Line 42... |
Line 42... |
CW=LGCACHELEN, PW=LGCACHELEN-5;
|
CW=LGCACHELEN, PW=LGCACHELEN-5;
|
input i_clk, i_rst, i_new_pc;
|
input i_clk, i_rst, i_new_pc;
|
input i_clear_cache;
|
input i_clear_cache;
|
input i_stall_n;
|
input i_stall_n;
|
input [(AW-1):0] i_pc;
|
input [(AW-1):0] i_pc;
|
output reg [(BUSW-1):0] o_i;
|
output wire [(BUSW-1):0] o_i;
|
output reg [(AW-1):0] o_pc;
|
output wire [(AW-1):0] o_pc;
|
output wire o_v;
|
output wire o_v;
|
//
|
//
|
output reg o_wb_cyc, o_wb_stb;
|
output reg o_wb_cyc, o_wb_stb;
|
output wire o_wb_we;
|
output wire o_wb_we;
|
output reg [(AW-1):0] o_wb_addr;
|
output reg [(AW-1):0] o_wb_addr;
|
Line 62... |
Line 62... |
// Thus the output data is ... irrelevant and don't care. We set it
|
// Thus the output data is ... irrelevant and don't care. We set it
|
// to zero just to set it to something.
|
// to zero just to set it to something.
|
assign o_wb_we = 1'b0;
|
assign o_wb_we = 1'b0;
|
assign o_wb_data = 0;
|
assign o_wb_data = 0;
|
|
|
reg r_v;
|
wire r_v;
|
(* ram_style = "distributed" *)
|
|
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
reg [(AW-CW-1):0] tags [0:((1<<(CW-PW))-1)];
|
reg [(AW-CW-1):0] tags [0:((1<<(CW-PW))-1)];
|
reg [((1<<(CW-PW))-1):0] vmask;
|
reg [((1<<(CW-PW))-1):0] vmask;
|
|
|
reg [(AW-1):0] lastpc;
|
reg [(AW-1):0] lastpc;
|
reg [(CW-1):0] rdaddr;
|
reg [(CW-1):0] rdaddr;
|
reg [(AW-1):CW] tagval;
|
reg [(AW-1):CW] tagvalipc, tagvallst;
|
|
wire [(AW-1):CW] tagval;
|
wire [(AW-1):PW] lasttag;
|
wire [(AW-1):PW] lasttag;
|
reg illegal_valid;
|
reg illegal_valid;
|
reg [(AW-1):PW] illegal_cache;
|
reg [(AW-1):PW] illegal_cache;
|
|
|
initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
// initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
initial o_pc = 0;
|
// initial o_pc = 0;
|
|
reg [(BUSW-1):0] r_pc_cache, r_last_cache;
|
|
reg [(AW-1):0] r_pc, r_lastpc;
|
|
reg isrc;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (~r_v)
|
|
begin
|
begin
|
o_i <= cache[lastpc[(CW-1):0]];
|
// We don't have the logic to select what to read, we must
|
o_pc <= lastpc;
|
// read both the value at i_pc and lastpc. cache[i_pc] is
|
end else if ((i_stall_n)||(i_new_pc))
|
// the value we return if the cache is good, cacne[lastpc] is
|
begin
|
// the value we return if we've been stalled, weren't valid,
|
o_i <= cache[i_pc[(CW-1):0]];
|
// or had to wait a clock or two. (Remember i_pc can't stop
|
o_pc <= i_pc;
|
// changing for a clock, so we need to keep track of the last
|
|
// one from before it stopped.)
|
|
//
|
|
// Here we keep track of which answer we want/need
|
|
isrc <= ((r_v)&&(i_stall_n))||(i_new_pc);
|
|
|
|
// Here we read both, and select which was write using isrc
|
|
// on the next clock.
