Line 4... |
Line 4... |
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
// peripherals to the CPU nearby its CORE. The functionality
|
// peripherals to the CPU nearby its CORE. The functionality
|
// sits on the data bus, and does not include any true
|
// sits on the data bus, and does not include any true external hardware
|
// external hardware peripherals. The peripherals included here
|
// peripherals. The peripherals included here include:
|
// include:
|
|
//
|
|
//
|
//
|
// Local interrupt controller--for any/all of the interrupts generated
|
// Local interrupt controller--for any/all of the interrupts generated
|
// here. This would include a pin for interrupts generated
|
// here. This would include a pin for interrupts generated
|
// elsewhere, so this interrupt controller could be a master
|
// elsewhere, so this interrupt controller could be a master
|
// handling all interrupts. My interrupt controller would work
|
// handling all interrupts. My interrupt controller would work
|
Line 19... |
Line 17... |
//
|
//
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
// modern systems (Linux), they tend to send all interrupts to the
|
// modern systems (Linux), they tend to send all interrupts to the
|
// same interrupt vector anyway. Hence, that's what we do here.
|
// same interrupt vector anyway. Hence, that's what we do here.
|
//
|
//
|
// Bus Error interrupts -- generates an interrupt any time the wishbone
|
|
// bus produces an error on a given access, for whatever purpose
|
|
// also records the address on the bus at the time of the error.
|
|
//
|
|
// Trap instructions
|
|
// Writing to this "register" will always create an interrupt.
|
|
// After the interrupt, this register may be read to see what
|
|
// value had been written to it.
|
|
//
|
|
// Bit reverse register ... ?
|
|
//
|
|
// (Potentially an eventual floating point co-processor ...)
|
|
//
|
|
// Real-time clock
|
|
//
|
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
// zero, or issue an interrupt and restart automatically on zero)
|
// zero, or issue an interrupt and restart automatically on zero)
|
// These can be implemented as watchdog timers if desired--the
|
// These can be implemented as watchdog timers if desired--the
|
// only difference is that a watchdog timer's interrupt feeds the
|
// only difference is that a watchdog timer's interrupt feeds the
|
// reset line instead of the processor interrupt line.
|
// reset line instead of the processor interrupt line.
|
//
|
//
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
// interrupt/time-out line is wired to the reset line instead of
|
// interrupt/time-out line is wired to the reset line instead of
|
// the interrupt line of the CPU.
|
// the interrupt line of the CPU.
|
//
|
//
|
// ROM Memory map
|
// Direct Memory Access Controller: This controller allows you to command
|
// Set a register to control this map, and a DMA will begin to
|
// automatic memory moves. Such memory moves will take place
|
// fill this memory from a slower FLASH. Once filled, accesses
|
// without the CPU's involvement until they are done. See the
|
// will be from this memory instead of
|
// DMA specification for more information. (Currently contained
|
|
// w/in the ZipCPU spec.)
|
|
//
|
|
// (Potentially an eventual floating point co-processor ...?)
|
|
//
|
|
// Busses: The ZipSystem implements a series of busses to make this take
|
|
// place. These busses are identified by their prefix:
|
|
//
|
|
// cpu This is the bus as the CPU sees it. Since the CPU controls
|
|
// two busses (a local and a global one), it uses _gbl_ to indicate
|
|
// the external bus (going through the MMU if necessary) and
|
|
// _lcl_ to indicate a peripheral bus seen here.
|
|
//
|
|
// mmu Sits between the CPU's wishbone interface and the external
|
|
// bus. Has no access to peripherals.
|
|
//
|
|
// sys A local bus implemented here within this space. This is how the
|
|
// CPU talks to the ZipSystem peripherals. However, this bus
|
|
// can also be accessed from the external debug bus.
|
//
|
//
|
|
// io_dbg
|
|
// io_wb
|
//
|
//
|
// Doing some market comparison, let's look at what peripherals a TI
|
// dbg This is identical to the io_dbg bus, but separated by a clock
|
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
|
// dc The output of the DMA controller
|
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
|
|
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
|
|
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
|
|
// watchdog-timers,
|
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
// Copyright (C) 2015-2019, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 86... |
Line 85... |
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
|
`default_nettype none
|
|
//
|
`include "cpudefs.v"
|
`include "cpudefs.v"
|
//
|
//
|
|
`define RESET_BIT 6
|
|
`define STEP_BIT 8
|
|
`define HALT_BIT 10
|
|
`define CLEAR_CACHE_BIT 11
|
|
//
|
// While I hate adding delays to any bus access, this next delay is required
|
// While I hate adding delays to any bus access, this next delay is required
|
// to make timing close in my Basys-3 design.
|
// to make timing close in my Basys-3 design.
|
`define DELAY_DBG_BUS
|
`define DELAY_DBG_BUS
|
// On my previous version, I needed to add a delay to access the external
|
|
// bus. Activate the define below and that delay will be put back into place.
|
|
// This particular version no longer needs the delay in order to run at
|
|
// 100 MHz. Timing indicates I may even run this at 250 MHz without the
|
|
// delay too, so we're doing better. To get rid of this, I placed the logic
|
|
// determining whether or not I was accessing the local system bus one clock
|
|
// earlier, or into the memops.v file. This also required my wishbone bus
|
|
// arbiter to maintain the bus selection as well, so that got updated ...
|
|
// you get the picture. But, the bottom line is that I no longer need this
|
|
// delay.
|
|
//
|
//
|
// `define DELAY_EXT_BUS // Required no longer!
|
// `define DELAY_EXT_BUS
|
//
|
//
|
//
|
//
|
// If space is tight, you might not wish to have your performance and
|
// If space is tight, you might not wish to have your performance and
|
// accounting counters, so let's make those optional here
|
// accounting counters, so let's make those optional here
|
// Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU)
|
// Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU)
|
Line 116... |
Line 112... |
// Without Counters 2796 2046
|
// Without Counters 2796 2046
|
|
|
//
|
//
|
// Now, where am I placing all of my peripherals?
|
// Now, where am I placing all of my peripherals?
|
`define PERIPHBASE 32'hc0000000
|
`define PERIPHBASE 32'hc0000000
|
`define INTCTRL 5'h0 //
|
`define INTCTRL 8'h0 //
|
`define WATCHDOG 5'h1 // Interrupt generates reset signal
|
`define WATCHDOG 8'h1 // Interrupt generates reset signal
|
`define BUSWATCHDOG 5'h2 // Sets IVEC[0]
|
`define BUSWATCHDOG 8'h2 // Sets IVEC[0]
|
`define CTRINT 5'h3 // Sets IVEC[5]
|
`define CTRINT 8'h3 // Sets IVEC[5]
|
`define TIMER_A 5'h4 // Sets IVEC[4]
|
`define TIMER_A 8'h4 // Sets IVEC[4]
|
`define TIMER_B 5'h5 // Sets IVEC[3]
|
`define TIMER_B 8'h5 // Sets IVEC[3]
|
`define TIMER_C 5'h6 // Sets IVEC[2]
|
`define TIMER_C 8'h6 // Sets IVEC[2]
|
`define JIFFIES 5'h7 // Sets IVEC[1]
|
`define JIFFIES 8'h7 // Sets IVEC[1]
|
|
|
|
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
`define MSTR_TASK_CTR 5'h08
|
`define MSTR_TASK_CTR 8'h08
|
`define MSTR_MSTL_CTR 5'h09
|
`define MSTR_MSTL_CTR 8'h09
|
`define MSTR_PSTL_CTR 5'h0a
|
`define MSTR_PSTL_CTR 8'h0a
|
`define MSTR_INST_CTR 5'h0b
|
`define MSTR_INST_CTR 8'h0b
|
`define USER_TASK_CTR 5'h0c
|
`define USER_TASK_CTR 8'h0c
|
`define USER_MSTL_CTR 5'h0d
|
`define USER_MSTL_CTR 8'h0d
|
`define USER_PSTL_CTR 5'h0e
|
`define USER_PSTL_CTR 8'h0e
|
`define USER_INST_CTR 5'h0f
|
`define USER_INST_CTR 8'h0f
|
|
`endif
|
|
|
|
`ifdef OPT_MMU
|
|
`define MMU_ADDR 8'h80
|
`endif
|
`endif
|
|
|
// Although I have a hole at 5'h2, the DMA controller requires four wishbone
|
// Although I have a hole at 5'h2, the DMA controller requires four wishbone
|
// addresses, therefore we place it by itself and expand our address bus
|
// addresses, therefore we place it by itself and expand our address bus
|
// width here by another bit.
