicate my synchronization flip-flops.
|
|
attribute REGISTER_DUPLICATION: string;
|
|
attribute REGISTER_DUPLICATION of spwrecvfront_fast: entity is "FALSE";
|
|
|
|
end entity spwrecvfront_fast;
|
end entity spwrecvfront_fast;
|
|
|
architecture spwrecvfront_arch of spwrecvfront_fast is
|
architecture spwrecvfront_arch of spwrecvfront_fast is
|
|
|
-- size of the cyclic buffer in bits;
|
-- width of bit groups in cyclic buffer;
|
-- typically 4 times rxchunk, except when rxchunk = 1
|
-- typically equal to rxchunk, except when rxchunk = 1
|
type chunk_array_type is array(1 to 4) of integer;
|
type memwidth_array_type is array(1 to 4) of integer;
|
constant chunk_to_buflen: chunk_array_type := ( 8, 8, 12, 16 );
|
constant chunk_to_memwidth: memwidth_array_type := ( 2, 2, 3, 4 );
|
constant c_buflen: integer := chunk_to_buflen(rxchunk);
|
constant memwidth: integer := chunk_to_memwidth(rxchunk);
|
|
|
-- convert from straight binary to reflected binary gray code
|
|
function gray_encode(b: in std_logic_vector) return std_logic_vector is
|
|
variable g: std_logic_vector(b'high downto b'low);
|
|
begin
|
|
g(b'high) := b(b'high);
|
|
for i in b'high-1 downto b'low loop
|
|
g(i) := b(i) xor b(i+1);
|
|
end loop;
|
|
return g;
|
|
end function;
|
|
|
|
-- convert from reflected binary gray code to straight binary
|
|
function gray_decode(g: in std_logic_vector) return std_logic_vector is
|
|
variable b: std_logic_vector(g'high downto g'low);
|
|
begin
|
|
b(g'high) := g(g'high);
|
|
for i in g'high-1 downto g'low loop
|
|
b(i) := g(i) xor b(i+1);
|
|
end loop;
|
|
return b;
|
|
end function;
|
|
|
|
-- stage A: input flip-flops for rising/falling rxclk
|
|
signal s_a_di0: std_logic;
|
|
signal s_a_di1: std_logic;
|
|
signal s_a_si0: std_logic;
|
|
signal s_a_si1: std_logic;
|
|
|
|
-- registers in rxclk domain
|
-- registers in rxclk domain
|
type rxregs_type is record
|
type rxregs_type is record
|
-- reset synchronizer
|
-- stage B: re-register input samples
|
reset: std_logic_vector(1 downto 0);
|
|
-- stage B: re-register input samples and prepare for data/strobe decoding
|
|
b_di0: std_ulogic;
|
b_di0: std_ulogic;
|
|
b_si0: std_ulogic;
|
b_di1: std_ulogic;
|
b_di1: std_ulogic;
|
b_si1: std_ulogic;
|
b_si1: std_ulogic;
|
b_xor0: std_ulogic; -- b_xor0 = b_di0 xor b_si0
|
-- stage C: data/strobe decoding
|
-- stage C: after data/strobe decoding
|
|
c_bit: std_logic_vector(1 downto 0);
|
c_bit: std_logic_vector(1 downto 0);
|
c_val: std_logic_vector(1 downto 0);
|
c_val: std_logic_vector(1 downto 0);
|
c_xor1: std_ulogic;
|
c_xor1: std_ulogic;
|
-- cyclic bit buffer
|
-- stage D: collect groups of memwidth bits
|
bufdata: std_logic_vector(c_buflen-1 downto 0); -- data bits
|
d_shift: std_logic_vector(memwidth-1 downto 0);
|
bufmark: std_logic_vector(c_buflen-1 downto 0); -- two-hot, marking destination of next two bits
|
d_count: std_logic_vector(memwidth-1 downto 0);
|
headptr: std_logic_vector(1 downto 0); -- gray encoded head position
|
-- cyclic buffer access
|
headlow: std_logic_vector(1 downto 0); -- least significant bits of head position
|
bufdata: std_logic_vector(memwidth-1 downto 0);
|
headinc: std_ulogic; -- must update headptr on next clock
|
bufwrite: std_ulogic;
|
|
headptr: std_logic_vector(2 downto 0);
|
