Line 1... |
Line 1... |
`timescale 1ns / 1ps
|
`timescale 1ns / 1ps
|
//////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////
|
// Company:
|
// Company: UPT
|
// Engineer:
|
// Engineer: Constantina-Elena Gavriliu
|
//
|
//
|
// Create Date: 16:09:49 11/04/2013
|
// Create Date: 16:09:49 11/04/2013
|
// Design Name:
|
// Design Name:
|
// Module Name: SinglePathFPAdder
|
// Module Name: SinglePathFPAdder
|
|
|
// Project Name:
|
// Project Name:
|
// Target Devices:
|
// Target Devices:
|
// Tool versions:
|
// Tool versions:
|
// Description: A ± B
|
// Description: A ± B
|
|
// //do not take into consideration cases for which the operation generates a NaN or Infinity exception (with corresponding sign) when initial "special cases" are not such exceptions
|
//
|
//
|
// Dependencies:
|
// Dependencies: effective_op.v
|
|
// leading_zeros.v
|
|
// rounding.v
|
|
// shifter.v
|
|
// special_cases.v
|
//
|
//
|
// Revision:
|
// Revision:
|
// Revision 0.01 - File Created
|
// Revision 0.01 - File Created
|
// Additional Comments:
|
// Additional Comments:
|
//
|
//
|
Line 48... |
Line 54... |
wire [1 : 0] adjust_exponent;
|
wire [1 : 0] adjust_exponent;
|
|
|
wire [size_exponent - 1 : 0] exp_difference;
|
wire [size_exponent - 1 : 0] exp_difference;
|
wire [size_exponent : 0] exp_inter;
|
wire [size_exponent : 0] exp_inter;
|
wire [size_mantissa - 1 : 0] shifted_m_b;
|
wire [size_mantissa - 1 : 0] shifted_m_b;
|
wire [size_mantissa - 1 : 0] initial_rounding_bits, inter_rounding_bits, final_rounding_bits;
|
wire [size_mantissa - 1 : 0] initial_rounding_bits, final_rounding_bits;
|
|
wire [size_mantissa - 2 : 0] inter_rounding_bits;
|
wire eff_op;
|
wire eff_op;
|
|
|
wire [size_counter - 1 : 0] lzs;
|
wire [size_counter - 1 : 0] lzs;
|
wire [size_mantissa + 1 : 0] adder_mantissa;
|
wire [size_mantissa + 2 : 0] adder_mantissa;
|
wire [size_mantissa + 1 : 0] rounded_mantissa;
|
wire [size_mantissa : 0] rounded_mantissa;
|
wire [size_mantissa : 0] unnormalized_mantissa, unrounded_mantissa;
|
wire [size_mantissa + 1 : 0] unnormalized_mantissa;
|
|
wire [size_mantissa - 1 : 0] unrounded_mantissa;
|
|
|
wire [size_exception_field - 1 : 0] resulted_exception_field;
|
wire [size_exception_field - 1 : 0] resulted_exception_field;
|
wire [size_mantissa - 1 : 0] resulted_mantissa;
|
wire [size_mantissa - 1 : 0] resulted_mantissa;
|
wire [size_exponent - 1 : 0] resulted_exponent;
|
wire [size_exponent - 1 : 0] resulted_exponent;
|
wire resulted_sign;
|
wire resulted_sign;
|
|
|
wire dummy_bit;
|
wire [1:0] dummy_bits;
|
wire zero_flag;
|
wire zero_flag;
|
|
wire [4:0] sign_cases;
|
|
wire dummy_ovf, correction, negation_cond;
|
|
reg intermediar_sign;
|
|
|
|
|
assign e_a_number = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
|
assign e_a_number = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
|
assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
|
assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1];
|
assign s_a_number = a_number_i[size - size_exception_field - 1];
|
assign s_a_number = a_number_i[size - size_exception_field - 1];
|
assign s_b_number = b_number_i[size - size_exception_field - 1];
|
assign s_b_number = b_number_i[size - size_exception_field - 1];
|
assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field];
|
assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field];
|
assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field];
|
assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field];
|
|
|
|
|
//find the greater exponent
|
//find the greater exponent
|
assign a_greater_exponent = e_a_number - e_b_number;
|
assign a_greater_exponent = e_a_number - e_b_number;
|
assign b_greater_exponent = e_b_number - e_a_number;
|
assign b_greater_exponent = e_b_number - e_a_number;
|
|
|
//find the difference between exponents
|
//find the difference between exponents
|
Line 85... |
Line 95... |
|
|
//set shifter always on m_b_number
|
//set shifter always on m_b_number
|
assign {m_a_number, m_b_number} = (b_greater_exponent[size_exponent])?
