Line 6... |
Line 6... |
//
|
//
|
// Purpose: Provide an Integer divide capability to the Zip CPU. Provides
|
// Purpose: Provide an Integer divide capability to the Zip CPU. Provides
|
// for both signed and unsigned divide.
|
// for both signed and unsigned divide.
|
//
|
//
|
// Steps:
|
// Steps:
|
// i_rst The DIVide unit starts in idle. It can also be placed into an
|
// i_reset The DIVide unit starts in idle. It can also be placed into an
|
// idle by asserting the reset input.
|
// idle by asserting the reset input.
|
//
|
//
|
// i_wr When i_rst is asserted, a divide begins. On the next clock:
|
// i_wr When i_reset is asserted, a divide begins. On the next clock:
|
//
|
//
|
// o_busy is set high so everyone else knows we are at work and they can
|
// o_busy is set high so everyone else knows we are at work and they can
|
// wait for us to complete.
|
// wait for us to complete.
|
//
|
//
|
// pre_sign is set to true if we need to do a signed divide. In this
|
// pre_sign is set to true if we need to do a signed divide. In this
|
Line 69... |
Line 69... |
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
// Copyright (C) 2015-2019, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 93... |
Line 93... |
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
|
`default_nettype none
|
|
//
|
// `include "cpudefs.v"
|
// `include "cpudefs.v"
|
//
|
//
|
module div(i_clk, i_rst, i_wr, i_signed, i_numerator, i_denominator,
|
module div(i_clk, i_reset, i_wr, i_signed, i_numerator, i_denominator,
|
o_busy, o_valid, o_err, o_quotient, o_flags);
|
o_busy, o_valid, o_err, o_quotient, o_flags);
|
parameter BW=32, LGBW = 5;
|
parameter BW=32, LGBW = 5;
|
input i_clk, i_rst;
|
input wire i_clk, i_reset;
|
// Input parameters
|
// Input parameters
|
input i_wr, i_signed;
|
input wire i_wr, i_signed;
|
input [(BW-1):0] i_numerator, i_denominator;
|
input wire [(BW-1):0] i_numerator, i_denominator;
|
// Output parameters
|
// Output parameters
|
output reg o_busy, o_valid, o_err;
|
output reg o_busy, o_valid, o_err;
|
output reg [(BW-1):0] o_quotient;
|
output reg [(BW-1):0] o_quotient;
|
output wire [3:0] o_flags;
|
output wire [3:0] o_flags;
|
|
|
// r_busy is an internal busy register. It will clear one clock
|
// r_busy is an internal busy register. It will clear one clock
|
// before we are valid, so it can't be o_busy ...
|
// before we are valid, so it can't be o_busy ...
|
//
|
//
|
reg r_busy;
|
reg r_busy;
|
reg [(2*BW-2):0] r_divisor;
|
reg [BW-1:0] r_divisor;
|
reg [(BW-1):0] r_dividend;
|
reg [(2*BW-2):0] r_dividend;
|
wire [(BW):0] diff; // , xdiff[(BW-1):0];
|
wire [(BW):0] diff; // , xdiff[(BW-1):0];
|
assign diff = r_dividend - r_divisor[(BW-1):0];
|
assign diff = r_dividend[2*BW-2:BW-1] - r_divisor;
|
// assign xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
|
|
|
|
reg r_sign, pre_sign, r_z, r_c, last_bit;
|
reg r_sign, pre_sign, r_z, r_c, last_bit;
|
reg [(LGBW-1):0] r_bit;
|
reg [(LGBW-1):0] r_bit;
|
reg zero_divisor;
|
reg zero_divisor;
|
|
|
Line 128... |
Line 129... |
// Here, we clear r_busy on any reset and set it on i_wr (the request
|
// Here, we clear r_busy on any reset and set it on i_wr (the request
|
// do to a divide). The divide ends when we are on the last bit,
|
// do to a divide). The divide ends when we are on the last bit,
|
// or equivalently when we discover we are dividing by zero.
