Line 1... |
Line 1... |
|
`timescale 1ns / 1ps
|
|
`include "aDefinitions.v"
|
|
/**********************************************************************************
|
|
Theia, Ray Cast Programable graphic Processing Unit.
|
|
Copyright (C) 2010 Diego Valverde (diego.valverde.g@gmail.com)
|
|
|
No newline at end of file
|
No newline at end of file
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
***********************************************************************************/
|
|
/*
|
|
The memory unit has all the memory related modules for THEIA.
|
|
There a 3 memories in the core:
|
|
DMEM: The data memory, it is a R/W dual channel RAM, stores the data locations.
|
|
IMEM: The instruction memory, R/W dual channel RAM, stores user shaders.
|
|
IROM: RO instruction memory, stores default shaders and other internal code.
|
|
I use two ROMs with the same data, so that simulates dual channel.
|
|
This unit also has a Control register.
|
|
*/
|
|
`define USER_CODE_ENABLED 2
|
|
//-------------------------------------------------------------------
|
|
module MemoryUnit
|
|
(
|
|
input wire Clock,
|
|
input wire Reset,
|
|
input wire iFlipMemory,
|
|
|
|
//Data bus for EXE Unit
|
|
input wire iDataWriteEnable_EXE,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataReadAddress1_EXE,
|
|
output wire[`DATA_ROW_WIDTH-1:0] oData1_EXE,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataReadAddress2_EXE,
|
|
output wire[`DATA_ROW_WIDTH-1:0] oData2_EXE,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataWriteAddress_EXE,
|
|
input wire[`DATA_ROW_WIDTH-1:0] iData_EXE,
|
|
|
|
//Data bus for IO Unit
|
|
input wire iDataWriteEnable_IO,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataReadAddress1_IO,
|
|
output wire[`DATA_ROW_WIDTH-1:0] oData1_IO,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataReadAddress2_IO,
|
|
output wire[`DATA_ROW_WIDTH-1:0] oData2_IO,
|
|
input wire[`DATA_ADDRESS_WIDTH-1:0] iDataWriteAddress_IO,
|
|
input wire[`DATA_ROW_WIDTH-1:0] iData_IO,
|
|
|
|
//Instruction bus
|
|
input wire iInstructionWriteEnable,
|
|
input wire [`ROM_ADDRESS_WIDTH-1:0] iInstructionReadAddress1,
|
|
input wire [`ROM_ADDRESS_WIDTH-1:0] iInstructionReadAddress2,
|
|
input wire [`ROM_ADDRESS_WIDTH-1:0] iInstructionWriteAddress,
|
|
input wire [`INSTRUCTION_WIDTH-1:0] iInstruction,
|
|
output wire [`INSTRUCTION_WIDTH-1:0] oInstruction1,
|
|
output wire [`INSTRUCTION_WIDTH-1:0] oInstruction2,
|
|
|
|
`ifdef DEBUG
|
|
input wire [`MAX_CORES-1:0] iDebug_CoreID,
|
|
`endif
|
|
|
|
|
|
//Control Register
|
|
input wire[15:0] iControlRegister,
|
|
output wire[15:0] oControlRegister
|
|
|
|
|
|
);
|
|
|
|
wire [`ROM_ADDRESS_WIDTH-1:0] wROMInstructionAddress,wRAMInstructionAddress;
|
|
wire [`INSTRUCTION_WIDTH-1:0] wIMEM2_IMUX__DataOut1,wIMEM2_IMUX__DataOut2,
|
|
wIROM2_IMUX__DataOut1,wIROM2_IMUX__DataOut2;
|
|
wire wFlipSelect;
|
|
|
|
wire wInstructionSelector,wInstructionSelector2;
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( 1 ) FFD1
|
|
(
|
|
.Clock(Clock),
|
|
.Reset(Reset),
|
|
.Enable( 1'b1 ),
|
|
.D( iInstructionReadAddress1[`ROM_ADDRESS_WIDTH-1] ),
|
|
.Q( wInstructionSelector )
|
|
);
|
|
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( 1 ) FFD2
|
|
(
|
|
.Clock(Clock),
|
|
.Reset(Reset),
|
|
.Enable( 1'b1 ),
|
|
.D( iInstructionReadAddress2[`ROM_ADDRESS_WIDTH-1] ),
|
|
.Q( wInstructionSelector2 )
|
|
);
|
|
|
|
assign oInstruction1 = (wInstructionSelector == 1) ?