-- activity detection
|
-- activity detection
|
bitcnt: std_logic_vector(2 downto 0); -- gray counter
|
bitcnt: std_logic_vector(2 downto 0);
|
end record;
|
end record;
|
|
|
-- registers in system clock domain
|
-- registers in system clock domain
|
type regs_type is record
|
type regs_type is record
|
-- cyclic bit buffer, re-registered to the system clock
|
-- data path from buffer to output
|
bufdata: std_logic_vector(c_buflen-1 downto 0); -- data bits
|
|
headptr: std_logic_vector(1 downto 0); -- gray encoded head position
|
|
-- tail pointer (binary)
|
|
tailptr: std_logic_vector(2 downto 0);
|
tailptr: std_logic_vector(2 downto 0);
|
|
inbvalid: std_ulogic;
|
|
-- split 2-bit groups if rxchunk=1
|
|
splitbit: std_ulogic;
|
|
splitinx: std_ulogic;
|
|
splitvalid: std_ulogic;
|
-- activity detection
|
-- activity detection
|
bitcnt: std_logic_vector(2 downto 0);
|
|
bitcntp: std_logic_vector(2 downto 0);
|
bitcntp: std_logic_vector(2 downto 0);
|
bitcntpp: std_logic_vector(2 downto 0);
|
|
-- output registers
|
|
inact: std_ulogic;
|
inact: std_ulogic;
|
inbvalid: std_ulogic;
|
-- reset signal towards rxclk domain
|
inbits: std_logic_vector(rxchunk-1 downto 0);
|
rxdis: std_ulogic;
|
rxen: std_ulogic;
|
end record;
|
|
|
|
constant regs_reset: regs_type := (
|
|
tailptr => "000",
|
|
inbvalid => '0',
|
|
splitbit => '0',
|
|
splitinx => '0',
|
|
splitvalid => '0',
|
|
bitcntp => "000",
|
|
inact => '0',
|
|
rxdis => '1' );
|
|
|
|
-- Signals that are re-synchronized from rxclk to system clock domain.
|
|
type syncsys_type is record
|
|
headptr: std_logic_vector(2 downto 0); -- pointer in cyclic buffer
|
|
bitcnt: std_logic_vector(2 downto 0); -- activity detection
|
end record;
|
end record;
|
|
|
-- registers
|
-- Registers.
|
signal r, rin: regs_type;
|
signal r: regs_type := regs_reset;
|
|
signal rin: regs_type;
|
signal rrx, rrxin: rxregs_type;
|
signal rrx, rrxin: rxregs_type;
|
|
|
|
-- Synchronized signals after crossing clock domains.
|
|
signal syncrx_rstn: std_logic;
|
|
signal syncsys: syncsys_type;
|
|
|
|
-- Output data from cyclic buffer.
|
|
signal s_bufdout: std_logic_vector(memwidth-1 downto 0);
|
|
|
|
-- stage A: input flip-flops for rising/falling rxclk
|
|
signal s_a_di0: std_logic;
|
|
signal s_a_si0: std_logic;
|
|
signal s_a_di1: std_logic;
|
|
signal s_a_si1: std_logic;
|
|
signal s_a_di2: std_logic;
|
|
signal s_a_si2: std_logic;
|
|
|
-- force use of IOB flip-flops
|
-- force use of IOB flip-flops
|
attribute IOB: string;
|
attribute IOB: string;
|
attribute IOB of s_a_di0: signal is "TRUE";
|
|
attribute IOB of s_a_di1: signal is "TRUE";
|
attribute IOB of s_a_di1: signal is "TRUE";
|
attribute IOB of s_a_si0: signal is "TRUE";
|
|
attribute IOB of s_a_si1: signal is "TRUE";
|
attribute IOB of s_a_si1: signal is "TRUE";
|
|
attribute IOB of s_a_di2: signal is "TRUE";
|
|
attribute IOB of s_a_si2: signal is "TRUE";
|
|
|
begin
|
begin
|
|
|
|
-- Cyclic data buffer.
|
|
bufmem: spwram
|
|
generic map (
|
|
abits => 3,
|
|
dbits => memwidth )
|
|
port map (
|
|
rclk => clk,
|
|
wclk => rxclk,
|
|
ren => '1',
|
|
raddr => r.tailptr,
|
|
rdata => s_bufdout,
|
|
wen => rrx.bufwrite,
|
|
waddr => rrx.headptr,
|
|
wdata => rrx.bufdata );
|
|
|
|
-- Synchronize reset signal for rxclk domain.