|
// or equivalently when we discover we are dividing by zero.
|
initial r_busy = 1'b0;
|
initial r_busy = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_reset)
|
r_busy <= 1'b0;
|
r_busy <= 1'b0;
|
else if (i_wr)
|
else if (i_wr)
|
r_busy <= 1'b1;
|
r_busy <= 1'b1;
|
else if ((last_bit)||(zero_divisor))
|
else if ((last_bit)||(zero_divisor))
|
r_busy <= 1'b0;
|
r_busy <= 1'b0;
|
Line 143... |
Line 144... |
// clock where we negate the result (assuming a signed divide, and that
|
// clock where we negate the result (assuming a signed divide, and that
|
// the result is supposed to be negative.) Otherwise, the two are
|
// the result is supposed to be negative.) Otherwise, the two are
|
// identical.
|
// identical.
|
initial o_busy = 1'b0;
|
initial o_busy = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_reset)
|
o_busy <= 1'b0;
|
o_busy <= 1'b0;
|
else if (i_wr)
|
else if (i_wr)
|
o_busy <= 1'b1;
|
o_busy <= 1'b1;
|
else if (((last_bit)&&(~r_sign))||(zero_divisor))
|
else if (((last_bit)&&(!r_sign))||(zero_divisor))
|
o_busy <= 1'b0;
|
o_busy <= 1'b0;
|
else if (~r_busy)
|
else if (!r_busy)
|
o_busy <= 1'b0;
|
o_busy <= 1'b0;
|
|
|
// If we are asked to divide by zero, we need to halt. The sooner
|
always @(posedge i_clk)
|
// we halt and report the error, the better. Hence, here we look
|
if (i_wr)
|
// for a zero divisor while being busy. The always above us will then
|
|
// look at this and halt a divide in the middle if we are trying to
|
|
// divide by zero.
|
|
//
|
|
// Note that this works off of the 2BW-1 length vector. If we can
|
|
// simplify that, it should simplify our logic as well.
|
|
initial zero_divisor = 1'b0;
|
|
always @(posedge i_clk)
|
|
// zero_divisor <= (r_divisor == 0)&&(r_busy);
|
|
if (i_rst)
|
|
zero_divisor <= 1'b0;
|
|
else if (i_wr)
|
|
zero_divisor <= (i_denominator == 0);
|
zero_divisor <= (i_denominator == 0);
|
else if (!r_busy)
|
|
zero_divisor <= 1'b0;
|
|
|
|
// o_valid is part of the ZipCPU protocol. It will be set to true
|
// o_valid is part of the ZipCPU protocol. It will be set to true
|
// anytime our answer is valid and may be used by the calling module.
|
// anytime our answer is valid and may be used by the calling module.
|
// Indeed, the ZipCPU will halt (and ignore us) once the i_wr has been
|
// Indeed, the ZipCPU will halt (and ignore us) once the i_wr has been
|
// set until o_valid gets set.
|
// set until o_valid gets set.
|
Line 181... |
Line 168... |
// bit while busy (provided the sign is zero, or we are dividing by
|
// bit while busy (provided the sign is zero, or we are dividing by
|
// zero). Since o_valid is self-clearing, we don't need to clear
|
// zero). Since o_valid is self-clearing, we don't need to clear
|
// it on an i_wr signal.
|
// it on an i_wr signal.
|
initial o_valid = 1'b0;
|
initial o_valid = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if ((i_reset)||(o_valid))
|
o_valid <= 1'b0;
|
o_valid <= 1'b0;
|
|
else if ((r_busy)&&(zero_divisor))
|
|
o_valid <= 1'b1;
|
else if (r_busy)
|
else if (r_busy)
|
begin
|
begin
|
if ((last_bit)||(zero_divisor))
|
if (last_bit)
|
o_valid <= (zero_divisor)||(!r_sign);
|
o_valid <= (!r_sign);
|
end else if (r_sign)
|
end else if (r_sign)
|
begin
|
begin
|
o_valid <= (!zero_divisor); // 1'b1;
|
o_valid <= 1'b1;
|
end else
|
end else
|
o_valid <= 1'b0;
|
o_valid <= 1'b0;
|
|
|
// Division by zero error reporting. Anytime we detect a zero divisor,
|
// Division by zero error reporting. Anytime we detect a zero divisor,
|
// we set our output error, and then hold it until we are valid and
|
// we set our output error, and then hold it until we are valid and
|
// everything clears.