|
|
wIMEM2_IMUX__DataOut1 : wIROM2_IMUX__DataOut1;
|
|
|
|
|
|
assign oInstruction2 = (wInstructionSelector2 == 1) ?
|
|
wIMEM2_IMUX__DataOut2 : wIROM2_IMUX__DataOut2;
|
|
//-------------------------------------------------------------------
|
|
|
|
wire wDataWriteEnable_RMEM,wDataWriteEnable_SMEM,wDataWriteEnable_XMEM;
|
|
wire [`DATA_ROW_WIDTH-1:0] wData_SMEM1,wData_SMEM2;
|
|
wire [`DATA_ROW_WIDTH-1:0] wData_RMEM1,wData_RMEM2,wData_IMEM1,wData_IMEM2,wData_XMEM1,wData_XMEM2;
|
|
wire [`DATA_ROW_WIDTH-1:0] wIOData_SMEM1,wIOData_SMEM2;//,wData_OMEM1,wData_OMEM2;
|
|
|
|
/*******************************************************
|
|
The Data memory is divided into several memory banks.
|
|
Each Bank has different characteristics:
|
|
|
|
* IO MEM: Input Registers, Written by IO, Read by EXE.
|
|
* SWAP MEM: Swap registers, while IO reads/write values,
|
|
EXE reads/write values.
|
|
* C1-C7, R1- R12: General purpose registers,
|
|
EXE can R/W, IO can not see these sections of the memory
|
|
* OREG*: Output registers written by EXE, Read by IO.
|
|
|
|
Whenever an input address is received, this imput address
|
|
is divided in a bank selector and offset in the following way:
|
|
|
|
__________________________
|
|
| b6 b5 | b4 b3 b2 b1 b0 |
|
|
|
|
The bits b4 .. b0 are the LSB of the address, this give the
|
|
position relative to the bank
|
|
|
|
The bits b6 and b5 give the actual Bank to select.
|
|
Please see aDefinitions.v for a description of each
|
|
register location.
|
|
|
|
0____________________
|
|
| IO MEM |
|
|
| |
|
|
| | b6b5 = 00
|
|
32|__________________|
|
|
| SWAP MEM |
|
|
| | b6b5 = 01
|
|
| |
|
|
64|__________________|
|
|
| C1 - C7 |
|
|
| R1 - R12 | b6b5 = 10
|
|
| |
|
|
96|__________________|
|
|
| CREG* |
|
|
| | b6b5 = 11
|
|
| |
|
|
|__________________|
|
|
|
|
|
|
*******************************************************/
|
|
|
|
|
|
|
|
MUXFULLPARALELL_2SEL_GENERIC # ( `DATA_ROW_WIDTH ) MUX1
|
|
(
|
|
.Sel( iDataReadAddress1_EXE[6:5] ),
|
|
.I1( wData_IMEM1 ), //IO MEM
|
|
.I2( wData_SMEM1 ), //SWAP MEM
|
|
.I3( wData_RMEM1 ), //R*, C*
|
|
.I4( wData_XMEM1 ), //CREG*
|
|
.O1( oData1_EXE )
|
|
);
|
|
|
|
|
|
MUXFULLPARALELL_2SEL_GENERIC # ( `DATA_ROW_WIDTH ) MUX2
|
|
(
|
|
.Sel( iDataReadAddress2_EXE[6:5] ),
|
|
.I1( wData_IMEM2 ), //IO MEM
|
|
.I2( wData_SMEM2 ), //SWAP MEM
|
|
.I3( wData_RMEM2 ), //R*, C*
|
|
.I4( wData_XMEM2 ), //CREG*
|
|
.O1( oData2_EXE )
|
|
);
|
|
|
|
assign wDataWriteEnable_SMEM = ( iDataWriteAddress_EXE[6:5] == 2'b01 && iDataWriteEnable_EXE ); //Enable WE for SMEM if bank == 01
|
|
assign wDataWriteEnable_RMEM = ( iDataWriteAddress_EXE[6:5] == 2'b10 && iDataWriteEnable_EXE); //Enable WE for RMEM if bank == 10
|
|
assign wDataWriteEnable_XMEM = ( iDataWriteAddress_EXE[6:5] == 2'b11 && iDataWriteEnable_EXE); //Enable WE for RMEM if bank == 11
|
|
|
|
|
|
//Input Registers, Written by IO, Read by EXE
|
|
RAM_DUAL_READ_PORT # (`DATA_ROW_WIDTH,5,/*42*/32) IMEM //16 here is enough, I hate small devices!