|
|
syncrx_reset: syncdff
|
|
port map ( clk => rxclk, rst => r.rxdis, di => '1', do => syncrx_rstn );
|
|
|
|
-- Synchronize signals from rxclk domain to system clock domain.
|
|
syncsys_headptr0: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.headptr(0), do => syncsys.headptr(0) );
|
|
syncsys_headptr1: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.headptr(1), do => syncsys.headptr(1) );
|
|
syncsys_headptr2: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.headptr(2), do => syncsys.headptr(2) );
|
|
syncsys_bitcnt0: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.bitcnt(0), do => syncsys.bitcnt(0) );
|
|
syncsys_bitcnt1: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.bitcnt(1), do => syncsys.bitcnt(1) );
|
|
syncsys_bitcnt2: syncdff
|
|
port map ( clk => clk, rst => r.rxdis, di => rrx.bitcnt(2), do => syncsys.bitcnt(2) );
|
|
|
-- sample inputs on rising edge of rxclk
|
-- sample inputs on rising edge of rxclk
|
process (rxclk) is
|
process (rxclk) is
|
begin
|
begin
|
if rising_edge(rxclk) then
|
if rising_edge(rxclk) then
|
s_a_di0 <= spw_di;
|
s_a_di1 <= spw_di;
|
s_a_si0 <= spw_si;
|
s_a_si1 <= spw_si;
|
end if;
|
end if;
|
end process;
|
end process;
|
|
|
-- sample inputs on falling edge of rxclk
|
-- sample inputs on falling edge of rxclk
|
process (rxclk) is
|
process (rxclk) is
|
begin
|
begin
|
if falling_edge(rxclk) then
|
if falling_edge(rxclk) then
|
s_a_di1 <= spw_di;
|
s_a_di2 <= spw_di;
|
s_a_si1 <= spw_si;
|
s_a_si2 <= spw_si;
|
|
-- reregister inputs in fabric flip-flops
|
|
s_a_di0 <= s_a_di2;
|
|
s_a_si0 <= s_a_si2;
|
end if;
|
end if;
|
end process;
|
end process;
|
|
|
-- combinatorial process
|
-- combinatorial process
|
process (r, rrx, rxen, s_a_di0, s_a_di1, s_a_si0, s_a_si1)
|
process (r, rrx, rxen, syncrx_rstn, syncsys, s_bufdout, s_a_di0, s_a_si0, s_a_di1, s_a_si1)
|
variable v: regs_type;
|
variable v: regs_type;
|
variable vrx: rxregs_type;
|
variable vrx: rxregs_type;
|
variable v_i: integer range 0 to 7;
|
|
variable v_tail: std_logic_vector(1 downto 0);
|
|
begin
|
begin
|
v := r;
|
v := r;
|
vrx := rrx;
|
vrx := rrx;
|
v_i := 0;
|
|
v_tail := (others => '0');
|
|
|
|
-- ---- SAMPLE CLOCK DOMAIN ----
|
-- ---- SAMPLE CLOCK DOMAIN ----
|
|
|
-- stage B: re-register input samples
|
-- stage B: re-register input samples
|
vrx.b_di0 := s_a_di0;
|
vrx.b_di0 := s_a_di0;
|
|
vrx.b_si0 := s_a_si0;
|
vrx.b_di1 := s_a_di1;
|
vrx.b_di1 := s_a_di1;
|
vrx.b_xor0 := s_a_di0 xor s_a_si0;
|
|
vrx.b_si1 := s_a_si1;
|
vrx.b_si1 := s_a_si1;
|
|
|
-- stage C: decode data/strobe and detect valid bits
|
-- stage C: decode data/strobe and detect valid bits
|
if (rrx.b_xor0 xor rrx.c_xor1) = '1' then
|
if (rrx.b_di0 xor rrx.b_si0 xor rrx.c_xor1) = '1' then
|
-- b_di0 is a valid new bit
|
|
vrx.c_bit(0) := rrx.b_di0;
|
vrx.c_bit(0) := rrx.b_di0;
|
else
|
else
|
-- skip b_di0 and try b_di1
|
|
vrx.c_bit(0) := rrx.b_di1;
|
vrx.c_bit(0) := rrx.b_di1;
|
end if;
|
end if;
|
vrx.c_bit(1) := rrx.b_di1;
|
vrx.c_bit(1) := rrx.b_di1;
|