|
// width here by another bit.
|
Line 159... |
Line 159... |
// DBGDATA
|
// DBGDATA
|
// read/writes internal registers
|
// read/writes internal registers
|
//
|
//
|
//
|
//
|
//
|
//
|
module zipsystem(i_clk, i_rst,
|
module zipsystem(i_clk, i_reset,
|
// Wishbone master interface from the CPU
|
// Wishbone master interface from the CPU
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
|
// Incoming interrupts
|
// Incoming interrupts
|
i_ext_int,
|
i_ext_int,
|
Line 174... |
Line 174... |
o_dbg_ack, o_dbg_stall, o_dbg_data
|
o_dbg_ack, o_dbg_stall, o_dbg_data
|
`ifdef DEBUG_SCOPE
|
`ifdef DEBUG_SCOPE
|
, o_cpu_debug
|
, o_cpu_debug
|
`endif
|
`endif
|
);
|
);
|
parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=30,
|
parameter RESET_ADDRESS=32'h1000_0000, ADDRESS_WIDTH=30,
|
LGICACHE=10, START_HALTED=1, EXTERNAL_INTERRUPTS=1,
|
LGICACHE=10,
|
|
LGDCACHE=12; // Set to zero for no data cache
|
|
parameter [0:0] START_HALTED=1;
|
|
parameter EXTERNAL_INTERRUPTS=1,
|
`ifdef OPT_MULTIPLY
|
`ifdef OPT_MULTIPLY
|
IMPLEMENT_MPY = `OPT_MULTIPLY,
|
IMPLEMENT_MPY = `OPT_MULTIPLY;
|
`else
|
`else
|
IMPLEMENT_MPY = 0,
|
IMPLEMENT_MPY = 0;
|
`endif
|
`endif
|
|
parameter [0:0]
|
`ifdef OPT_DIVIDE
|
`ifdef OPT_DIVIDE
|
IMPLEMENT_DIVIDE=1,
|
IMPLEMENT_DIVIDE=1,
|
`else
|
`else
|
IMPLEMENT_DIVIDE=0,
|
IMPLEMENT_DIVIDE=0,
|
`endif
|
`endif
|
Line 193... |
Line 197... |
`else
|
`else
|
IMPLEMENT_FPU=0,
|
IMPLEMENT_FPU=0,
|
`endif
|
`endif
|
IMPLEMENT_LOCK=1;
|
IMPLEMENT_LOCK=1;
|
localparam // Derived parameters
|
localparam // Derived parameters
|
AW=ADDRESS_WIDTH;
|
PHYSICAL_ADDRESS_WIDTH=ADDRESS_WIDTH,
|
input i_clk, i_rst;
|
PAW=ADDRESS_WIDTH,
|
|
`ifdef OPT_MMU
|
|
VIRTUAL_ADDRESS_WIDTH=30,
|
|
`else
|
|
VIRTUAL_ADDRESS_WIDTH=PAW,
|
|
`endif
|
|
LGTLBSZ = 6,
|
|
VAW=VIRTUAL_ADDRESS_WIDTH;
|
|
|
|
localparam AW=ADDRESS_WIDTH;
|
|
input wire i_clk, i_reset;
|
// Wishbone master
|
// Wishbone master
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
output wire [(AW-1):0] o_wb_addr;
|
output wire [(PAW-1):0] o_wb_addr;
|
output wire [31:0] o_wb_data;
|
output wire [31:0] o_wb_data;
|
output wire [3:0] o_wb_sel;
|
output wire [3:0] o_wb_sel;
|
input i_wb_ack, i_wb_stall;
|
input wire i_wb_ack, i_wb_stall;
|
input [31:0] i_wb_data;
|
input wire [31:0] i_wb_data;
|
input i_wb_err;
|
input wire i_wb_err;
|
// Incoming interrupts
|
// Incoming interrupts
|
input [(EXTERNAL_INTERRUPTS-1):0] i_ext_int;
|
input wire [(EXTERNAL_INTERRUPTS-1):0] i_ext_int;
|
// Outgoing interrupt
|
// Outgoing interrupt
|
output wire o_ext_int;
|
output wire o_ext_int;
|
// Wishbone slave
|
// Wishbone slave
|
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
input wire i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
input [31:0] i_dbg_data;
|
input wire [31:0] i_dbg_data;
|
output wire o_dbg_ack;
|
output wire o_dbg_ack;
|
output wire o_dbg_stall;
|
output wire o_dbg_stall;
|
output wire [31:0] o_dbg_data;
|
output wire [31:0] o_dbg_data;
|
//
|
//
|
`ifdef DEBUG_SCOPE
|
`ifdef DEBUG_SCOPE
|
Line 247... |
Line 261... |
`else
|
`else
|
assign alt_int_vector = { 15'h00 };
|
assign alt_int_vector = { 15'h00 };
|
`endif
|
`endif
|
else
|
else
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
|
if (EXTERNAL_INTERRUPTS >= 15)
|
|
assign alt_int_vector = { i_ext_int[14:8],
|
|
mtc_int, moc_int, mpc_int, mic_int,
|
|
utc_int, uoc_int, upc_int, uic_int };
|
|
else
|
assign alt_int_vector = { {(7-(EXTERNAL_INTERRUPTS-9)){1'b0}},
|
assign alt_int_vector = { {(7-(EXTERNAL_INTERRUPTS-9)){1'b0}},
|
i_ext_int[(EXTERNAL_INTERRUPTS-1):9],
|
i_ext_int[(EXTERNAL_INTERRUPTS-1):9],
|
mtc_int, moc_int, mpc_int, mic_int,
|
mtc_int, moc_int, mpc_int, mic_int,
|
utc_int, uoc_int, upc_int, uic_int };
|
utc_int, uoc_int, upc_int, uic_int };
|
`else
|
`else
|
|
if (EXTERNAL_INTERRUPTS >= 24)
|
|
assign alt_int_vector = { i_ext_int[(EXTERNAL_INTERRUPTS-1):9] };
|
|
else
|
assign alt_int_vector = { {(15-(EXTERNAL_INTERRUPTS-9)){1'b0}},
|
assign alt_int_vector = { {(15-(EXTERNAL_INTERRUPTS-9)){1'b0}},
|
i_ext_int[(EXTERNAL_INTERRUPTS-1):9] };
|
i_ext_int[(EXTERNAL_INTERRUPTS-1):9] };
|
`endif
|
`endif
|
endgenerate
|
endgenerate
|
|
|
|
|
// Delay the debug port by one clock, to meet timing requirements
|
// Delay the debug port by one clock, to meet timing requirements
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
wire [31:0] dbg_idata, dbg_odata;
|
wire [31:0] dbg_idata, dbg_odata;
|
reg dbg_ack;
|
reg dbg_ack;
|
`ifdef DELAY_DBG_BUS
|
|
wire dbg_err, no_dbg_err;
|
|
wire [3:0] dbg_sel;
|
wire [3:0] dbg_sel;
|
|
wire no_dbg_err;
|
|
`ifdef DELAY_DBG_BUS
|
|
// Make verilator happy
|
|
// verilator lint_off UNUSED
|
|
// verilator lint_on UNUSED
|
|
wire dbg_err;
|
assign dbg_err = 1'b0;
|
assign dbg_err = 1'b0;
|
busdelay #(1,32) wbdelay(i_clk,
|
busdelay #(1,32) wbdelay(i_clk, i_reset,
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data, 4'hf,
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data, 4'hf,
|
o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err,
|
o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err,
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata, dbg_sel,
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata, dbg_sel,
|
dbg_ack, dbg_stall, dbg_odata, dbg_err);
|
dbg_ack, dbg_stall, dbg_odata, dbg_err);
|
`else
|
`else
|
Line 280... |
Line 306... |
assign dbg_addr = i_dbg_addr;
|
assign dbg_addr = i_dbg_addr;
|
assign dbg_idata = i_dbg_data;
|
assign dbg_idata = i_dbg_data;
|
assign o_dbg_ack = dbg_ack;
|
assign o_dbg_ack = dbg_ack;
|
assign o_dbg_stall = dbg_stall;
|
assign o_dbg_stall = dbg_stall;