|
assign {m_a_number, m_b_number} = (b_greater_exponent[size_exponent])?
|
{{1'b1, a_number_i[size_mantissa - 2 :0]}, {1'b1, b_number_i[size_mantissa - 2 :0]}} :
|
{{1'b1, a_number_i[size_mantissa - 2 :0]}, {1'b1, b_number_i[size_mantissa - 2 :0]}} :
|
{{1'b1, b_number_i[size_mantissa - 2 :0]}, {1'b1, a_number_i[size_mantissa - 2 :0]}};
|
{{1'b1, b_number_i[size_mantissa - 2 :0]}, {1'b1, a_number_i[size_mantissa - 2 :0]}};
|
|
|
//shift m_b_number
|
//shift m_b_number
|
shifter #( .INPUT_SIZE(size_mantissa),
|
shifter #( .INPUT_SIZE(size_mantissa),
|
.SHIFT_SIZE(size_exponent),
|
.SHIFT_SIZE(size_exponent),
|
.OUTPUT_SIZE(double_size_mantissa),
|
.OUTPUT_SIZE(double_size_mantissa),
|
.DIRECTION(1'b0), //0=right, 1=left
|
.DIRECTION(1'b0), //0=right, 1=left
|
Line 101... |
Line 110... |
.shifted_a({shifted_m_b, initial_rounding_bits}));
|
.shifted_a({shifted_m_b, initial_rounding_bits}));
|
|
|
//istantiate effective_operation_component
|
//istantiate effective_operation_component
|
effective_op effective_op_instance( .a_sign(s_a_number), .b_sign(s_b_number), .sub(sub), .eff_op(eff_op));
|
effective_op effective_op_instance( .a_sign(s_a_number), .b_sign(s_b_number), .sub(sub), .eff_op(eff_op));
|
|
|
|
//compute addition
|
|
assign adder_mantissa = (eff_op)? ({1'b0, m_a_number, 1'b0} - {1'b0, shifted_m_b, initial_rounding_bits[size_mantissa - 1]}) :
|
|
({1'b0, m_a_number, 1'b0} + {1'b0, shifted_m_b, initial_rounding_bits[size_mantissa - 1]});
|
|
|
//compute unnormalized_mantissa
|
//compute unnormalized_mantissa
|
assign adder_mantissa = (eff_op)? ({1'b0, m_a_number} - {1'b0, shifted_m_b}) : ({1'b0, m_a_number} + {1'b0, shifted_m_b});
|
assign unnormalized_mantissa = (adder_mantissa[size_mantissa + 2])? ~adder_mantissa[size_mantissa + 1 : 0] : adder_mantissa[size_mantissa + 1 : 0];
|
|
|
assign {unnormalized_mantissa, inter_rounding_bits} =
|
assign inter_rounding_bits = (~(|exp_difference[size_exponent - 1 : 1]))?