|
// everything clears.
|
initial o_err = 1'b0;
|
initial o_err = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if((i_rst)||(o_valid))
|
if (i_reset)
|
o_err <= 1'b0;
|
o_err <= 1'b0;
|
else if (((r_busy)||(r_sign))&&(zero_divisor))
|
else if ((r_busy)&&(zero_divisor))
|
o_err <= 1'b1;
|
o_err <= 1'b1;
|
else
|
else
|
o_err <= 1'b0;
|
o_err <= 1'b0;
|
|
|
// r_bit
|
// r_bit
|
//
|
//
|
// Keep track of which "bit" of our divide we are on. This number
|
// Keep track of which "bit" of our divide we are on. This number
|
// ranges from 31 down to zero. On any write, we set ourselves to
|
// ranges from 31 down to zero. On any write, we set ourselves to
|
// 5'h1f. Otherwise, while we are busy (but not within the pre-sign
|
// 5'h1f. Otherwise, while we are busy (but not within the pre-sign
|
// adjustment stage), we subtract one from our value on every clock.
|
// adjustment stage), we subtract one from our value on every clock.
|
|
initial r_bit = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((r_busy)&&(!pre_sign))
|
if (i_reset)
|
r_bit <= r_bit + {(LGBW){1'b1}};
|
r_bit <= 0;
|
|
else if ((r_busy)&&(!pre_sign))
|
|
r_bit <= r_bit + 1'b1;
|
else
|
else
|
r_bit <= {(LGBW){1'b1}};
|
r_bit <= 0;
|
|
|
// last_bit
|
// last_bit
|
//
|
//
|
// This logic replaces a lot of logic that was inside our giant state
|
// This logic replaces a lot of logic that was inside our giant state
|
// machine with ... something simpler. In particular, we'll use this
|
// machine with ... something simpler. In particular, we'll use this
|
// logic to determine we are processing our last bit. The only trick
|
// logic to determine if we are processing our last bit. The only trick
|
// is, this bit needs to be set whenever (r_busy) and (r_bit == 0),
|
// is, this bit needs to be set whenever (r_busy) and (r_bit == -1),
|
// hence we need to set on (r_busy) and (r_bit == 1) so as to be set
|
// hence we need to set on (r_busy) and (r_bit == -2) so as to be set
|
// when (r_bit == 0).
|
// when (r_bit == 0).
|
initial last_bit = 1'b0;
|
initial last_bit = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (r_busy)
|
if (i_reset)
|
last_bit <= (r_bit == {{(LGBW-1){1'b0}},1'b1});
|
last_bit <= 1'b0;
|
|
else if (r_busy)
|
|
last_bit <= (r_bit == {(LGBW){1'b1}}-1'b1);
|
else
|
else
|
last_bit <= 1'b0;
|
last_bit <= 1'b0;
|
|
|
// pre_sign
|
// pre_sign
|
//
|
//
|
// This is part of the state machine. pre_sign indicates that we need
|
// This is part of the state machine. pre_sign indicates that we need
|
// a extra clock to take the absolute value of our inputs. It need only
|
// a extra clock to take the absolute value of our inputs. It need only
|
// be true for the one clock, and then it must clear itself.
|
// be true for the one clock, and then it must clear itself.