|
assign o_dbg_data = dbg_odata;
|
assign o_dbg_data = dbg_odata;
|
|
assign dbg_sel = 4'b1111;
|
|
assign no_dbg_err = 1'b0;
|
`endif
|
`endif
|
|
|
//
|
//
|
//
|
//
|
//
|
//
|
wire sys_cyc, sys_stb, sys_we;
|
wire sys_cyc, sys_stb, sys_we;
|
wire [4:0] sys_addr;
|
wire [7:0] sys_addr;
|
wire [(AW-1):0] cpu_addr;
|
wire [(PAW-1):0] cpu_addr;
|
wire [31:0] sys_data;
|
wire [31:0] sys_data;
|
wire sys_ack, sys_stall;
|
reg [31:0] sys_idata;
|
|
reg sys_ack;
|
|
wire sys_stall;
|
|
|
|
wire sel_counter, sel_timer, sel_pic, sel_apic,
|
|
sel_watchdog, sel_bus_watchdog, sel_dmac, sel_mmus;
|
|
//
|
|
assign sel_pic = (sys_stb)&&(sys_addr == `INTCTRL);
|
|
assign sel_watchdog = (sys_stb)&&(sys_addr == `WATCHDOG);
|
|
assign sel_bus_watchdog= (sys_stb)&&(sys_addr == `BUSWATCHDOG);
|
|
assign sel_apic = (sys_stb)&&(sys_addr == `CTRINT);
|
|
assign sel_timer = (sys_stb)&&(sys_addr[7:2] == 6'h1);
|
|
assign sel_counter = (sys_stb)&&(sys_addr[7:3] == 5'h1);
|
|
assign sel_dmac = (sys_stb)&&(sys_addr[7:4] == 4'h1);
|
|
assign sel_mmus = (sys_stb)&&(sys_addr[7]);
|
|
|
//
|
//
|
// The external debug interface
|
// The external debug interface
|
//
|
//
|
// We offer only a limited interface here, requiring a pre-register
|
// We offer only a limited interface here, requiring a pre-register
|
Line 308... |
Line 350... |
//
|
//
|
wire cpu_break, dbg_cmd_write;
|
wire cpu_break, dbg_cmd_write;
|
reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
|
reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
|
reg [5:0] cmd_addr;
|
reg [5:0] cmd_addr;
|
wire [3:0] cpu_dbg_cc;
|
wire [3:0] cpu_dbg_cc;
|
assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
|
assign dbg_cmd_write = (dbg_stb)&&(dbg_we)&&(!dbg_addr);
|
|
//
|
|
// Always start us off with an initial reset
|
//
|
//
|
initial cmd_reset = 1'b1;
|
initial cmd_reset = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
|
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[`RESET_BIT]))
|
|
||(wdt_reset);
|
//
|
//
|
initial cmd_halt = START_HALTED;
|
initial cmd_halt = START_HALTED;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_reset)
|
cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0;
|
cmd_halt <= START_HALTED;
|
|
else if (cmd_reset)
|
|
cmd_halt <= START_HALTED;
|
else if (dbg_cmd_write)
|
else if (dbg_cmd_write)
|
cmd_halt <= ((dbg_idata[10])||(dbg_idata[8]));
|
cmd_halt <= ((dbg_idata[`HALT_BIT])&&(!dbg_idata[`STEP_BIT]));
|
else if ((cmd_step)||(cpu_break))
|
else if ((cmd_step)||(cpu_break))
|
cmd_halt <= 1'b1;
|
cmd_halt <= 1'b1;
|
|
|
initial cmd_clear_pf_cache = 1'b1;
|
initial cmd_clear_pf_cache = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
cmd_clear_pf_cache = (~i_rst)&&(dbg_cmd_write)
|
cmd_clear_pf_cache <= (dbg_cmd_write)&&(dbg_idata[`CLEAR_CACHE_BIT]);
|
&&((dbg_idata[11])||(dbg_idata[6]));
|
|
//
|
//
|
initial cmd_step = 1'b0;
|
initial cmd_step = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
|
cmd_step <= (dbg_cmd_write)&&(dbg_idata[`STEP_BIT]);
|
//
|
//
|
|
initial cmd_addr = 6'h0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (dbg_cmd_write)
|
if (dbg_cmd_write)
|
cmd_addr <= dbg_idata[5:0];
|
cmd_addr <= dbg_idata[5:0];
|
|
|
wire cpu_reset;
|
wire cpu_reset;
|
assign cpu_reset = (cmd_reset)||(wdt_reset)||(i_rst);
|
assign cpu_reset = (cmd_reset);
|
|
|
wire cpu_halt, cpu_dbg_stall;
|
wire cpu_halt, cpu_dbg_stall;
|
assign cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step));
|
assign cpu_halt = (cmd_halt);
|
wire [31:0] pic_data;
|
wire [31:0] pic_data;
|
wire [31:0] cmd_data;
|
wire [31:0] cmd_data;
|
// Values:
|
// Values:
|
// 0x0003f -> cmd_addr mask
|
// 0x0003f -> cmd_addr mask
|
// 0x00040 -> reset
|
// 0x00040 -> reset
|
Line 360... |
Line 407... |
generate
|
generate
|
if (EXTERNAL_INTERRUPTS < 16)
|
if (EXTERNAL_INTERRUPTS < 16)
|
assign cmd_data = { {(16-EXTERNAL_INTERRUPTS){1'b0}},
|
assign cmd_data = { {(16-EXTERNAL_INTERRUPTS){1'b0}},
|
i_ext_int,
|
i_ext_int,
|
cpu_dbg_cc, // 4 bits
|
cpu_dbg_cc, // 4 bits
|
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
|
1'b0, cmd_halt, (!cpu_dbg_stall), 1'b0,
|
pic_data[15], cpu_reset, cmd_addr };
|
pic_data[15], cpu_reset, cmd_addr };
|
else
|
else
|
assign cmd_data = { i_ext_int[15:0], cpu_dbg_cc,
|
assign cmd_data = { i_ext_int[15:0], cpu_dbg_cc,
|
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
|
1'b0, cmd_halt, (!cpu_dbg_stall), 1'b0,
|
pic_data[15], cpu_reset, cmd_addr };
|
pic_data[15], cpu_reset, cmd_addr };
|
endgenerate
|
endgenerate
|
|
|
wire cpu_gie;
|
wire cpu_gie;
|
assign cpu_gie = cpu_dbg_cc[1];
|
assign cpu_gie = cpu_dbg_cc[1];
|
Line 377... |
Line 424... |
// The WATCHDOG Timer
|
// The WATCHDOG Timer
|
//
|
//
|
wire wdt_ack, wdt_stall, wdt_reset;
|
wire wdt_ack, wdt_stall, wdt_reset;
|
wire [31:0] wdt_data;
|
wire [31:0] wdt_data;
|
ziptimer #(32,31,0)
|
ziptimer #(32,31,0)
|
watchdog(i_clk, cpu_reset, ~cmd_halt,
|
watchdog(i_clk, cpu_reset, !cmd_halt,
|
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
|
sys_cyc, (sys_stb)&&(sel_watchdog), sys_we,
|
sys_data,
|
sys_data,
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
|
|
//
|
//
|
// Position two, a second watchdog timer--this time for the wishbone
|
// Position two, a second watchdog timer--this time for the wishbone
|
// bus, in order to tell/find wishbone bus lockups. In its current
|
// bus, in order to tell/find wishbone bus lockups. In its current
|
// configuration, it cannot be configured and all bus accesses must
|
// configuration, it cannot be configured and all bus accesses must
|
// take less than the number written to this register.
