Line 2... |
Line 2... |
//
|
//
|
// Filename: ziptimer.v
|
// Filename: ziptimer.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose:
|
// Purpose: A lighter weight implementation of the Zip Timer.
|
//
|
//
|
// Interface:
|
// Interface:
|
// Two options:
|
// Two options:
|
// 1. One combined register for both control and value, and ...
|
// 1. One combined register for both control and value, and ...
|
// The reload value is set any time the timer data value is "set".
|
// The reload value is set any time the timer data value is "set".
|
Line 20... |
Line 20... |
// setting any interrupts. Thus setting it to five will count
|
// setting any interrupts. Thus setting it to five will count
|
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
|
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
|
//
|
//
|
//
|
//
|
// Control bits:
|
// Control bits:
|
// Start_n/Stop. Writing a '0' starts the timer, '1' stops it.
|
// (Start_n/Stop. This bit has been dropped. Writing to this
|
// Thus, ignoring this bit sets it to start.
|
// timer any value but zero starts it. Writing a zero
|
|
// clears and stops it.)
|
// AutoReload. If set, then on reset the timer automatically
|
// AutoReload. If set, then on reset the timer automatically
|
// loads the last set value and starts over. This is
|
// loads the last set value and starts over. This is
|
// useful for distinguishing between a one-time interrupt
|
// useful for distinguishing between a one-time interrupt
|
// timer, and a repetitive interval timer.
|
// timer, and a repetitive interval timer.
|
// (COUNT: If set, the timer only ticks whenever an external
|
|
// line goes high. What this external line is ... is
|
|
// not specified here. This, however, breaks my
|
|
// interface ideal of having our peripheral set not depend
|
|
// upon anything. Hence, this is an advanced option
|
|
// enabled at compile time only.)
|
|
// (INTEN. Interrupt enable--reaching zero always creates an
|
// (INTEN. Interrupt enable--reaching zero always creates an
|
// interrupt, so this control bit isn't needed. The
|
// interrupt, so this control bit isn't needed. The
|
// interrupt controller can be used to mask the interrupt.)
|
// interrupt controller can be used to mask the interrupt.)
|
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
|
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
|
// There is no means of setting it to count up.)
|
// There is no means of setting it to count up.)
|
Line 70... |
Line 65... |
//
|
//
|
module ziptimer(i_clk, i_rst, i_ce,
|
module ziptimer(i_clk, i_rst, i_ce,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_int);
|
o_int);
|
parameter BW = 32, VW = (BW-2);
|
parameter BW = 32, VW = (BW-1);
|
input i_clk, i_rst, i_ce;
|
input i_clk, i_rst, i_ce;
|
// Wishbone inputs
|
// Wishbone inputs
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input [(BW-1):0] i_wb_data;
|
input [(BW-1):0] i_wb_data;
|
// Wishbone outputs
|
// Wishbone outputs
|
Line 84... |
Line 79... |
// Interrupt line
|
// Interrupt line
|
output reg o_int;
|
output reg o_int;
|
|
|
reg r_auto_reload, r_running;
|
reg r_auto_reload, r_running;
|
reg [(VW-1):0] r_reload_value;
|
reg [(VW-1):0] r_reload_value;
|
|
|
|
wire wb_write;
|
|
assign wb_write = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
|
|
|
initial r_running = 1'b0;
|
initial r_running = 1'b0;
|
initial r_auto_reload = 1'b0;
|
initial r_auto_reload = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
begin
|
|
r_running <= 1'b0;
|
r_running <= 1'b0;
|
r_auto_reload <= 1'b0;
|
else if (wb_write)
|
end else if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
|
r_running <= (|i_wb_data[(VW-1):0]);
|
begin
|
else if ((o_int)&&(~r_auto_reload))
|
r_running <= (~i_wb_data[(BW-1)])&&(|i_wb_data[(BW-2):0]);
|
r_running <= 1'b0;
|
r_auto_reload <= (i_wb_data[(BW-2)]);
|
|
|
|
|
always @(posedge i_clk)
|
|
if (wb_write)
|
|
r_auto_reload <= (i_wb_data[(BW-1)]);
|
|
|
// If setting auto-reload mode, and the value to other
|
// If setting auto-reload mode, and the value to other
|
// than zero, set the auto-reload value
|
// than zero, set the auto-reload value
|
if ((i_wb_data[(BW-2)])&&(|i_wb_data[(BW-3):0]))
|
always @(posedge i_clk)
|
r_reload_value <= i_wb_data[(BW-3):0];
|
if ((wb_write)&&(i_wb_data[(BW-1)])&&(|i_wb_data[(VW-1):0]))
|
end
|
r_reload_value <= i_wb_data[(VW-1):0];
|
|
|
|
|
reg [(VW-1):0] r_value;
|
reg [(VW-1):0] r_value;
|
initial r_value = 0;
|
initial r_value = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((r_running)&&(|r_value)&&(i_ce))
|
if (wb_write)
|
begin
|
r_value <= i_wb_data[(VW-1):0];
|
|
else if ((r_running)&&(i_ce)&&(~o_int))
|
r_value <= r_value - 1;
|
r_value <= r_value - 1;
|
end else if ((r_running)&&(r_auto_reload))
|
else if ((r_running)&&(r_auto_reload)&&(o_int))
|
r_value <= r_reload_value;
|
r_value <= r_reload_value;
|
else if ((~r_running)&&(i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
|
|
r_value <= i_wb_data[(VW-1):0];
|
|
|
|
// Set the interrupt on our last tick.
|
// Set the interrupt on our last tick.
|
initial o_int = 1'b0;
|
initial o_int = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_ce)
|
if (i_ce)
|
Line 126... |
Line 128... |
initial o_wb_ack = 1'b0;
|
initial o_wb_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
assign o_wb_stall = 1'b0;
|
assign o_wb_stall = 1'b0;
|
|
|
assign o_wb_data = { ~r_running, r_auto_reload, r_value };
|
assign o_wb_data = { r_auto_reload, r_value };
|
|
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|