|
initial pre_sign = 1'b0;
|
initial pre_sign = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_wr)
|
if (i_reset)
|
pre_sign <= i_signed;
|
|
else
|
|
pre_sign <= 1'b0;
|
pre_sign <= 1'b0;
|
|
else
|
|
pre_sign <= (i_wr)&&(i_signed)&&((i_numerator[BW-1])||(i_denominator[BW-1]));
|
|
|
// As a result of our operation, we need to set the flags. The most
|
// As a result of our operation, we need to set the flags. The most
|
// difficult of these is the "Z" flag indicating that the result is
|
// difficult of these is the "Z" flag indicating that the result is
|
// zero. Here, we'll use the same logic that sets the low-order
|
// zero. Here, we'll use the same logic that sets the low-order
|
// bit to clear our zero flag, and leave the zero flag set in all
|
// bit to clear our zero flag, and leave the zero flag set in all
|
// other cases. Well ... not quite. If we need to flip the sign of
|
// other cases.
|
// our value, then we can't quite clear the zero flag ... yet.
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if((r_busy)&&(r_divisor[(2*BW-2):(BW)] == 0)&&(!diff[BW]))
|
if (i_wr)
|
// If we are busy, the upper bits of our divisor are
|
|
// zero (i.e., we got the shift right), and the top
|
|
// (carry) bit of the difference is zero (no overflow),
|
|
// then we could subtract our divisor from our dividend
|
|
// and hence we add a '1' to the quotient, while setting
|
|
// the zero flag to false.
|
|
r_z <= 1'b0;
|
|
else if ((!r_busy)&&(!r_sign))
|
|
r_z <= 1'b1;
|
r_z <= 1'b1;
|
|
else if ((r_busy)&&(!pre_sign)&&(!diff[BW]))
|
|
r_z <= 1'b0;
|
|
|
// r_dividend
|
// r_dividend
|
// This is initially the numerator. On a signed divide, it then becomes
|
// This is initially the numerator. On a signed divide, it then becomes
|
// the absolute value of the numerator. We'll subtract from this value
|
// the absolute value of the numerator. We'll subtract from this value
|
// the divisor shifted as appropriate for every output bit we are
|
// the divisor for every output bit we are looking for--just as with
|
// looking for--just as with traditional long division.
|
// traditional long division.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (pre_sign)
|
if (pre_sign)
|
begin
|
begin
|
// If we are doing a signed divide, then take the
|
// If we are doing a signed divide, then take the
|
// absolute value of the dividend
|
// absolute value of the dividend
|
if (r_dividend[BW-1])
|
if (r_dividend[BW-1])
|
r_dividend <= -r_dividend;
|
begin
|
// The begin/end block is important so we don't lose
|
r_dividend[2*BW-2:0] <= {(2*BW-1){1'b1}};
|
// the fact that on an else we don't do anything.
|
r_dividend[BW-1:0] <= -r_dividend[BW-1:0];
|
end else if((r_busy)&&(r_divisor[(2*BW-2):(BW)]==0)&&(!diff[BW]))
|
end
|
// This is the condition whereby we set a '1' in our
|
end else if (r_busy)
|
// output quotient, and we subtract the (current)
|
begin
|
// divisor from our dividend. (The difference is
|
r_dividend <= { r_dividend[2*BW-3:0], 1'b0 };
|
// already kept in the diff vector above.)
|
if (!diff[BW])
|
r_dividend <= diff[(BW-1):0];
|
r_dividend[2*BW-2:BW] <= diff[(BW-2):0];
|
else if (!r_busy)
|
end else if (!r_busy)
|
// Once we are done, and r_busy is no longer high, we'll
|
// Once we are done, and r_busy is no longer high, we'll
|
// always accept new values into our dividend. This
|
// always accept new values into our dividend. This
|
// guarantees that, when i_wr is set, the new value
|
// guarantees that, when i_wr is set, the new value
|
// is already set as desired.
|
// is already set as desired.