|
|
r_pc_cache <= cache[i_pc[(CW-1):0]];
|
|
r_last_cache <= cache[lastpc[(CW-1):0]];
|
|
r_pc <= i_pc;
|
|
r_lastpc <= lastpc;
|
end
|
end
|
|
assign o_pc = (isrc) ? r_pc : r_lastpc;
|
|
assign o_i = (isrc) ? r_pc_cache : r_last_cache;
|
|
|
initial tagval = 0;
|
reg tagsrc;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
// It may be possible to recover a clock once the cache line
|
// It may be possible to recover a clock once the cache line
|
// has been filled, but our prior attempt to do so has lead
|
// has been filled, but our prior attempt to do so has lead
|
// to a race condition, so we keep this logic simple.
|
// to a race condition, so we keep this logic simple.
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
tagval <= tags[i_pc[(CW-1):PW]];
|
tagsrc <= 1'b1;
|
else
|
else
|
tagval <= tags[lastpc[(CW-1):PW]];
|
tagsrc <= 1'b0;
|
|
initial tagvalipc = 0;
|
|
always @(posedge i_clk)
|
|
tagvalipc <= tags[i_pc[(CW-1):PW]];
|
|
initial tagvallst = 0;
|
|
always @(posedge i_clk)
|
|
tagvallst <= tags[lastpc[(CW-1):PW]];
|
|
assign tagval = (tagsrc)?tagvalipc : tagvallst;
|
|
|
// i_pc will only increment when everything else isn't stalled, thus
|
// i_pc will only increment when everything else isn't stalled, thus
|
// we can set it without worrying about that. Doing this enables
|
// we can set it without worrying about that. Doing this enables
|
// us to work in spite of stalls. For example, if the next address
|
// us to work in spite of stalls. For example, if the next address
|
// isn't valid, but the decoder is stalled, get the next address
|
// isn't valid, but the decoder is stalled, get the next address
|
Line 109... |
Line 131... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
lastpc <= i_pc;
|
lastpc <= i_pc;
|
|
|
assign lasttag = lastpc[(AW-1):PW];
|
assign lasttag = lastpc[(AW-1):PW];
|
// initial lasttag = 0;
|
|
// always @(posedge i_clk)
|
wire w_v_from_pc, w_v_from_last;
|
// if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
assign w_v_from_pc = ((i_pc[(AW-1):PW] == lasttag)
|
// lasttag <= i_pc[(AW-1):PW];
|
&&(tagvalipc == i_pc[(AW-1):CW])
|
|
|
wire r_v_from_pc, r_v_from_last;
|
|
assign r_v_from_pc = ((i_pc[(AW-1):PW] == lasttag)
|
|
&&(tagval == i_pc[(AW-1):CW])
|
|
&&(vmask[i_pc[(CW-1):PW]]));
|
&&(vmask[i_pc[(CW-1):PW]]));
|
assign r_v_from_last = (
|
assign w_v_from_last = (
|
//(lastpc[(AW-1):PW] == lasttag)&&
|
//(lastpc[(AW-1):PW] == lasttag)&&
|
(tagval == lastpc[(AW-1):CW])
|
(tagval == lastpc[(AW-1):CW])
|
&&(vmask[lastpc[(CW-1):PW]]));
|
&&(vmask[lastpc[(CW-1):PW]]));
|
|
|
reg [1:0] delay;
|
reg [1:0] delay;
|
|
|
initial delay = 2'h3;
|
initial delay = 2'h3;
|
initial r_v = 1'b0;
|
reg rvsrc;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n)))
|
if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n)))
|
begin
|
begin
|
r_v <= r_v_from_pc;
|
// r_v <= r_v_from_pc;
|
|
rvsrc <= 1'b1;
|
delay <= 2'h2;
|
delay <= 2'h2;
|