|
|
(
|
|
.Clock( Clock ),
|
|
.iWriteEnable( iDataWriteEnable_IO ), //Only IO can write into this bank
|
|
.iReadAddress0( iDataReadAddress1_EXE[4:0] ), //EXE read address channel 1
|
|
.iReadAddress1( iDataReadAddress2_EXE[4:0] ), //EXE read address channel 2
|
|
.iWriteAddress( iDataWriteAddress_IO[4:0] ), //Only IO can write into this bank
|
|
.iDataIn( iData_IO ),
|
|
.oDataOut0( wData_IMEM1 ),
|
|
.oDataOut1( wData_IMEM2 )
|
|
);
|
|
|
|
//Swap registers, while IO reads/write values, EXE reads/write values
|
|
//the pointers get filped in the next iteration
|
|
|
|
SWAP_MEM # (`DATA_ROW_WIDTH,5,32) SMEM
|
|
(
|
|
.Clock( Clock ),
|
|
.iSelect( wFlipSelect ),
|
|
|
|
.iWriteEnableA( wDataWriteEnable_SMEM ),
|
|
.iReadAddressA0( iDataReadAddress1_EXE[4:0] ),
|
|
.iReadAddressA1( iDataReadAddress2_EXE[4:0] ),
|
|
.iWriteAddressA( iDataWriteAddress_EXE[4:0] ),
|
|
.iDataInA( iData_EXE ),
|
|
.oDataOutA0( wData_SMEM1 ),
|
|
.oDataOutA1( wData_SMEM2 ),
|
|
|
|
.iWriteEnableB( iDataWriteEnable_IO ),
|
|
.iReadAddressB0( iDataReadAddress1_IO ),
|
|
.iReadAddressB1( iDataReadAddress2_IO ),
|
|
.iWriteAddressB( iDataWriteAddress_IO ),
|
|
.iDataInB( iData_IO )
|
|
// .oDataOutB0( wIOData_SMEM1 ),
|
|
// .oDataOutB1( wIOData_SMEM2 )
|
|
|
|
);
|
|
|
|
//General purpose registers, EXE can R/W, IO can not see these sections
|
|
//of the memory
|
|
RAM_DUAL_READ_PORT # (`DATA_ROW_WIDTH,5,32) RMEM //Ok so we have fewer Registers then...
|
|
(
|
|
.Clock( Clock ),
|
|
.iWriteEnable( wDataWriteEnable_RMEM ),
|
|
.iReadAddress0( iDataReadAddress1_EXE[4:0] ),
|
|
.iReadAddress1( iDataReadAddress2_EXE[4:0] ),
|
|
.iWriteAddress( iDataWriteAddress_EXE[4:0] ),
|
|
.iDataIn( iData_EXE ),
|
|
.oDataOut0( wData_RMEM1 ),
|
|
.oDataOut1( wData_RMEM2 )
|
|
);
|
|
|
|
RAM_DUAL_READ_PORT # (`DATA_ROW_WIDTH,5,32) XMEM //Ok so we have fewer Registers then...