|
r_dividend <= i_numerator;
|
r_dividend <= { 31'h0, i_numerator };
|
|
|
initial r_divisor = 0;
|
initial r_divisor = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (pre_sign)
|
if (i_reset)
|
|
r_divisor <= 0;
|
|
else if ((pre_sign)&&(r_busy))
|
begin
|
begin
|
if (r_divisor[(2*BW-2)])
|
if (r_divisor[BW-1])
|
r_divisor[(2*BW-2):(BW-1)]
|
r_divisor <= -r_divisor;
|
<= -r_divisor[(2*BW-2):(BW-1)];
|
end else if (!r_busy)
|
end else if (r_busy)
|
r_divisor <= i_denominator;
|
r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
|
|
else
|
|
r_divisor <= { i_denominator, {(BW-1){1'b0}} };
|
|
|
|
// r_sign
|
// r_sign
|
// is a flag for our state machine control(s). r_sign will be set to
|
// is a flag for our state machine control(s). r_sign will be set to
|
// true any time we are doing a signed divide and the result must be
|
// true any time we are doing a signed divide and the result must be
|
// negative. In that case, we take a final logic stage at the end of
|
// negative. In that case, we take a final logic stage at the end of
|
Line 312... |
Line 298... |
// goes low, r_sign will be checked, then the idle/reset stage will have
|
// goes low, r_sign will be checked, then the idle/reset stage will have
|
// been reached. For this reason, we cannot set r_sign unless we are
|
// been reached. For this reason, we cannot set r_sign unless we are
|
// up to something.
|
// up to something.
|
initial r_sign = 1'b0;
|
initial r_sign = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (pre_sign)
|
if (i_reset)
|
r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));
|
r_sign <= 1'b0;
|
|
else if (pre_sign)
|
|
r_sign <= ((r_divisor[(BW-1)])^(r_dividend[(BW-1)]));
|
else if (r_busy)
|
else if (r_busy)
|
r_sign <= (r_sign)&&(!zero_divisor);
|
r_sign <= (r_sign)&&(!zero_divisor);
|
else
|
else
|
r_sign <= 1'b0;
|
r_sign <= 1'b0;
|
|
|
|
initial o_quotient = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (r_busy)
|
if (i_reset)
|
|
o_quotient <= 0;
|
|
else if (r_busy)
|
begin
|
begin
|
o_quotient <= { o_quotient[(BW-2):0], 1'b0 };
|
o_quotient <= { o_quotient[(BW-2):0], 1'b0 };
|
if ((r_divisor[(2*BW-2):(BW)] == 0)&&(!diff[BW]))
|
if (!diff[BW])
|
begin
|
|
o_quotient[0] <= 1'b1;
|
o_quotient[0] <= 1'b1;
|
end
|
|
end else if (r_sign)
|
end else if (r_sign)
|
o_quotient <= -o_quotient;
|
o_quotient <= -o_quotient;
|
else
|
else
|
o_quotient <= 0;
|
o_quotient <= 0;
|
|
|
// Set Carry on an exact divide
|
// Set Carry on an exact divide
|
// Perhaps nothing uses this, but ... well, I suppose we could remove
|
// Perhaps nothing uses this, but ... well, I suppose we could remove
|
// this logic eventually, just ... not yet.
|
// this logic eventually, just ... not yet.
|
|
initial r_c = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_c <= (r_busy)&&((diff == 0)||(r_dividend == 0));
|
if (i_reset)
|
|
r_c <= 1'b0;
|
|
else
|
|
r_c <= (r_busy)&&(diff == 0);
|
|
|
// The last flag: Negative. This flag is set assuming that the result
|
// The last flag: Negative. This flag is set assuming that the result
|
// of the divide was negative (i.e., the high order bit is set). This
|
// of the divide was negative (i.e., the high order bit is set). This
|
// will also be true of an unsigned divide--if the high order bit is
|
// will also be true of an unsigned divide--if the high order bit is
|
// ever set upon completion. Indeed, you might argue that there's no
|
// ever set upon completion. Indeed, you might argue that there's no
|
// logic involved.
|
// logic involved.