vrx.c_val(0) := (rrx.b_xor0 xor rrx.c_xor1) or (rrx.b_di1 xor rrx.b_si1 xor rrx.b_xor0);
|
vrx.c_val(0) := (rrx.b_di0 xor rrx.b_si0 xor rrx.c_xor1) or
|
vrx.c_val(1) := (rrx.b_xor0 xor rrx.c_xor1) and (rrx.b_di1 xor rrx.b_si1 xor rrx.b_xor0);
|
(rrx.b_di0 xor rrx.b_si0 xor rrx.b_di1 xor rrx.b_si1);
|
|
vrx.c_val(1) := (rrx.b_di0 xor rrx.b_si0 xor rrx.c_xor1) and
|
|
(rrx.b_di0 xor rrx.b_si0 xor rrx.b_di1 xor rrx.b_si1);
|
vrx.c_xor1 := rrx.b_di1 xor rrx.b_si1;
|
vrx.c_xor1 := rrx.b_di1 xor rrx.b_si1;
|
|
|
-- Note:
|
-- Note:
|
-- c_val = "00" if no new bits are received
|
-- c_val = "00" if no new bits are received
|
-- c_val = "01" if one new bit is received; the new bit is in c_bit(0)
|
-- c_val = "01" if one new bit is received; the new bit is in c_bit(0)
|
-- c_val = "11" if two new bits are received
|
-- c_val = "11" if two new bits are received
|
|
|
-- Note:
|
-- stage D: collect groups of memwidth bits
|
-- bufmark contains two '1' bits in neighbouring positions, marking
|
if rrx.c_val(0) = '1' then
|
-- the positions that newly received bits will be written to.
|
|
|
|
-- Update the cyclic buffer.
|
-- shift incoming bits into register
|
for i in 0 to c_buflen-1 loop
|
if rrx.c_val(1) = '1' then
|
-- update data bit at position (i)
|
vrx.d_shift := rrx.c_bit & rrx.d_shift(memwidth-1 downto 2);
|
if rrx.bufmark(i) = '1' then
|
|
if rrx.bufmark((i+1) mod rrx.bufmark'length) = '1' then
|
|
-- this is the first of the two marked positions;
|
|
-- put the first received bit here (if any)
|
|
vrx.bufdata(i) := rrx.c_bit(0);
|
|
else
|
else
|
-- this is the second of the two marked positions;
|
vrx.d_shift := rrx.c_bit(0) & rrx.d_shift(memwidth-1 downto 1);
|
-- put the second received bit here (if any)
|
|
vrx.bufdata(i) := rrx.c_bit(1);
|
|
end if;
|
end if;
|
|
|
|
-- prepare to store a group of memwidth bits
|
|
if rrx.d_count(0) = '1' then
|
|
-- only one more bit needed
|
|
vrx.bufdata := rrx.c_bit(0) & rrx.d_shift(memwidth-1 downto 1);
|
|
else
|
|
vrx.bufdata := rrx.c_bit & rrx.d_shift(memwidth-1 downto 2);
|
end if;
|
end if;
|
-- update marker at position (i)
|
|
if rrx.c_val(0) = '1' then
|
-- countdown nr of needed bits (one-hot counter)
|
if rrx.c_val(1) = '1' then
|
if rrx.c_val(1) = '1' then
|
-- shift two positions
|
vrx.d_count := rrx.d_count(1 downto 0) & rrx.d_count(memwidth-1 downto 2);
|
vrx.bufmark(i) := rrx.bufmark((i+rrx.bufmark'length-2) mod rrx.bufmark'length);
|
|
else
|
else
|
-- shift one position
|
vrx.d_count := rrx.d_count(0 downto 0) & rrx.d_count(memwidth-1 downto 1);
|
vrx.bufmark(i) := rrx.bufmark((i+rrx.bufmark'length-1) mod rrx.bufmark'length);
|
|
end if;
|
end if;
|
|
|
end if;
|
end if;
|
end loop;
|
|
|
|
-- Update "headlow", the least significant bits of the head position.
|
-- stage D: store groups of memwidth bits
|
-- This is a binary counter from 0 to rxchunk-1, or from 0 to 1
|
vrx.bufwrite := rrx.c_val(0) and (rrx.d_count(0) or (rrx.c_val(1) and rrx.d_count(1)));
|
-- if rxchunk = 1. If the counter overflows, "headptr" will be
|
|
-- updated in the next clock cycle.
|
-- Increment head pointer.