|
(adder_mantissa[size_mantissa + 1])? ({~adder_mantissa[size_mantissa : 0], ~initial_rounding_bits}) :
|
((adder_mantissa[size_mantissa + 2]? ~initial_rounding_bits[size_mantissa - 2 : 0] : initial_rounding_bits[size_mantissa - 2 : 0])) :
|
({adder_mantissa[size_mantissa : 0], initial_rounding_bits});
|
((eff_op)? ((|initial_rounding_bits[size_mantissa - 2 : 0])?~initial_rounding_bits[size_mantissa - 2 : 0] : initial_rounding_bits[size_mantissa - 2 : 0]) : initial_rounding_bits[size_mantissa - 2 : 0]);
|
|
|
//compute leading_zeros over unnormalized mantissa
|
//compute leading_zeros over unnormalized mantissa
|
leading_zeros #( .SIZE_INT(size_mantissa + 1), .SIZE_COUNTER(size_counter), .PIPELINE(pipeline))
|
leading_zeros #( .SIZE_INT(size_mantissa + 2), .SIZE_COUNTER(size_counter), .PIPELINE(pipeline))
|
leading_zeros_instance (.a(unnormalized_mantissa[size_mantissa : 0]),
|
leading_zeros_instance (.a(unnormalized_mantissa[size_mantissa + 1 : 0]),
|
.ovf(unnormalized_mantissa[size_mantissa]),
|
.ovf(unnormalized_mantissa[size_mantissa + 1]),
|
.lz(lzs));
|
.lz(lzs));
|
|
|
//compute shifting over unnormalized_mantissa
|
//compute shifting over unnormalized_mantissa
|
shifter #( .INPUT_SIZE(double_size_mantissa + 1),
|
shifter #( .INPUT_SIZE(double_size_mantissa + 1),
|
.SHIFT_SIZE(size_counter),
|
.SHIFT_SIZE(size_counter),
|
.OUTPUT_SIZE(double_size_mantissa + 2),
|
.OUTPUT_SIZE(double_size_mantissa + 2),
|
.DIRECTION(1'b1), //0=right, 1=left
|
.DIRECTION(1'b1), //0=right, 1=left
|
.PIPELINE(pipeline),
|
.PIPELINE(pipeline),
|
.POSITION(pipeline_pos))
|
.POSITION(pipeline_pos))
|
shifter_instance( .a({unnormalized_mantissa, inter_rounding_bits}),//mantissa
|
shifter_instance( .a({unnormalized_mantissa, inter_rounding_bits}),//mantissa
|
.arith(1'b0),//logical shift
|
.arith(inter_rounding_bits[0]),//logical shift
|
.shft(lzs),
|
.shft(lzs),
|
.shifted_a({unrounded_mantissa, final_rounding_bits, dummy_bit}));
|
.shifted_a({unrounded_mantissa, final_rounding_bits, dummy_bits}));
|
|
|
|
assign correction = ~(|exp_difference[size_exponent - 1 : 1])? 1'b0 :
|
|
(eff_op? ((|initial_rounding_bits[size_mantissa - 2 : 0])?
|
|
((adder_mantissa[0] | ((~adder_mantissa[0]) & (~adder_mantissa[size_mantissa]) & (~initial_rounding_bits[size_mantissa - 1])
|
|
& (~(&final_rounding_bits[size_mantissa-2 : 0]))))? 1'b1 : 1'b0) : 1'b0) : 1'b0);
|
|
|
//instantiate rounding_component
|
//instantiate rounding_component
|
rounding #( .SIZE_MOST_S_MANTISSA(size_mantissa + 2),
|
rounding #( .SIZE_MOST_S_MANTISSA(size_mantissa + 1),
|
.SIZE_LEAST_S_MANTISSA(size_mantissa))
|
.SIZE_LEAST_S_MANTISSA(size_mantissa))
|
rounding_instance( .unrounded_mantissa({1'b0, unrounded_mantissa}),
|
rounding_instance( .unrounded_mantissa({1'b0, unrounded_mantissa}),
|
.dummy_bits(final_rounding_bits),
|
.dummy_bits(final_rounding_bits),
|
|
.eff_op(eff_op),
|
|
.correction(correction),
|
.rounded_mantissa(rounded_mantissa));
|
.rounded_mantissa(rounded_mantissa));
|
|
|
//adjust exponent in case of overflow
|
//adjust exponent in case of overflow
|
assign adjust_exponent = (rounded_mantissa[size_mantissa + 1])? 2'd2 : 2'd1;
|
assign adjust_exponent = (rounded_mantissa[size_mantissa])? 2'd2 : 2'd1;
|
|
|
//compute resulted_exponent
|
//compute resulted_exponent
|
assign unadjusted_exponent = exp_inter - lzs;
|
assign unadjusted_exponent = exp_inter - lzs;
|
assign resulted_exponent = unadjusted_exponent + adjust_exponent;
|
assign resulted_exponent = unadjusted_exponent + adjust_exponent;
|
|
|
assign resulted_mantissa = (rounded_mantissa[size_mantissa + 1])? (rounded_mantissa[size_mantissa + 1 : 2]) : (rounded_mantissa[size_mantissa : 1]);
|
assign resulted_mantissa = (rounded_mantissa[size_mantissa])? (rounded_mantissa[size_mantissa : 1]) : (rounded_mantissa[size_mantissa - 1 : 0]);
|
|
|
//compute exception_field
|
//compute exception_field
|
special_cases #( .size_exception_field(size_exception_field),
|
special_cases #( .size_exception_field(size_exception_field),
|
.zero(zero),
|
.zero(zero),
|
.normal_number(normal_number),
|
.normal_number(normal_number),
|
.infinity(infinity),
|
.infinity(infinity),
|
.NaN(NaN))
|
.NaN(NaN))
|
special_cases_instance( .sp_case_a_number(sp_case_a_number),
|
special_cases_instance( .sp_case_a_number(sp_case_a_number),
|
.sp_case_b_number(sp_case_b_number),
|
.sp_case_b_number(sp_case_b_number),
|
|
.eff_op(eff_op),
|
.sp_case_result_o(resulted_exception_field));
|
.sp_case_result_o(resulted_exception_field));
|
|
|
//set zero_flag in case of equal numbers
|
//set zero_flag in case of equal numbers
|
assign zero_flag = ~((|{resulted_mantissa,resulted_exception_field[1]}) & (|resulted_exception_field));
|
assign zero_flag = ~((|{resulted_mantissa,resulted_exception_field[1]}) & (|resulted_exception_field));
|
|
|
//compute resulted_sign
|
assign sign_cases = {eff_op, s_a_number, s_b_number, a_greater_exponent[size_exponent], b_greater_exponent[size_exponent]};
|
assign resulted_sign = (eff_op)?