|
// take less than the number written to this register.
|
//
|
//
|
reg wdbus_ack;
|
reg wdbus_ack;
|
reg [(AW-1):0] r_wdbus_data;
|
reg [(PAW-1):0] r_wdbus_data;
|
wire [31:0] wdbus_data;
|
wire [31:0] wdbus_data;
|
wire [14:0] wdbus_ignored_data;
|
|
wire reset_wdbus_timer, wdbus_int;
|
wire reset_wdbus_timer, wdbus_int;
|
assign reset_wdbus_timer = ((o_wb_cyc)&&((o_wb_stb)||(i_wb_ack)));
|
assign reset_wdbus_timer = (!o_wb_cyc)||(o_wb_stb)||(i_wb_ack);
|
wbwatchdog #(14) watchbus(i_clk,(cpu_reset)||(reset_wdbus_timer),
|
wbwatchdog #(14) watchbus(i_clk,(cpu_reset)||(reset_wdbus_timer),
|
o_wb_cyc, 14'h2000, wdbus_int);
|
14'h2000, wdbus_int);
|
initial r_wdbus_data = 0;
|
initial r_wdbus_data = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((wdbus_int)||(cpu_ext_err))
|
if ((wdbus_int)||(cpu_err))
|
r_wdbus_data = o_wb_addr;
|
r_wdbus_data <= o_wb_addr;
|
assign wdbus_data = { {(32-AW){1'b0}}, r_wdbus_data };
|
assign wdbus_data = { {(32-PAW){1'b0}}, r_wdbus_data };
|
initial wdbus_ack = 1'b0;
|
initial wdbus_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
wdbus_ack <= ((sys_cyc)&&(sys_stb)&&(sys_addr == 5'h02));
|
wdbus_ack <= ((sys_cyc)&&(sys_stb)&&(sel_bus_watchdog));
|
|
|
// Counters -- for performance measurement and accounting
|
// Counters -- for performance measurement and accounting
|
//
|
//
|
// Here's the stuff we'll be counting ....
|
// Here's the stuff we'll be counting ....
|
//
|
//
|
Line 419... |
Line 465... |
// for an overall counter.
|
// for an overall counter.
|
//
|
//
|
// Master task counter
|
// Master task counter
|
wire mtc_ack, mtc_stall;
|
wire mtc_ack, mtc_stall;
|
wire [31:0] mtc_data;
|
wire [31:0] mtc_data;
|
zipcounter mtask_ctr(i_clk, (~cpu_halt), sys_cyc,
|
zipcounter mtask_ctr(i_clk, 1'b0, (!cpu_halt), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b000),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
|
|
// Master Operand Stall counter
|
// Master Operand Stall counter
|
wire moc_ack, moc_stall;
|
wire moc_ack, moc_stall;
|
wire [31:0] moc_data;
|
wire [31:0] moc_data;
|
zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
zipcounter mmstall_ctr(i_clk,1'b0, (cpu_op_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b001),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
moc_ack, moc_stall, moc_data, moc_int);
|
moc_ack, moc_stall, moc_data, moc_int);
|
|
|
// Master PreFetch-Stall counter
|
// Master PreFetch-Stall counter
|
wire mpc_ack, mpc_stall;
|
wire mpc_ack, mpc_stall;
|
wire [31:0] mpc_data;
|
wire [31:0] mpc_data;
|
zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
zipcounter mpstall_ctr(i_clk,1'b0, (cpu_pf_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b010),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
|
|
// Master Instruction counter
|
// Master Instruction counter
|
wire mic_ack, mic_stall;
|
wire mic_ack, mic_stall;
|
wire [31:0] mic_data;
|
wire [31:0] mic_data;
|
zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
zipcounter mins_ctr(i_clk,1'b0, (cpu_i_count), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_INST_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b011),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mic_ack, mic_stall, mic_data, mic_int);
|
mic_ack, mic_stall, mic_data, mic_int);
|
|
|
//
|
//
|
// The user counters are different from those of the master. They will
|
// The user counters are different from those of the master. They will
|
// be reset any time a task is given control of the CPU.
|
// be reset any time a task is given control of the CPU.