|
case rxchunk is
|
if rrx.bufwrite = '1' then
|
when 1 | 2 =>
|
vrx.headptr := std_logic_vector(unsigned(rrx.headptr) + 1);
|
-- count from "00" to "01"
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
|
vrx.headlow(0) := rrx.headlow(0);
|
|
vrx.headinc := '1';
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
|
vrx.headinc := rrx.headlow(0);
|
|
else -- got nothing
|
|
vrx.headlow(0) := rrx.headlow(0);
|
|
vrx.headinc := '0';
|
|
end if;
|
|
when 3 =>
|
|
-- count from "00" to "10"
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
|
case rrx.headlow is
|
|
when "00" => vrx.headlow := "10";
|
|
when "01" => vrx.headlow := "00";
|
|
when others => vrx.headlow := "01";
|
|
end case;
|
|
vrx.headinc := rrx.headlow(0) or rrx.headlow(1);
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
|
if rrx.headlow(1) = '1' then
|
|
vrx.headlow := "00";
|
|
vrx.headinc := '1';
|
|
else
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
|
vrx.headlow(1) := rrx.headlow(0);
|
|
vrx.headinc := '0';
|
|
end if;
|
|
else -- got nothing
|
|
vrx.headlow := rrx.headlow;
|
|
vrx.headinc := '0';
|
|
end if;
|
|
when 4 =>
|
|
-- count from "00" to "11"
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
|
vrx.headlow(0) := rrx.headlow(0);
|
|
vrx.headlow(1) := not rrx.headlow(1);
|
|
vrx.headinc := rrx.headlow(1);
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
|
vrx.headlow(1) := rrx.headlow(1) xor rrx.headlow(0);
|
|
vrx.headinc := rrx.headlow(0) and rrx.headlow(1);
|
|
else -- got nothing
|
|
vrx.headlow := rrx.headlow;
|
|
vrx.headinc := '0';
|
|
end if;
|
|
end case;
|
|
|
|
-- Update the gray-encoded head position.
|
|
if rrx.headinc = '1' then
|
|
case rrx.headptr is
|
|
when "00" => vrx.headptr := "01";
|
|
when "01" => vrx.headptr := "11";
|
|
when "11" => vrx.headptr := "10";
|
|
when others => vrx.headptr := "00";
|
|
end case;
|
|
end if;
|
end if;
|
|
|
-- Activity detection.
|
-- Activity detection.
|
if rrx.c_val(0) = '1' then
|
if rrx.c_val(0) = '1' then
|
vrx.bitcnt := gray_encode(
|
vrx.bitcnt := std_logic_vector(unsigned(rrx.bitcnt) + 1);
|
std_logic_vector(unsigned(gray_decode(rrx.bitcnt)) + 1));
|
|
end if;
|
|
|
|
-- Synchronize reset signal for rxclk domain.
|
|
if r.rxen = '0' then
|
|
vrx.reset := "11";
|
|
else
|
|
vrx.reset := "0" & rrx.reset(1);
|
|
end if;
|
end if;
|
|
|
-- Synchronous reset of rxclk domain.
|
-- Synchronous reset of rxclk domain.
|
if rrx.reset(0) = '1' then
|
if syncrx_rstn = '0' then
|
vrx.bufmark := (0 => '1', 1 => '1', others => '0');
|
vrx.c_val := "00";
|
vrx.headptr := "00";
|
vrx.c_xor1 := '0';
|
vrx.headlow := "00";
|
vrx.d_count := (others => '0');
|
vrx.headinc := '0';
|
vrx.d_count(memwidth-1) := '1';
|
|
vrx.bufwrite := '0';
|
|
vrx.headptr := "000";
|
vrx.bitcnt := "000";
|
vrx.bitcnt := "000";
|
end if;
|
end if;
|
|
|
-- ---- SYSTEM CLOCK DOMAIN ----
|
-- ---- SYSTEM CLOCK DOMAIN ----
|
|
|
-- Re-register cyclic buffer and head pointer in the system clock domain.
|
|
v.bufdata := rrx.bufdata;
|
|
v.headptr := rrx.headptr;
|
|
|
|
-- Increment tailptr if there was new data on the previous clock.
|
|
if r.inbvalid = '1' then
|
|
v.tailptr := std_logic_vector(unsigned(r.tailptr) + 1);
|
|
end if;
|
|
|
|
-- Compare tailptr to headptr to decide whether there is new data.
|
-- Compare tailptr to headptr to decide whether there is new data.