|
|
(!a_greater_exponent[size_exponent]? (!b_greater_exponent[size_exponent]? ~adder_mantissa[size_mantissa+1] : s_a_number) : ~s_b_number) :
|
|
s_a_number;
|
|
|
|
assign resulted_number_o = (zero_flag)? {size{1'b0}} :
|
always
|
|
@(*)
|
|
begin
|
|
case (sign_cases)
|
|
5'b00000: intermediar_sign = 1'b0;
|
|
5'b00001: intermediar_sign = 1'b0;
|
|
5'b00010: intermediar_sign = 1'b0;
|
|
|
|
5'b10000: intermediar_sign = ~adder_mantissa[size_mantissa+1];
|
|
5'b10001: intermediar_sign = 1'b0;
|
|
5'b10010: intermediar_sign = 1'b1;
|
|
|
|
5'b10100: intermediar_sign = ~adder_mantissa[size_mantissa+1];
|
|
5'b10101: intermediar_sign = 1'b0;
|
|
5'b10110: intermediar_sign = 1'b1;
|
|
|
|
5'b00100: intermediar_sign = 1'b0;
|
|
5'b00101: intermediar_sign = 1'b0;
|
|
5'b00110: intermediar_sign = 1'b0;
|
|
|
|
5'b11000: intermediar_sign = adder_mantissa[size_mantissa+1];
|
|
5'b11001: intermediar_sign = 1'b1;
|
|
5'b11010: intermediar_sign = 1'b0;
|
|
|
|
5'b01000: intermediar_sign = 1'b1;
|
|
5'b01001: intermediar_sign = 1'b1;
|
|
5'b01010: intermediar_sign = 1'b1;
|
|
|
|
5'b01100: intermediar_sign = 1'b1;
|
|
5'b01101: intermediar_sign = 1'b1;
|
|
5'b01110: intermediar_sign = 1'b1;
|
|
|
|
5'b11100: intermediar_sign = adder_mantissa[size_mantissa+1];
|
|
5'b11101: intermediar_sign = 1'b1;
|
|
5'b11110: intermediar_sign = 1'b0;
|
|
|
|
default: intermediar_sign = 1'b1;
|
|
endcase
|
|
end
|
|
|
|
assign resulted_sign = intermediar_sign;
|
|
|
|
assign resulted_number_o = (zero_flag | (~(|resulted_exception_field)))? {size{1'b0}} :
|
|
(&(resulted_exception_field))? {resulted_exception_field, resulted_sign,{(size-1-size_exception_field){1'b0}}} :
|
|
(resulted_exception_field[1])? {resulted_exception_field, {(size-size_exception_field){1'b0}}} :
|
|
(!sp_case_a_number)? {b_number_i[size-1 : size-size_exception_field], resulted_sign, b_number_i[size-1-size_exception_field-1 : 0]} :
|
|
(!sp_case_b_number)? {a_number_i[size-1 : size-size_exception_field], resulted_sign, a_number_i[size-1-size_exception_field-1 : 0]} :
|
{resulted_exception_field, resulted_sign, resulted_exponent, resulted_mantissa[size_mantissa - 2 : 0]};
|
{resulted_exception_field, resulted_sign, resulted_exponent, resulted_mantissa[size_mantissa - 2 : 0]};
|
|
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|