end else if (~r_v) begin // Otherwise, r_v was true and we were
|
end else if (~r_v) begin // Otherwise, r_v was true and we were
|
r_v <= r_v_from_last; // stalled, hence only if ~r_v
|
// stalled, hence only if ~r_v
|
|
rvsrc <= 1'b0;
|
if (o_wb_cyc)
|
if (o_wb_cyc)
|
delay <= 2'h2;
|
delay <= 2'h2;
|
else if (delay != 0)
|
else if (delay != 0)
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
end
|
end
|
|
reg r_v_from_pc, r_v_from_last;
|
|
always @(posedge i_clk)
|
|
r_v_from_pc <= w_v_from_pc;
|
|
always @(posedge i_clk)
|
|
r_v_from_last <= w_v_from_last;
|
|
|
|
assign r_v = ((rvsrc)?(r_v_from_pc):(r_v_from_last));
|
|
assign o_v = (((rvsrc)?(r_v_from_pc):(r_v_from_last))
|
|
||((o_illegal)&&(~o_wb_cyc)))
|
|
&&(~i_new_pc)&&(~i_rst);
|
|
|
|
reg last_ack;
|
|
initial last_ack = 1'b0;
|
|
always @(posedge i_clk)
|
|
last_ack <= (o_wb_cyc)&&(
|
|
(rdaddr[(PW-1):1]=={(PW-1){1'b1}})
|
|
&&((rdaddr[0])||(i_wb_ack)));
|
|
|
assign o_v = (r_v)&&(~i_new_pc);
|
reg needload;
|
|
initial needload = 1'b0;
|
|
always @(posedge i_clk)
|
|
needload <= ((~r_v)&&(delay==0)
|
|
&&((tagvallst != lastpc[(AW-1):CW])
|
|
||(~vmask[lastpc[(CW-1):PW]]))
|
|
&&((~illegal_valid)
|
|
||(lastpc[(AW-1):PW] != illegal_cache)));
|
|
|
|
reg last_addr;
|
|
initial last_addr = 1'b0;
|
|
always @(posedge i_clk)
|
|
last_addr <= (o_wb_cyc)&&(o_wb_addr[(PW-1):1] == {(PW-1){1'b1}})
|
|
&&((~i_wb_stall)|(o_wb_addr[0]));
|
|
|
initial o_wb_cyc = 1'b0;
|
initial o_wb_cyc = 1'b0;
|
initial o_wb_stb = 1'b0;
|
initial o_wb_stb = 1'b0;
|
initial o_wb_addr = {(AW){1'b0}};
|
initial o_wb_addr = {(AW){1'b0}};
|
initial rdaddr = 0;
|
initial rdaddr = 0;
|
Line 156... |
Line 205... |
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
end else if (o_wb_cyc)
|
end else if (o_wb_cyc)
|
begin
|
begin
|
if (i_wb_err)
|
if (i_wb_err)
|
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
else if ((o_wb_stb)&&(~i_wb_stall))
|
else if ((o_wb_stb)&&(~i_wb_stall)&&(last_addr))
|
begin
|
|
if (o_wb_addr[(PW-1):0] == {(PW){1'b1}})
|
|
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
else
|
|
o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1;
|
|
end
|
|
|
|
if (i_wb_ack)
|
|
begin
|
|
rdaddr <= rdaddr + 1;
|
|
tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW];
|
|
end
|
|
|
|
if (((i_wb_ack)&&(rdaddr[(PW-1):0]=={(PW){1'b1}}))||(i_wb_err))
|
if (((i_wb_ack)&&(last_ack))||(i_wb_err))
|
o_wb_cyc <= 1'b0;
|
o_wb_cyc <= 1'b0;
|
|
|
// else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}})
|
// else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}})
|
// tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW];
|
// tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW];
|
|
|
end else if ((~r_v)&&(delay==0)
|
end else if (needload)
|
&&((tagval != lastpc[(AW-1):CW])
|
|
||(~vmask[lastpc[(CW-1):PW]]))
|
|
&&((~illegal_valid)||(lastpc[(AW-1):PW] != illegal_cache)))
|
|
begin
|
begin
|
o_wb_cyc <= 1'b1;
|
o_wb_cyc <= 1'b1;
|
o_wb_stb <= 1'b1;
|
o_wb_stb <= 1'b1;
|
