Line 42... |
Line 42... |
// Output parameters
|
// Output parameters
|
output reg o_busy, o_valid, o_err;
|
output reg o_busy, o_valid, o_err;
|
output reg [(BW-1):0] o_quotient;
|
output reg [(BW-1):0] o_quotient;
|
output wire [3:0] o_flags;
|
output wire [3:0] o_flags;
|
|
|
|
// r_busy is an internal busy register. It will clear one clock
|
|
// before we are valid, so it can't be o_busy ...
|
|
//
|
|
reg r_busy;
|
reg [(2*BW-2):0] r_divisor;
|
reg [(2*BW-2):0] r_divisor;
|
reg [(BW-1):0] r_dividend;
|
reg [(BW-1):0] r_dividend;
|
wire [(BW):0] diff; // , xdiff[(BW-1):0];
|
wire [(BW):0] diff; // , xdiff[(BW-1):0];
|
assign diff = r_dividend - r_divisor[(BW-1):0];
|
assign diff = r_dividend - r_divisor[(BW-1):0];
|
// assign xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
|
// assign xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
|
|
|
reg r_sign, pre_sign, r_z, r_c;
|
reg r_sign, pre_sign, r_z, r_c, last_bit;
|
reg [(LGBW):0] r_bit;
|
reg [(LGBW-1):0] r_bit;
|
|
|
|
initial r_busy = 1'b0;
|
|
always @(posedge i_clk)
|
|
if (i_rst)
|
|
r_busy <= 1'b0;
|
|
else if (i_wr)
|
|
r_busy <= 1'b1;
|
|
else if ((last_bit)||(o_err))
|
|
r_busy <= 1'b0;
|
|
|
|
initial o_busy = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
begin
|
|
o_busy <= 1'b0;
|
o_busy <= 1'b0;
|
end else if (i_wr)
|
else if (i_wr)
|
begin
|
|
o_busy <= 1'b1;
|
o_busy <= 1'b1;
|
end else if ((o_busy)&&((r_bit == 6'h0)||(o_err)))
|
else if (((last_bit)||(o_err))&&(~r_sign))
|
|
o_busy <= 1'b0;
|
|
else if (~r_busy)
|
o_busy <= 1'b0;
|
o_busy <= 1'b0;
|
// else busy is zero and stays at zero
|
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_wr))
|
if ((i_rst)||(i_wr))
|
o_valid <= 1'b0;
|
o_valid <= 1'b0;
|
else if (o_busy)
|
else if (r_busy)
|
begin
|
begin
|
if ((r_bit == 6'h0)||(o_err))
|
if ((last_bit)||(o_err))
|
o_valid <= (o_err)||(~r_sign);
|
o_valid <= (o_err)||(~r_sign);
|
end else if (r_sign)
|
end else if (r_sign)
|
begin
|
begin
|
// if (o_err), o_valid is already one.
|
// if (o_err), o_valid is already one.
|
// if not, o_valid has not yet become one.
|
// if not, o_valid has not yet become one.
|
Line 83... |
Line 96... |
if((i_rst)||(o_valid))
|
if((i_rst)||(o_valid))
|
o_err <= 1'b0;
|
o_err <= 1'b0;
|
else if (o_busy)
|
else if (o_busy)
|
o_err <= (r_divisor == 0);
|
o_err <= (r_divisor == 0);
|
|
|
|
initial last_bit = 1'b0;
|
|
always @(posedge i_clk)
|
|
if ((i_wr)||(pre_sign)||(i_rst))
|
|
last_bit <= 1'b0;
|
|
else if (r_busy)
|
|
last_bit <= (r_bit == {{(LGBW-1){1'b0}},1'b1});
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
|
// if (i_rst) r_busy <= 1'b0;
|
|
// else
|
if (i_wr)
|
if (i_wr)
|
begin
|
begin
|
|
//
|
|
// Set our values upon an initial command. Here's
|
|
// where we come in and start.