|
//
|
//
|
// User task counter
|
// User task counter
|
wire utc_ack, utc_stall;
|
wire utc_ack, utc_stall;
|
wire [31:0] utc_data;
|
wire [31:0] utc_data;
|
zipcounter utask_ctr(i_clk,(~cpu_halt)&&(cpu_gie), sys_cyc,
|
zipcounter utask_ctr(i_clk,1'b0, (!cpu_halt)&&(cpu_gie), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b100),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
utc_ack, utc_stall, utc_data, utc_int);
|
utc_ack, utc_stall, utc_data, utc_int);
|
|
|
// User Op-Stall counter
|
// User Op-Stall counter
|
wire uoc_ack, uoc_stall;
|
wire uoc_ack, uoc_stall;
|
wire [31:0] uoc_data;
|
wire [31:0] uoc_data;
|
zipcounter umstall_ctr(i_clk,(cpu_op_stall)&&(cpu_gie), sys_cyc,
|
zipcounter umstall_ctr(i_clk,1'b0, (cpu_op_stall)&&(cpu_gie), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b101),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
uoc_ack, uoc_stall, uoc_data, uoc_int);
|
uoc_ack, uoc_stall, uoc_data, uoc_int);
|
|
|
// User PreFetch-Stall counter
|
// User PreFetch-Stall counter
|
wire upc_ack, upc_stall;
|
wire upc_ack, upc_stall;
|
wire [31:0] upc_data;
|
wire [31:0] upc_data;
|
zipcounter upstall_ctr(i_clk,(cpu_pf_stall)&&(cpu_gie), sys_cyc,
|
zipcounter upstall_ctr(i_clk,1'b0, (cpu_pf_stall)&&(cpu_gie), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b110),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
upc_ack, upc_stall, upc_data, upc_int);
|
upc_ack, upc_stall, upc_data, upc_int);
|
|
|
// User instruction counter
|
// User instruction counter
|
wire uic_ack, uic_stall;
|
wire uic_ack, uic_stall;
|
wire [31:0] uic_data;
|
wire [31:0] uic_data;
|
zipcounter uins_ctr(i_clk,(cpu_i_count)&&(cpu_gie), sys_cyc,
|
zipcounter uins_ctr(i_clk,1'b0, (cpu_i_count)&&(cpu_gie), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_INST_CTR),
|
(sys_stb)&&(sel_counter)&&(sys_addr[2:0] == 3'b111),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
uic_ack, uic_stall, uic_data, uic_int);
|
uic_ack, uic_stall, uic_data, uic_int);
|
|
|
// A little bit of pre-cleanup (actr = accounting counters)
|
// A little bit of pre-cleanup (actr = accounting counters)
|
wire actr_ack, actr_stall;
|
wire actr_ack, actr_stall;
|
Line 516... |
Line 562... |
assign uoc_int = 1'b0;
|
assign uoc_int = 1'b0;
|
assign upc_int = 1'b0;
|
assign upc_int = 1'b0;
|
assign uic_int = 1'b0;
|
assign uic_int = 1'b0;
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
actr_ack <= (sys_stb)&&(sys_addr[4:3] == 2'b01);
|
actr_ack <= sel_counter;
|
`endif // INCLUDE_ACCOUNTING_COUNTERS
|
`endif // INCLUDE_ACCOUNTING_COUNTERS
|
|
|
//
|
//
|
// The DMA Controller
|
// The DMA Controller
|
//
|
//
|
wire dmac_stb, dc_err;
|
wire dmac_stb, dc_err;
|
wire [31:0] dmac_data;
|
wire [31:0] dmac_data;
|
wire dmac_ack, dmac_stall;
|
wire dmac_ack, dmac_stall;
|
wire dc_cyc, dc_stb, dc_we, dc_ack, dc_stall;
|
wire dc_cyc, dc_stb, dc_we, dc_ack, dc_stall;
|
wire [31:0] dc_data;
|
wire [31:0] dc_data;
|
wire [(AW-1):0] dc_addr;
|
wire [(PAW-1):0] dc_addr;
|
wire cpu_gbl_cyc;
|
wire cpu_gbl_cyc;
|
wire [31:0] dmac_int_vec;
|
wire [31:0] dmac_int_vec;
|
assign dmac_int_vec = { 1'b0, alt_int_vector, 1'b0,
|
assign dmac_int_vec = { 1'b0, alt_int_vector, 1'b0,
|
main_int_vector[14:1], 1'b0 };
|
main_int_vector[14:1], 1'b0 };
|
assign dmac_stb = (sys_stb)&&(sys_addr[4]);
|
assign dmac_stb = (sys_stb)&&(sel_dmac);
|
`ifdef INCLUDE_DMA_CONTROLLER
|
`ifdef INCLUDE_DMA_CONTROLLER
|
wbdmac #(AW) dma_controller(i_clk, cpu_reset,
|
wbdmac #(PAW) dma_controller(i_clk, cpu_reset,
|
sys_cyc, dmac_stb, sys_we,
|
sys_cyc, dmac_stb, sys_we,
|
sys_addr[1:0], sys_data,
|
sys_addr[1:0], sys_data,
|
dmac_ack, dmac_stall, dmac_data,
|
dmac_ack, dmac_stall, dmac_data,
|
// Need the outgoing DMAC wishbone bus
|
// Need the outgoing DMAC wishbone bus
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
|
Line 547... |
Line 593... |
dmac_int_vec,
|
dmac_int_vec,
|
// DMAC interrupt, for upon completion
|
// DMAC interrupt, for upon completion
|
dmac_int);
|
dmac_int);
|
`else
|
`else
|
reg r_dmac_ack;
|
reg r_dmac_ack;
|
|
initial r_dmac_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_dmac_ack <= (sys_cyc)&&(dmac_stb);
|
r_dmac_ack <= (sys_cyc)&&(dmac_stb);
|
assign dmac_ack = r_dmac_ack;
|
assign dmac_ack = r_dmac_ack;
|
assign dmac_data = 32'h000;
|
assign dmac_data = 32'h000;
|
assign dmac_stall = 1'b0;
|
assign dmac_stall = 1'b0;
|
|
|
assign dc_cyc = 1'b0;
|
assign dc_cyc = 1'b0;
|
assign dc_stb = 1'b0;
|
assign dc_stb = 1'b0;
|
assign dc_we = 1'b0;
|
assign dc_we = 1'b0;
|
assign dc_addr = { (AW) {1'b0} };
|
assign dc_addr = { (PAW) {1'b0} };
|
assign dc_data = 32'h00;
|
assign dc_data = 32'h00;
|
|
|
assign dmac_int = 1'b0;
|
assign dmac_int = 1'b0;
|
`endif
|
`endif
|
|
|
wire ctri_sel, ctri_stall;
|
wire ctri_sel, ctri_stall;
|
reg ctri_ack;
|
reg ctri_ack;
|
wire [31:0] ctri_data;
|
wire [31:0] ctri_data;
|
assign ctri_sel = (sys_stb)&&(sys_addr == `CTRINT);
|
assign ctri_sel = (sys_stb)&&(sel_apic);
|
|
initial ctri_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
ctri_ack <= ctri_sel;
|
ctri_ack <= (ctri_sel)&&(!cpu_reset);
|
assign ctri_stall = 1'b0;
|
assign ctri_stall = 1'b0;
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
//
|
//
|
// Counter Interrupt controller
|
// Counter Interrupt controller
|
//
|
//
|
generate
|
generate if (EXTERNAL_INTERRUPTS <= 9)
|
if (EXTERNAL_INTERRUPTS <= 9)
|
begin : ALT_PIC
|
begin
|
|
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel),
|
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel),
|
sys_data, ctri_data, alt_int_vector[7:0],
|
sys_data, ctri_data, alt_int_vector[7:0],
|
ctri_int);
|
ctri_int);
|
end else begin
|
end else begin : ALT_PIC
|
icontrol #(8+(EXTERNAL_INTERRUPTS-9))
|
icontrol #(8+(EXTERNAL_INTERRUPTS-9))
|
ctri(i_clk, cpu_reset, (ctri_sel),
|
ctri(i_clk, cpu_reset, (ctri_sel),
|
sys_data, ctri_data,
|
sys_data, ctri_data,
|
alt_int_vector[(EXTERNAL_INTERRUPTS-2):0],
|
alt_int_vector[(EXTERNAL_INTERRUPTS-2):0],
|
ctri_int);
|
ctri_int);
|
end endgenerate
|
end endgenerate
|
|
|
`else // INCLUDE_ACCOUNTING_COUNTERS
|
`else // INCLUDE_ACCOUNTING_COUNTERS
|
|
|
generate
|
generate if (EXTERNAL_INTERRUPTS <= 9)
|
if (EXTERNAL_INTERRUPTS <= 9)