|
wire w_n;
|
wire w_n;
|
assign w_n = o_quotient[(BW-1)];
|
assign w_n = o_quotient[(BW-1)];
|
|
|
assign o_flags = { 1'b0, w_n, r_c, r_z };
|
assign o_flags = { 1'b0, w_n, r_c, r_z };
|
|
|
|
`ifdef FORMAL
|
|
reg f_past_valid;
|
|
initial f_past_valid = 0;
|
|
always @(posedge i_clk)
|
|
f_past_valid <= 1'b1;
|
|
|
|
`ifdef DIV
|
|
`define ASSUME assume
|
|
`else
|
|
`define ASSUME assert
|
|
`endif
|
|
|
|
initial `ASSUME(i_reset);
|
|
always @(*)
|
|
if (!f_past_valid)
|
|
`ASSUME(i_reset);
|
|
|
|
always @(posedge i_clk)
|
|
if ((!f_past_valid)||($past(i_reset)))
|
|
begin
|
|
assert(!o_busy);
|
|
assert(!o_valid);
|
|
assert(!o_err);
|
|
//
|
|
assert(!r_busy);
|
|
// assert(!zero_divisor);
|
|
assert(r_bit==0);
|
|
assert(!last_bit);
|
|
assert(!pre_sign);
|
|
// assert(!r_z);
|
|
// assert(r_dividend==0);
|
|
assert(o_quotient==0);
|
|
assert(!r_c);
|
|
assert(r_divisor==0);
|
|
|
|
`ASSUME(!i_wr);
|
|
end
|
|
|
|
always @(*)
|
|
if (o_busy)
|
|
`ASSUME(!i_wr);
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_reset))&&($past(o_busy))&&(!o_busy))
|
|
begin
|
|
assert(o_valid);
|
|
end
|
|
|
|
// A formal methods section
|
|
//
|
|
// This section isn't yet complete. For now, it is just
|
|
// a description of things I think should be in here ... not
|
|
// yet a description of what it would take to prove
|
|
// this divide (yet).
|
|
always @(*)
|
|
if (o_err)
|
|
assert(o_valid);
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_wr)))
|
|
assert(!pre_sign);
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_reset))&&($past(i_wr))&&($past(i_signed))
|
|
&&(|$past({i_numerator[BW-1],i_denominator[BW-1]})))
|
|
assert(pre_sign);
|
|
|
|
// always @(posedge i_clk)
|
|
// if ((f_past_valid)&&(!$past(pre_sign)))
|
|
// assert(!r_sign);
|
|
reg [BW:0] f_bits_set;
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_reset))&&($past(i_wr)))
|
|
assert(o_busy);
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(o_valid)))
|
|
assert(!o_valid);
|
|
|
|
always @(*)
|
|
if ((o_valid)&&(!o_err))
|
|
assert(r_z == ((o_quotient == 0)? 1'b1:1'b0));
|
|
else if (o_busy)
|
|
assert(r_z == (((o_quotient&f_bits_set[BW-1:0]) == 0)? 1'b1: 1'b0));
|
|
|
|
always @(*)
|
|
if ((o_valid)&&(!o_err))
|
|
assert(w_n == o_quotient[BW-1]);
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(r_busy))&&(!$past(i_wr)))
|
|
assert(!o_busy);
|
|
always @(posedge i_clk)
|
|
assert((!o_busy)||(!o_valid));
|
|
|
|
always @(*)
|
|
if(r_busy)
|
|
assert(o_busy);
|
|
|
|
always @(posedge i_clk)
|
|
if (i_reset)
|
|
f_bits_set <= 0;
|
|
else if (i_wr)
|
|
f_bits_set <= 0;
|
|
else if ((r_busy)&&(!pre_sign))
|
|
f_bits_set <= { f_bits_set[BW-1:0], 1'b1 };
|
|