|
|
//
|
|
// r_busy <= 1'b1;
|
|
//
|
o_quotient <= 0;
|
o_quotient <= 0;
|
// r_bit <= { 1'b1, {(LGBW){1'b0}} };
|
r_bit <= {(LGBW){1'b1}};
|
r_bit <= { 1'b0, {(LGBW){1'b1}} };
|
|
r_divisor <= { i_denominator, {(BW-1){1'b0}} };
|
r_divisor <= { i_denominator, {(BW-1){1'b0}} };
|
r_dividend <= i_numerator;
|
r_dividend <= i_numerator;
|
r_sign <= 1'b0;
|
r_sign <= 1'b0;
|
pre_sign <= i_signed;
|
pre_sign <= i_signed;
|
r_z <= 1'b1;
|
r_z <= 1'b1;
|
end else if (pre_sign)
|
end else if (pre_sign)
|
begin
|
begin
|
// r_bit <= r_bit - 1;
|
//
|
r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));;
|
// Note that we only come in here, for one clock, if
|
|
// our initial value may have been signed. If we are
|
|
// doing an unsigned divide, we then skip this step.
|
|
//
|
|
r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));
|
|
// Negate our dividend if necessary so that it becomes
|
|
// a magnitude only value
|
if (r_dividend[BW-1])
|
if (r_dividend[BW-1])
|
r_dividend <= -r_dividend;
|
r_dividend <= -r_dividend;
|
|
// Do the same with the divisor--rendering it into
|
|
// a magnitude only.
|
if (r_divisor[(2*BW-2)])
|
if (r_divisor[(2*BW-2)])
|
r_divisor[(2*BW-2):(BW-1)] <= -r_divisor[(2*BW-2):(BW-1)];
|
r_divisor[(2*BW-2):(BW-1)] <= -r_divisor[(2*BW-2):(BW-1)];
|
|
//
|
|
// We only do this stage for a single clock, so go on
|
|
// with the rest of the divide otherwise.
|
pre_sign <= 1'b0;
|
pre_sign <= 1'b0;
|
end else if (o_busy)
|
end else if (r_busy)
|
begin
|
begin
|
r_bit <= r_bit + {(LGBW+1){1'b1}}; // r_bit = r_bit - 1;
|
// While the divide is taking place, we examine each bit
|
|
// in turn here.
|
|
//
|
|
r_bit <= r_bit + {(LGBW){1'b1}}; // r_bit = r_bit - 1;
|
r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
|
r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
|
if (|r_divisor[(2*BW-2):(BW)])
|
if (|r_divisor[(2*BW-2):(BW)])
|
begin
|
begin
|
end else if (diff[BW])
|
end else if (diff[BW])
|
begin
|
begin
|
|
//
|
|
// diff = r_dividend - r_divisor[(BW-1):0];
|
|
//
|
|
// If this value was negative, there wasn't
|
|
// enough value in the dividend to support
|
|
// pulling off a bit. We'll move down a bit
|
|
// therefore and try again.
|
|
//
|
end else begin
|
end else begin
|
|
//
|
|
// Put a '1' into our output accumulator.
|
|
// Subtract the divisor from the dividend,
|
|
// and then move on to the next bit
|
|
//
|
r_dividend <= diff[(BW-1):0];
|
r_dividend <= diff[(BW-1):0];
|
o_quotient[r_bit[(LGBW-1):0]] <= 1'b1;
|
o_quotient[r_bit[(LGBW-1):0]] <= 1'b1;
|
r_z <= 1'b0;
|
r_z <= 1'b0;
|
end
|
end
|
end else if (r_sign)
|
end else if (r_sign)
|
Line 125... |
Line 179... |
end
|
end
|
|
|
// Set Carry on an exact divide
|
// Set Carry on an exact divide
|
wire w_n;
|
wire w_n;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_c <= (o_busy)&&((diff == 0)||(r_dividend == 0));
|
r_c <= (r_busy)&&((diff == 0)||(r_dividend == 0));
|
assign w_n = o_quotient[(BW-1)];
|
assign w_n = o_quotient[(BW-1)];
|
|
|
assign o_flags = { 1'b0, w_n, r_c, r_z };
|
assign o_flags = { 1'b0, w_n, r_c, r_z };
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|