|
begin : ALT_PIC
|
begin
|
|
assign ctri_stall = 1'b0;
|
assign ctri_stall = 1'b0;
|
assign ctri_data = 32'h0000;
|
assign ctri_data = 32'h0000;
|
assign ctri_int = 1'b0;
|
assign ctri_int = 1'b0;
|
end else begin
|
end else begin : ALT_PIC
|
icontrol #(EXTERNAL_INTERRUPTS-9)
|
icontrol #(EXTERNAL_INTERRUPTS-9)
|
ctri(i_clk, cpu_reset, (ctri_sel),
|
ctri(i_clk, cpu_reset, (ctri_sel),
|
sys_data, ctri_data,
|
sys_data, ctri_data,
|
alt_int_vector[(EXTERNAL_INTERRUPTS-10):0],
|
alt_int_vector[(EXTERNAL_INTERRUPTS-10):0],
|
ctri_int);
|
ctri_int);
|
Line 610... |
Line 656... |
//
|
//
|
// Timer A
|
// Timer A
|
//
|
//
|
wire tma_ack, tma_stall;
|
wire tma_ack, tma_stall;
|
wire [31:0] tma_data;
|
wire [31:0] tma_data;
|
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_a(i_clk, cpu_reset, !cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
|
sys_cyc, (sys_stb)&&(sel_timer)&&(sys_addr[1:0] == 2'b00),
|
sys_data,
|
sys_we, sys_data,
|
tma_ack, tma_stall, tma_data, tma_int);
|
tma_ack, tma_stall, tma_data, tma_int);
|
|
|
//
|
//
|
// Timer B
|
// Timer B
|
//
|
//
|
wire tmb_ack, tmb_stall;
|
wire tmb_ack, tmb_stall;
|
wire [31:0] tmb_data;
|
wire [31:0] tmb_data;
|
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_b(i_clk, cpu_reset, !cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
|
sys_cyc, (sys_stb)&&(sel_timer)&&(sys_addr[1:0] == 2'b01),
|
sys_data,
|
sys_we, sys_data,
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
|
|
//
|
//
|
// Timer C
|
// Timer C
|
//
|
//
|
wire tmc_ack, tmc_stall;
|
wire tmc_ack, tmc_stall;
|
wire [31:0] tmc_data;
|
wire [31:0] tmc_data;
|
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_c(i_clk, cpu_reset, !cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
|
sys_cyc, (sys_stb)&&(sel_timer)&&(sys_addr[1:0]==2'b10),
|
sys_data,
|
sys_we, sys_data,
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
|
|
//
|
//
|
// JIFFIES
|
// JIFFIES
|
//
|
//
|
wire jif_ack, jif_stall;
|
wire jif_ack, jif_stall;
|
wire [31:0] jif_data;
|
wire [31:0] jif_data;
|
zipjiffies jiffies(i_clk, ~cmd_halt,
|
zipjiffies jiffies(i_clk, cpu_reset, !cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
|
sys_cyc, (sys_stb)&&(sel_timer)&&(sys_addr[1:0] == 2'b11), sys_we,
|
sys_data,
|
sys_data,
|
jif_ack, jif_stall, jif_data, jif_int);
|
jif_ack, jif_stall, jif_data, jif_int);
|
|
|
//
|
//
|
// The programmable interrupt controller peripheral
|
// The programmable interrupt controller peripheral
|
//
|
//
|
wire pic_interrupt;
|
wire pic_interrupt;
|
generate
|
generate if (EXTERNAL_INTERRUPTS < 9)
|
if (EXTERNAL_INTERRUPTS < 9)
|
begin : MAIN_PIC
|
begin
|
|
icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset,
|
icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset,
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
&&(sys_addr==`INTCTRL),
|
&&(sel_pic),
|
sys_data, pic_data,
|
sys_data, pic_data,
|
main_int_vector[(6+EXTERNAL_INTERRUPTS-1):0], pic_interrupt);
|
main_int_vector[(6+EXTERNAL_INTERRUPTS-1):0], pic_interrupt);
|
end else begin
|
end else begin : MAIN_PIC
|
icontrol #(15) pic(i_clk, cpu_reset,
|
icontrol #(15) pic(i_clk, cpu_reset,
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
&&(sys_addr==`INTCTRL),
|
&&(sel_pic),
|
sys_data, pic_data,
|
sys_data, pic_data,
|
main_int_vector[14:0], pic_interrupt);
|
main_int_vector[14:0], pic_interrupt);
|
end endgenerate
|
end endgenerate
|
|
|
wire pic_stall;
|
wire pic_stall;
|
assign pic_stall = 1'b0;
|
assign pic_stall = 1'b0;
|
reg pic_ack;
|
reg pic_ack;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
pic_ack <= (sys_stb)&&(sys_addr == `INTCTRL);
|
pic_ack <= (sys_stb)&&(sel_pic);
|
|
|
//
|
//
|
// The CPU itself
|
// The CPU itself
|
//
|
//
|
wire cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb,
|
wire cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb,
|
cpu_we, cpu_dbg_we;
|
cpu_we, cpu_dbg_we;
|
wire [31:0] cpu_data, wb_data;
|
wire [31:0] cpu_data, cpu_idata;
|
wire [3:0] cpu_sel;
|
wire [3:0] cpu_sel, mmu_sel;
|
wire cpu_ack, cpu_stall, cpu_err;
|
wire cpu_ack, cpu_stall, cpu_err;
|
wire [31:0] cpu_dbg_data;
|
wire [31:0] cpu_dbg_data;
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(!cmd_addr[5])
|
&&(dbg_we)&&(dbg_addr));
|
&&(dbg_we)&&(dbg_addr));
|
zipcpu #(
|
zipcpu #( .RESET_ADDRESS(RESET_ADDRESS),
|
.RESET_ADDRESS(RESET_ADDRESS),
|
.ADDRESS_WIDTH(VIRTUAL_ADDRESS_WIDTH),
|
.ADDRESS_WIDTH(ADDRESS_WIDTH),
|
|
.LGICACHE(LGICACHE),
|
.LGICACHE(LGICACHE),
|
|
.OPT_LGDCACHE(LGDCACHE),
|
.IMPLEMENT_MPY(IMPLEMENT_MPY),
|
.IMPLEMENT_MPY(IMPLEMENT_MPY),
|
.IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE),
|
.IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE),
|
.IMPLEMENT_FPU(IMPLEMENT_FPU),
|
.IMPLEMENT_FPU(IMPLEMENT_FPU),
|
.IMPLEMENT_LOCK(IMPLEMENT_LOCK)
|
.IMPLEMENT_LOCK(IMPLEMENT_LOCK),
|
|
.WITH_LOCAL_BUS(1'b1)
|
)
|
)
|
thecpu(i_clk, cpu_reset, pic_interrupt,
|
thecpu(i_clk, cpu_reset, pic_interrupt,
|
cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
|
cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
cpu_dbg_cc, cpu_break,
|
cpu_dbg_cc, cpu_break,
|
cpu_gbl_cyc, cpu_gbl_stb,
|
cpu_gbl_cyc, cpu_gbl_stb,
|
cpu_lcl_cyc, cpu_lcl_stb,
|
cpu_lcl_cyc, cpu_lcl_stb,
|
cpu_we, cpu_addr, cpu_data, cpu_sel,
|
cpu_we, cpu_addr, cpu_data, cpu_sel,
|
cpu_ack, cpu_stall, wb_data,
|
// Return values from the Wishbone bus
|
cpu_err,
|
cpu_ack, cpu_stall, cpu_idata, cpu_err,
|
cpu_op_stall, cpu_pf_stall, cpu_i_count
|
cpu_op_stall, cpu_pf_stall, cpu_i_count
|
`ifdef DEBUG_SCOPE
|
`ifdef DEBUG_SCOPE
|
, o_cpu_debug
|
, o_cpu_debug
|
`endif
|
`endif
|
);
|
);
|
|
|
|
wire ext_ack, ext_stall;
|
|
wire mmu_cyc, mmu_stb, mmu_we, mmu_stall, mmu_ack, mmu_err;
|
|
wire mmus_ack, mmus_stall;
|
|
wire [PAW-1:0] mmu_addr;
|
|
wire [31:0] mmu_data, mmu_idata, mmus_data;
|
|
|
|
// Specific responses from the MMU
|
|
wire cpu_miss;
|
|
|
|
// The mmu_cpu_ lines are the return bus lines from the MMU. They
|
|
// are separate from the cpu_'s lines simply because either the sys_
|
|
// (local) bus or the mmu_cpu_ (global) bus might return a response to
|
|
// the CPU, and the responses haven't been merged back together again
|
|
// yet.