|
|
(
|
|
.Clock( Clock ),
|
|
.iWriteEnable( wDataWriteEnable_XMEM ),
|
|
.iReadAddress0( iDataReadAddress1_EXE[4:0] ),
|
|
.iReadAddress1( iDataReadAddress2_EXE[4:0] ),
|
|
.iWriteAddress( iDataWriteAddress_EXE[4:0] ),
|
|
.iDataIn( iData_EXE ),
|
|
.oDataOut0( wData_XMEM1 ),
|
|
.oDataOut1( wData_XMEM2 )
|
|
);
|
|
|
|
|
|
UPCOUNTER_POSEDGE # (1) UPC1
|
|
(
|
|
.Clock(Clock),
|
|
.Reset( Reset ),
|
|
.Initial(1'b0),
|
|
.Enable(iFlipMemory),
|
|
.Q(wFlipSelect)
|
|
);
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------
|
|
/*
|
|
Instruction memory.
|
|
*/
|
|
|
|
// ROM_ADDRESS_WIDTH exceds the array size it may get trimmed...
|
|
RAM_DUAL_READ_PORT # (`INSTRUCTION_WIDTH,`ROM_ADDRESS_WIDTH,/*512*/128) INST_MEM //Only 128 instructions :( well this is for the user anyway
|
|
(
|
|
.Clock( Clock ),
|
|
.iWriteEnable( iInstructionWriteEnable ),
|
|
.iReadAddress0( {1'b0,iInstructionReadAddress1[`ROM_ADDRESS_WIDTH-2:0]} ),
|
|
.iReadAddress1( {1'b0,iInstructionReadAddress2[`ROM_ADDRESS_WIDTH-2:0]} ),
|
|
.iWriteAddress( iInstructionWriteAddress ),
|
|
.iDataIn( iInstruction ),
|
|
.oDataOut0( wIMEM2_IMUX__DataOut1 ),
|
|
.oDataOut1( wIMEM2_IMUX__DataOut2 )
|
|
|
|
);
|
|
//-------------------------------------------------------------------
|
|
/*
|
|
Default code stored in ROM.
|
|
*/
|
|
wire [`INSTRUCTION_WIDTH-1:0] wRomDelay1,wRomDelay2;
|
|
//In real world ROM will take at least 1 clock cycle,
|
|
//since ROMs are not syhtethizable, I won't hurt to put
|
|
//this delay
|
|
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( `INSTRUCTION_WIDTH ) FFDA
|
|
(
|
|
.Clock(Clock),
|
|
.Reset(Reset),
|
|
.Enable(1'b1),
|
|
.D(wRomDelay1),
|
|
.Q(wIROM2_IMUX__DataOut1 )
|
|
);
|
|
|
|
|
|
FFD_POSEDGE_SYNCRONOUS_RESET # ( `INSTRUCTION_WIDTH ) FFDB
|
|
(
|
|
.Clock(Clock),
|
|
.Reset(Reset),
|
|
.Enable(1'b1),
|
|
.D(wRomDelay2),
|
|
.Q(wIROM2_IMUX__DataOut2 )
|
|
);
|
|
|
|
//The reason I put two ROMs is because I need to read 2 different Instruction
|
|
//addresses at the same time (branch-taken and branch-not-taken) and not sure
|
|
//how to write dual read channel ROM this way...
|
|
|
|
ROM IROM
|
|
(
|
|
.Address( {1'b0,iInstructionReadAddress1[`ROM_ADDRESS_WIDTH-2:0]} ),
|
|
`ifdef DEBUG
|
|
.iDebug_CoreID(iDebug_CoreID),
|
|
`endif
|
|
.I( wRomDelay1 )
|
|
);
|
|
|
|
ROM IROM2
|
|
(
|
|
.Address( {1'b0,iInstructionReadAddress2[`ROM_ADDRESS_WIDTH-2:0]} ),
|
|
`ifdef DEBUG
|
|
.iDebug_CoreID(iDebug_CoreID),
|
|
`endif
|
|
.I( wRomDelay2 )
|
|
);
|
|
//--------------------------------------------------------
|
|
ControlRegister CR
|
|
(
|
|
.Clock( Clock ),
|
|
.Reset( Reset ),
|
|
.iControlRegister( iControlRegister ),
|
|
.oControlRegister( oControlRegister )
|
|
);
|
|
|
|
|
|
endmodule
|
|
//-------------------------------------------------------------------
|
No newline at end of file
|
No newline at end of file
|