|
|
always @(posedge i_clk)
|
|
if (r_busy)
|
|
assert(((1<<r_bit)-1) == f_bits_set);
|
|
|
|
always @(*)
|
|
if ((o_valid)&&(!o_err))
|
|
assert((!f_bits_set[BW])&&(&f_bits_set[BW-1:0]));
|
|
|
|
|
|
/*
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_reset))&&($past(r_busy))
|
|
&&($past(r_divisor[2*BW-2:BW])==0))
|
|
begin
|
|
if ($past(r_divisor) == 0)
|
|
assert(o_err);
|
|
else if ($past(pre_sign))
|
|
begin
|
|
if ($past(r_dividend[BW-1]))
|
|
assert(r_dividend == -$past(r_dividend));
|
|
if ($past(r_divisor[(2*BW-2)]))
|
|
begin
|
|
assert(r_divisor[(2*BW-2):(BW-1)]
|
|
== -$past(r_divisor[(2*BW-2):(BW-1)]));
|
|
assert(r_divisor[BW-2:0] == 0);
|
|
end
|
|
end else begin
|
|
if (o_quotient[0])
|
|
assert(r_dividend == $past(diff));
|
|
else
|
|
assert(r_dividend == $past(r_dividend));
|
|
|
|
// r_divisor should shift down on every step
|
|
assert(r_divisor[2*BW-2]==0);
|
|
assert(r_divisor[2*BW-3:0]==$past(r_divisor[2*BW-2:1]));
|
|
end
|
|
if ($past(r_dividend) >= $past(r_divisor[BW-1:0]))
|
|
assert(o_quotient[0]);
|
|
else
|
|
assert(!o_quotient[0]);
|
|
end
|
|
*/
|
|
|
|
always @(*)
|
|
if (r_busy)
|
|
assert((f_bits_set & r_dividend[BW-1:0])==0);
|
|
|
|
always @(*)
|
|
if (r_busy)
|
|
assert((r_divisor == 0) == zero_divisor);
|
|
|
|
`ifdef VERIFIC
|
|
// Verify unsigned division
|
|
assert property (@(posedge i_clk)
|
|
disable iff (i_reset)
|
|
(i_wr)&&(i_denominator != 0)&&(!i_signed)
|
|
|=> ((!o_err)&&(!o_valid)&&(o_busy)&&(!r_sign)&&(!pre_sign)
|
|
throughout (r_bit == 0)
|
|
##1 ((r_bit == $past(r_bit)+1)&&({1'b0,r_bit}< BW-1))
|
|
[*0:$]
|
|
##1 ({ 1'b0, r_bit } == BW-1))
|
|
##1 (!o_err)&&(o_valid));
|
|
|
|
// Verify division by zero
|
|
assert property (@(posedge i_clk)
|
|
disable iff (i_reset)
|
|
(i_wr)&&(i_denominator == 0)
|
|
|=> (zero_divisor throughout
|
|
(!o_err)&&(!o_valid)&&(pre_sign) [*0:1]
|
|
##1 ((r_busy)&&(!o_err)&&(!o_valid))
|
|
##1 ((o_err)&&(o_valid))));
|
|
|
|
|
|
`endif // VERIFIC
|
|
`endif
|
endmodule
|
endmodule
|
|
//
|
|
// How much logic will this divide use, now that it's been updated to
|
|
// a different (long division) algorithm?
|
|
//
|
|
// iCE40 stats (Updated) (Original)
|
|
// Number of cells: 700 820
|
|
// SB_CARRY 125 125
|
|
// SB_DFF 1
|
|
// SB_DFFE 33 1
|
|
// SB_DFFESR 37
|
|
// SB_DFFESS 31
|
|
// SB_DFFSR 40 40
|
|
// SB_LUT4 433 553
|
|
//
|
|
// Xilinx stats (Updated) (Original)
|
|
// Number of cells: 758 831
|
|
// FDRE 142 142
|
|
// LUT1 97 97
|
|
// LUT2 69 174
|
|
// LUT3 6 5
|
|
// LUT4 1 6
|
|
// LUT5 68 35
|
|
// LUT6 94 98
|
|
// MUXCY 129 129
|
|
// MUXF7 12 8
|
|
// MUXF8 6 3
|
|
// XORCY 134 134
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|