OpenCores
URL https://opencores.org/ocsvn/s6soc/s6soc/trunk

Subversion Repositories s6soc

[/] [s6soc/] [trunk/] [bench/] [cpp/] [qspiflashsim.cpp] - Diff between revs 17 and 49

Only display areas with differences | Details | Blame | View Log

Rev 17 Rev 49
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
// Filename:    spiflashsim.cpp
// Filename:    spiflashsim.cpp
//
//
// Project:     Wishbone Controlled Quad SPI Flash Controller
// Project:     Wishbone Controlled Quad SPI Flash Controller
//
//
// Purpose:     This library simulates the operation of a Quad-SPI commanded
// Purpose:     This library simulates the operation of a Quad-SPI commanded
//              flash, such as the S25FL032P used on the Basys-3 development
//              flash, such as the S25FL032P used on the Basys-3 development
//              board by Digilent.  As such, it is defined by 32 Mbits of
//              board by Digilent.  As such, it is defined by 32 Mbits of
//              memory (4 Mbyte).
//              memory (4 Mbyte).
//
//
//              This simulator is useful for testing in a Verilator/C++
//              This simulator is useful for testing in a Verilator/C++
//              environment, where this simulator can be used in place of
//              environment, where this simulator can be used in place of
//              the actual hardware.
//              the actual hardware.
//
//
// Creator:     Dan Gisselquist
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015,2017, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// You should have received a copy of the GNU General Public License along
// You should have received a copy of the GNU General Public License along
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// target there if the PDF file isn't present.)  If not, see
// target there if the PDF file isn't present.)  If not, see
// <http://www.gnu.org/licenses/> for a copy.
// <http://www.gnu.org/licenses/> for a copy.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
 
//
 
//
#include <stdio.h>
#include <stdio.h>
#include <string.h>
#include <string.h>
#include <assert.h>
#include <assert.h>
#include <stdlib.h>
#include <stdlib.h>
 
 
#include "regdefs.h"
#include "regdefs.h"
#include "qspiflashsim.h"
#include "qspiflashsim.h"
 
 
#define MEMBYTES        (FLASHWORDS<<2)
#define MEMBYTES        (1<<24)
 
#define MEMMASK         ((MEMBYTES)-1)
 
 
static  const unsigned  DEVID = 0x0115,
static  const unsigned  DEVID = 0x0115,
        DEVESD = 0x014,
        DEVESD = 0x014,
        MICROSECONDS = 100,
        MICROSECONDS = 100,
        MILLISECONDS = MICROSECONDS * 1000,
        MILLISECONDS = MICROSECONDS * 1000,
        SECONDS = MILLISECONDS * 1000,
        SECONDS = MILLISECONDS * 1000,
        tW     =   50 * MICROSECONDS, // write config cycle time
        tW     =   50 * MICROSECONDS, // write config cycle time
        tBE    =   32 * SECONDS,
        tBE    =   32 * SECONDS,
        tDP    =   10 * SECONDS,
        tDP    =   10 * SECONDS,
        tRES   =   30 * SECONDS,
        tRES   =   30 * SECONDS,
// Shall we artificially speed up this process?
// Shall we artificially speed up this process?
        tPP    = 12 * MICROSECONDS,
        tPP    = 12 * MICROSECONDS,
        tSE    = 15 * MILLISECONDS;
        tSE    = 15 * MILLISECONDS;
// or keep it at the original speed
// or keep it at the original speed
        // tPP    = 1200 * MICROSECONDS,
        // tPP    = 1200 * MICROSECONDS,
        // tSE    = 1500 * MILLISECONDS;
        // tSE    = 1500 * MILLISECONDS;
 
 
QSPIFLASHSIM::QSPIFLASHSIM(void) {
QSPIFLASHSIM::QSPIFLASHSIM(void) {
        m_mem = new char[MEMBYTES];
        m_mem = new char[MEMBYTES];
        m_pmem = new char[256];
        m_pmem = new char[256];
        m_state = QSPIF_IDLE;
        m_state = QSPIF_IDLE;
        m_last_sck = 1;
        m_last_sck = 1;
        m_write_count = 0;
        m_write_count = 0;
        m_ireg = m_oreg = 0;
        m_ireg = m_oreg = 0;
        m_sreg = 0x01c;
        m_sreg = 0x01c;
        m_creg = 0x001; // Iinitial creg on delivery
        m_creg = 0x003; // Initial creg on delivery--assumes quad mode enabled
        m_quad_mode = false;
        m_quad_mode = false;
        m_mode_byte = 0;
        m_mode_byte = 0;
 
 
        memset(m_mem, 0x0ff, MEMBYTES);
        memset(m_mem, 0x0ff, MEMBYTES);
}
}
 
 
void    QSPIFLASHSIM::load(const unsigned addr, const char *fname) {
void    QSPIFLASHSIM::load(const unsigned addr, const char *fname) {
        FILE    *fp;
        FILE    *fp;
 
        int     nr = 0;
        size_t  len;
        size_t  len;
 
 
        if (addr >= MEMBYTES)
        if (addr >= MEMBYTES)
                return;
                return;
        len = MEMBYTES-addr*4;
        len = MEMBYTES-addr*4;
 