|
|
wire mmu_cpu_ack, mmu_cpu_stall;
|
|
wire [31:0] mmu_cpu_idata;
|
|
|
|
// The wires associated with cache snooping
|
|
wire pf_return_stb, pf_return_we, pf_return_cachable;
|
|
wire [19:0] pf_return_v, pf_return_p;
|
|
|
|
`ifdef OPT_MMU
|
|
// Ok ... here's the MMU
|
|
zipmmu #( .LGTBL(LGTLBSZ),
|
|
.ADDRESS_WIDTH(PHYSICAL_ADDRESS_WIDTH)
|
|
)
|
|
themmu(i_clk, cpu_reset,
|
|
// Slave interface
|
|
(sys_stb)&&(sel_mmus),
|
|
sys_we, sys_addr[7:0], sys_data,
|
|
mmus_ack, mmus_stall, mmus_data,
|
|
// CPU global bus master lines
|
|
cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr,
|
|
cpu_data, cpu_sel,
|
|
// MMU bus master outgoing lines
|
|
mmu_cyc, mmu_stb, mmu_we, mmu_addr, mmu_data, mmu_sel,
|
|
// .... and the return from the slave(s)
|
|
mmu_stall, mmu_ack, mmu_err, mmu_idata,
|
|
// CPU gobal bus master return lines
|
|
mmu_cpu_stall, mmu_cpu_ack, cpu_err, cpu_miss, mmu_cpu_idata,
|
|
pf_return_stb, pf_return_we, pf_return_p, pf_return_v,
|
|
pf_return_cachable);
|
|
|
|
`else
|
|
assign mmu_cyc = cpu_gbl_cyc;
|
|
assign mmu_stb = cpu_gbl_stb;
|
|
assign mmu_we = cpu_we;
|
|
assign mmu_addr = cpu_addr;
|
|
assign mmu_data = cpu_data;
|
|
assign mmu_sel = cpu_sel;
|
|
assign cpu_miss = 1'b0;
|
|
assign cpu_err = (mmu_err)&&(cpu_gbl_cyc);
|
|
assign mmu_cpu_idata = mmu_idata;
|
|
assign mmu_cpu_stall = mmu_stall;
|
|
assign mmu_cpu_ack = mmu_ack;
|
|
reg r_mmus_ack;
|
|
initial r_mmus_ack = 1'b0;
|
|
always @(posedge i_clk)
|
|
r_mmus_ack <= (sys_stb)&&(sys_addr[7]);
|
|
assign mmus_ack = r_mmus_ack;
|
|
assign mmus_stall = 1'b0;
|
|
assign mmus_data = 32'h0;
|
|
|
|
assign pf_return_stb = 0;
|
|
assign pf_return_v = 0;
|
|
assign pf_return_p = 0;
|
|
assign pf_return_we = 0;
|
|
assign pf_return_cachable = 0;
|
|
`endif
|
|
// Responses from the MMU still need to be merged/muxed back together
|
|
// with the responses from the local bus
|
|
assign cpu_ack = ((cpu_lcl_cyc)&&(sys_ack))
|
|
||((cpu_gbl_cyc)&&(mmu_cpu_ack));
|
|
assign cpu_stall = ((cpu_lcl_cyc)&&(sys_stall))
|
|
||((cpu_gbl_cyc)&&(mmu_cpu_stall));
|
|
assign cpu_idata = (cpu_gbl_cyc)?mmu_cpu_idata : sys_idata;
|
|
|
|
// The following lines (will be/) are used to allow the prefetch to
|
|
// snoop on any external interaction. Until this capability is
|
|
// integrated into the CPU, they are unused. Here we tell Verilator
|
|
// not to be surprised that these lines are unused:
|
|
|
|
// verilator lint_off UNUSED
|
|
wire [(3+1+20+20-1):0] mmu_unused;
|
|
assign mmu_unused = { pf_return_stb, pf_return_we,
|
|
pf_return_p, pf_return_v, pf_return_cachable,
|
|
cpu_miss };
|
|
// verilator lint_on UNUSED
|
|
|
// Now, arbitrate the bus ... first for the local peripherals
|
// Now, arbitrate the bus ... first for the local peripherals
|
// For the debugger to have access to the local system bus, the
|
// For the debugger to have access to the local system bus, the
|
// following must be true:
|
// following must be true:
|
// (dbg_cyc) The debugger must request the bus
|
// (dbg_cyc) The debugger must request the bus
|
// (~cpu_lcl_cyc) The CPU cannot be using it (CPU gets priority)
|
// (!cpu_lcl_cyc) The CPU cannot be using it (CPU gets priority)
|
// (dbg_addr) The debugger must be requesting its data
|
// (dbg_addr) The debugger must be requesting its data
|
// register, not just the control register
|
// register, not just the control register
|
// and one of two other things. Either
|
// and one of two other things. Either
|
// ((cpu_halt)&&(~cpu_dbg_stall)) the CPU is completely halted,
|
// ((cpu_halt)&&(!cpu_dbg_stall)) the CPU is completely halted,
|
// or
|
// or
|
// (~cmd_addr[5]) we are trying to read a CPU register
|
// (!cmd_addr[5]) we are trying to read a CPU register
|
// while in motion. Let the user beware that,
|
// while in motion. Let the user beware that,
|
// by not waiting for the CPU to fully halt,
|
// by not waiting for the CPU to fully halt,
|
// his results may not be what he expects.
|
// his results may not be what he expects.