o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} };
|
|
rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} };
|
|
end
|
end
|
|
|
// Can't initialize an array, so leave cache uninitialized
|
always @(posedge i_clk)
|
|
if (o_wb_cyc) // &&(i_wb_ack)
|
|
tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW];
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_wb_cyc)&&(i_wb_ack))
|
if ((o_wb_cyc)&&(i_wb_ack))
|
|
rdaddr <= rdaddr + 1;
|
|
else if (~o_wb_cyc)
|
|
rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} };
|
|
|
|
always @(posedge i_clk)
|
|
if ((o_wb_stb)&&(~i_wb_stall)&&(~last_addr))
|
|
o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1;
|
|
else if (~o_wb_cyc)
|
|
o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} };
|
|
|
|
// Can't initialize an array, so leave cache uninitialized
|
|
// We'll also never get an ack without sys being active, so skip
|
|
// that check. Or rather, let's just use o_wb_cyc instead. This
|
|
// will work because multiple writes to the same address, ending with
|
|
// a valid write, aren't a problem.
|
|
always @(posedge i_clk)
|
|
if (o_wb_cyc) // &&(i_wb_ack)
|
cache[rdaddr] <= i_wb_data;
|
cache[rdaddr] <= i_wb_data;
|
|
|
// VMask ... is a section loaded?
|
// VMask ... is a section loaded?
|
|
// Note "svmask". It's purpose is to delay the vmask setting by one
|
|
// clock, so that we can insure the right value of the cache is loaded
|
|
// before declaring that the cache line is valid. Without this, the
|
|
// cache line would get read, and the instruction would read from the
|
|
// last cache line.
|
|
reg svmask;
|
initial vmask = 0;
|
initial vmask = 0;
|
|
initial svmask = 1'b0;
|
|
reg [(CW-PW-1):0] saddr;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_rst)||(i_clear_cache))
|
|
begin
|
vmask <= 0;
|
vmask <= 0;
|
|
svmask<= 1'b0;
|
|
end
|
else begin
|
else begin
|
if ((o_wb_cyc)&&(i_wb_ack)&&(rdaddr[(PW-1):0] == {(PW){1'b1}}))
|
svmask <= ((o_wb_cyc)&&(i_wb_ack)&&(last_ack));
|
vmask[rdaddr[(CW-1):PW]] <= 1'b1;
|
|
if ((~r_v)&&(tagval != lastpc[(AW-1):CW])&&(delay == 0))
|
if (svmask)
|
|
vmask[saddr] <= 1'b1;
|
|
if ((~o_wb_cyc)&&(needload))
|
vmask[lastpc[(CW-1):PW]] <= 1'b0;
|
vmask[lastpc[(CW-1):PW]] <= 1'b0;
|
end
|
end
|
|
always @(posedge i_clk)
|
|
if ((o_wb_cyc)&&(i_wb_ack))
|
|
saddr <= rdaddr[(CW-1):PW];
|
|
|
initial illegal_cache = 0;
|
initial illegal_cache = 0;
|
initial illegal_valid = 0;
|
initial illegal_valid = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_rst)||(i_clear_cache))
|
Line 219... |
Line 287... |
illegal_valid <= 1'b1;
|
illegal_valid <= 1'b1;
|
end
|
end
|
|
|
initial o_illegal = 1'b0;
|
initial o_illegal = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_rst)||(i_clear_cache)||(o_wb_cyc))
|
o_illegal <= 1'b0;
|
o_illegal <= 1'b0;
|
else
|
else
|
o_illegal <= (illegal_valid)
|
o_illegal <= (illegal_valid)
|
&&(illegal_cache == i_pc[(AW-1):PW]);
|
&&(illegal_cache == i_pc[(AW-1):PW]);
|
|
|