|
-- If the values are equal, we are about to read data which were not
|
-- If the values are equal, we are about to read a location which has
|
-- yet released by the rxclk domain
|
-- not yet been written by the rxclk domain.
|
-- Note: headptr is gray-coded while tailptr is normal binary.
|
if r.tailptr = syncsys.headptr then
|
if rxchunk = 1 then
|
-- No more data in cyclic buffer.
|
-- headptr counts blocks of 2 bits while tailptr counts single bits
|
|
v_tail := v.tailptr(2 downto 1);
|
|
else
|
|
-- headptr and tailptr both count blocks of rxchunk bits
|
|
v_tail := v.tailptr(1 downto 0);
|
|
end if;
|
|
if (r.headptr(1) = v_tail(1)) and
|
|
((r.headptr(0) xor r.headptr(1)) = v_tail(0)) then
|
|
-- pointers have the same value
|
|
v.inbvalid := '0';
|
v.inbvalid := '0';
|
else
|
else
|
|
-- Reading valid data from cyclic buffer.
|
v.inbvalid := '1';
|
v.inbvalid := '1';
|
|
-- Increment tail pointer.
|
|
if rxchunk /= 1 then
|
|
v.tailptr := std_logic_vector(unsigned(r.tailptr) + 1);
|
|
end if;
|
end if;
|
end if;
|
|
|
-- Multiplex bits from the cyclic buffer into the output register.
|
-- If rxchunk=1, split 2-bit groups into separate bits.
|
if rxen = '1' then
|
|
if rxchunk = 1 then
|
if rxchunk = 1 then
|
-- cyclic buffer contains 8 slots of 1 bit wide
|
-- Select one of the two bits.
|
v_i := to_integer(unsigned(v.tailptr));
|
if r.splitinx = '0' then
|
v.inbits := r.bufdata(v_i downto v_i);
|
v.splitbit := s_bufdout(0);
|
else
|
else
|
-- cyclic buffer contains 4 slots of rxchunk bits wide
|
v.splitbit := s_bufdout(1);
|
v_i := to_integer(unsigned(v.tailptr(1 downto 0)));
|
end if;
|
v.inbits := r.bufdata(rxchunk*v_i+rxchunk-1 downto rxchunk*v_i);
|
-- Indicate valid bit.
|
|
v.splitvalid := r.inbvalid;
|
|
-- Increment tail pointer.
|
|
if r.inbvalid = '1' then
|
|
v.splitinx := not r.splitinx;
|
|
if r.splitinx = '0' then
|
|
v.tailptr := std_logic_vector(unsigned(r.tailptr) + 1);
|
|
end if;
|
end if;
|
end if;
|
end if;
|
end if;
|
|
|
-- Activity detection.
|
-- Activity detection.
|
v.bitcnt := rrx.bitcnt;
|
v.bitcntp := syncsys.bitcnt;
|
v.bitcntp := r.bitcnt;
|
if r.bitcntp = syncsys.bitcnt then
|
v.bitcntpp := r.bitcntp;
|
v.inact := '0';
|
if rxen = '1' then
|
|
if r.bitcntp = r.bitcntpp then
|
|
v.inact := r.inbvalid;
|
|
else
|
else
|
v.inact := '1';
|
v.inact := '1';
|
end if;
|
end if;
|
end if;
|
|
|
|
-- Synchronous reset of system clock domain.
|
-- Synchronous reset of system clock domain.
|
if rxen = '0' then
|
if rxen = '0' then
|
v.tailptr := "000";
|
v := regs_reset;
|
v.inact := '0';
|
|
v.inbvalid := '0';
|
|
v.inbits := (others => '0');
|
|
end if;
|
end if;
|
|
|
-- Register rxen to ensure glitch-free signal to rxclk domain
|
-- Register rxen to ensure glitch-free signal to rxclk domain
|
v.rxen := rxen;
|
v.rxdis := not rxen;
|
|
|
-- drive outputs
|
-- drive outputs
|
inact <= r.inact;
|
inact <= r.inact;
|
|
if rxchunk = 1 then
|
|
inbvalid <= r.splitvalid;
|
|
inbits(0) <= r.splitbit;
|
|
else
|
inbvalid <= r.inbvalid;
|
inbvalid <= r.inbvalid;
|
inbits <= r.inbits;
|
inbits <= s_bufdout;
|
|
end if;
|
|
|
-- update registers
|
-- update registers
|
rrxin <= vrx;
|
rrxin <= vrx;
|
rin <= v;
|
rin <= v;
|
|
|