|
//
|
//
|
wire sys_dbg_cyc = ((dbg_cyc)&&(~cpu_lcl_cyc)&&(dbg_addr))
|
wire sys_dbg_cyc = ((dbg_cyc)&&(!cpu_lcl_cyc)&&(dbg_addr))
|
&&(((cpu_halt)&&(~cpu_dbg_stall))
|
&&(cmd_addr[5]);
|
||(~cmd_addr[5]));
|
|
assign sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc);
|
assign sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc);
|
assign sys_stb = (cpu_lcl_cyc)
|
assign sys_stb = (cpu_lcl_cyc)
|
? (cpu_lcl_stb)
|
? (cpu_lcl_stb)
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
|
|
assign sys_we = (cpu_lcl_cyc) ? cpu_we : dbg_we;
|
assign sys_we = (cpu_lcl_cyc) ? cpu_we : dbg_we;
|
assign sys_addr= (cpu_lcl_cyc) ? cpu_addr[4:0] : cmd_addr[4:0];
|
assign sys_addr= (cpu_lcl_cyc) ? cpu_addr[7:0] : { 3'h0, cmd_addr[4:0]};
|
assign sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata;
|
assign sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata;
|
|
|
// Return debug response values
|
// Return debug response values
|
assign dbg_odata = (~dbg_addr)?cmd_data
|
// A return from one of three busses:
|
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
|
// CMD giving command instructions to the CPU (step, halt, etc)
|
|
// CPU-DBG-DATA internal register responses from within the CPU
|
|
// sys Responses from the front-side bus here in the ZipSystem
|
|
assign dbg_odata = (!dbg_addr) ? cmd_data
|
|
:((!cmd_addr[5])?cpu_dbg_data : sys_idata);
|
initial dbg_ack = 1'b0;
|
initial dbg_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
dbg_ack <= (dbg_cyc)&&(dbg_stb)&&(~dbg_stall);
|
dbg_ack <= (dbg_stb)&&(!dbg_stall);
|
assign dbg_stall=(dbg_cyc)&&((~sys_dbg_cyc)||(sys_stall))&&(dbg_addr);
|
assign dbg_stall=(dbg_cyc)&&(
|
|
((!sys_dbg_cyc)&&(cpu_dbg_stall))
|
|
||(sys_stall)
|
|
)&&(dbg_addr);
|
|
|
// Now for the external wishbone bus
|
// Now for the external wishbone bus
|
// Need to arbitrate between the flash cache and the CPU
|
// Need to arbitrate between the flash cache and the CPU
|
// The way this works, though, the CPU will stall once the flash
|
// The way this works, though, the CPU will stall once the flash
|
// cache gets access to the bus--the CPU will be stuck until the
|
// cache gets access to the bus--the CPU will be stuck until the
|
// flash cache is finished with the bus.
|
// flash cache is finished with the bus.
|
wire ext_cyc, ext_stb, ext_we, ext_err;
|
wire ext_cyc, ext_stb, ext_we, ext_err;
|
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall,
|
wire [(PAW-1):0] ext_addr;
|
cpu_ext_err;
|
|
wire [(AW-1):0] ext_addr;
|
|
wire [31:0] ext_odata;
|
wire [31:0] ext_odata;
|
wire [3:0] ext_sel;
|
wire [3:0] ext_sel;
|
wbpriarbiter #(32,AW) dmacvcpu(i_clk,
|
wbpriarbiter #(32,PAW) dmacvcpu(i_clk,
|
cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr, cpu_data, cpu_sel,
|
mmu_cyc, mmu_stb, mmu_we, mmu_addr, mmu_data, mmu_sel,
|
cpu_ext_ack, cpu_ext_stall, cpu_ext_err,
|
mmu_ack, mmu_stall, mmu_err,
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data, 4'hf,
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data, 4'hf,
|
dc_ack, dc_stall, dc_err,
|
dc_ack, dc_stall, dc_err,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata, ext_sel,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata, ext_sel,
|
ext_ack, ext_stall, ext_err);
|
ext_ack, ext_stall, ext_err);
|
|
assign mmu_idata = ext_idata;
|
|
/*
|
|
assign ext_cyc = mmu_cyc;
|
|
assign ext_stb = mmu_stb;
|
|
assign ext_we = mmu_we;
|
|
assign ext_odata= mmu_data;
|
|
assign ext_addr = mmu_addr;
|
|
assign ext_sel = mmu_sel;
|
|
assign mmu_ack = ext_ack;
|
|
assign mmu_stall= ext_stall;
|
|
assign mmu_err = ext_err;
|
|
*/
|
|
|
`ifdef DELAY_EXT_BUS
|
`ifdef DELAY_EXT_BUS
|
busdelay #(AW,32) extbus(i_clk,
|
busdelay #(.AW(PAW),.DW(32),.DELAY_STALL(0)) extbus(i_clk, i_reset,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata, ext_sel,
|
ext_ack, ext_stall, ext_idata, ext_err,
|
ext_ack, ext_stall, ext_idata, ext_err,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
|
i_wb_ack, i_wb_stall, i_wb_data, (i_wb_err)||(wdbus_int));
|
i_wb_ack, i_wb_stall, i_wb_data, (i_wb_err)||(wdbus_int));
|
`else
|
`else
|
assign o_wb_cyc = ext_cyc;
|
assign o_wb_cyc = ext_cyc;
|
Line 786... |
Line 937... |
wire [31:0] tmr_data;
|
wire [31:0] tmr_data;
|
assign tmr_data = (tma_ack)?tma_data
|
assign tmr_data = (tma_ack)?tma_data
|
:(tmb_ack ? tmb_data
|
:(tmb_ack ? tmb_data
|
:(tmc_ack ? tmc_data
|
:(tmc_ack ? tmc_data
|
:jif_data));
|
:jif_data));
|
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
|
always @(posedge i_clk)
|
:((actr_ack|dmac_ack)?((actr_ack)?actr_data:dmac_data)
|
casez({ mmus_ack, tmr_ack, wdt_ack, actr_ack,
|
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
|
dmac_ack, pic_ack, ctri_ack, wdbus_ack })
|
:((wdbus_ack)?wdbus_data:(ext_idata))));
|
8'b1???????: sys_idata <= mmus_data;
|
|
8'b01??????: sys_idata <= tmr_data;
|
|
8'b001?????: sys_idata <= wdt_data;
|
|
8'b0001????: sys_idata <= actr_data;
|
|
8'b00001???: sys_idata <= dmac_data;
|
|
8'b000001??: sys_idata <= pic_data;
|
|
8'b0000001?: sys_idata <= ctri_data;
|
|
8'b00000001: sys_idata <= wdbus_data;
|
|
default: sys_idata <= mmus_data;
|
|
endcase
|
|
|
|
always @(posedge i_clk)
|
|
if ((i_reset)||(!sys_cyc))
|
|
sys_ack <= 1'b0;
|
|
else
|
|
sys_ack <= (|{ mmu_ack, tmr_ack, wdt_ack, actr_ack,
|
|
dmac_ack, pic_ack, ctri_ack, wdbus_ack,
|
|
mmus_ack });
|
|
|
assign sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
assign sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
| wdt_stall | ctri_stall | actr_stall
|
| wdt_stall | ctri_stall | actr_stall
|
| pic_stall | dmac_stall); // Always 1'b0!
|
| pic_stall | dmac_stall | mmus_stall); // Always 1'b0!
|
assign cpu_stall = (sys_stall)|(cpu_ext_stall);
|
|
assign sys_ack = (tmr_ack|wdt_ack|ctri_ack|actr_ack|pic_ack|dmac_ack|wdbus_ack);
|
|
assign cpu_ack = (sys_ack)||(cpu_ext_ack);
|
|
assign cpu_err = (cpu_ext_err)&&(cpu_gbl_cyc);
|
|
|
|
assign o_ext_int = (cmd_halt) && (~cpu_stall);
|
assign o_ext_int = (cmd_halt) && (!cpu_stall);
|
|
|
|
// Make verilator happy
|
|
// verilator lint_off UNUSED
|
|
wire [5:0] unused;
|
|
assign unused = { no_dbg_err, dbg_sel, sel_mmus };
|
|
`ifndef INCLUDE_ACCOUNTING_COUNTERS
|
|
wire [11:0] unused_ctrs;
|
|
assign unused_ctrs = {
|
|
moc_int, mpc_int, mic_int, mtc_int,
|
|
uoc_int, upc_int, uic_int, utc_int,
|
|
cpu_gie, cpu_op_stall, cpu_pf_stall, cpu_i_count };
|
|
`endif
|
|
`ifndef INCLUDE_DMA_CONTROLLER
|
|
wire [34:0] unused_dmac;
|
|
assign unused_dmac = { dc_err, dc_ack, dc_stall, dmac_int_vec };
|
|
`endif
|
|
// verilator lint_on UNUSED
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|