 
        if (NULL != (fp = fopen(fname, "r"))) {
        if (NULL != (fp = fopen(fname, "r"))) {
                int     nr = 0;
 
                nr = fread(&m_mem[addr], sizeof(char), len, fp);
                nr = fread(&m_mem[addr], sizeof(char), len, fp);
                fclose(fp);
                fclose(fp);
                if (nr == 0) {
                if (nr == 0) {
                        fprintf(stderr, "SPI-FLASH: Could not read %s\n", fname);
                        fprintf(stderr, "SPI-FLASH: Could not read %s\n", fname);
                        perror("O/S Err:");
                        perror("O/S Err:");
                }
                }
        } else {
        } else {
                fprintf(stderr, "SPI-FLASH: Could not open %s\n", fname);
                fprintf(stderr, "SPI-FLASH: Could not open %s\n", fname);
                perror("O/S Err:");
                perror("O/S Err:");
        }
        }
}
}
 
 
void    QSPIFLASHSIM::write(const unsigned addr, const unsigned len, const uint32_t *buf) {
void    QSPIFLASHSIM::write(const unsigned offset, const unsigned len, const char *buf) {
        char    *ptr;
        uint32_t        moff = (offset & (MEMBYTES-1));
        if ((addr+len < SPIFLASH)||(addr >= SPIFLASH+MEMBYTES/4))
 
                return;
        memcpy(&m_mem[moff], buf, len);
        printf("FLASH: Copying into memory at S6Add4 %08x, my addr %08x, %d values\n",
 
                addr, (addr-SPIFLASH)<<2, len<<2);
 
        ptr = &m_mem[(addr-SPIFLASH)<<2];
 
        memcpy(ptr, buf, len<<2);
 
        printf("%02x %02x %02x %02x\n", ptr[0]&0x0ff, ptr[1]&0x0ff, ptr[2]&0x0ff, ptr[3]&0x0ff);
 
}
}
 
 
#define QOREG(A)        m_oreg = ((m_oreg & (~0x0ff))|(A&0x0ff))
#define QOREG(A)        m_oreg = ((m_oreg & (~0x0ff))|(A&0x0ff))
 
 
int     QSPIFLASHSIM::operator()(const int csn, const int sck, const int dat) {
int     QSPIFLASHSIM::operator()(const int csn, const int sck, const int dat) {
        // Keep track of a timer to determine when page program and erase
        // Keep track of a timer to determine when page program and erase
        // cycles complete.
        // cycles complete.
 
 
        if (m_write_count > 0) {
        if (m_write_count > 0) {
                if (0 == (--m_write_count)) {// When done with erase/page pgm,
                if (0 == (--m_write_count)) {// When done with erase/page pgm,
                        m_sreg &= 0x0fc; // Clear the write in progress bit
                        m_sreg &= 0x0fc; // Clear the write in progress bit
                        if (m_debug) printf("Write complete, clearing WIP (inside SIM)\n");
                        if (m_debug) printf("Write complete, clearing WIP (inside SIM)\n");
                }
                }
        }
        }
 
 
        if (csn) {
        if (csn) {
                m_last_sck = 1;
                m_last_sck = 1;
                m_ireg = 0; m_oreg = 0;
                m_ireg = 0; m_oreg = 0;
                m_count= 0;
                m_count= 0;
 
 
                if ((QSPIF_PP == m_state)||(QSPIF_QPP == m_state)) {
                if ((QSPIF_PP == m_state)||(QSPIF_QPP == m_state)) {
                        // Start a page program
                        // Start a page program
                        if (m_debug) printf("QSPI: Page Program write cycle begins\n");
                        if (m_debug) printf("QSPI: Page Program write cycle begins\n");
                        if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
                        if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
                        if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem);
                        if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem);
                        m_write_count = tPP;
                        m_write_count = tPP;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        for(int i=0; i<256; i++) {
                        for(int i=0; i<256; i++) {
                                /*
                                /*
                                if (m_debug) printf("%02x: m_mem[%02x] = %02x &= %02x = %02x\n",
                                if (m_debug) printf("%02x: m_mem[%02x] = %02x &= %02x = %02x\n",
                                        i, (m_addr&(~0x0ff))+i,
                                        i, (m_addr&(~0x0ff))+i,
                                        m_mem[(m_addr&(~0x0ff))+i]&0x0ff, m_pmem[i]&0x0ff,
                                        m_mem[(m_addr&(~0x0ff))+i]&0x0ff, m_pmem[i]&0x0ff,
                                        m_mem[(m_addr&(~0x0ff))+i]& m_pmem[i]&0x0ff);
                                        m_mem[(m_addr&(~0x0ff))+i]& m_pmem[i]&0x0ff);
                                */
                                */
                                m_mem[(m_addr&(~0x0ff))+i] &= m_pmem[i];
                                m_mem[(m_addr&(~0x0ff))+i] &= m_pmem[i];
                        }
                        }
                        m_quad_mode = false;
                        m_quad_mode = false;
                } else if (m_state == QSPIF_SECTOR_ERASE) {
                } else if (m_state == QSPIF_SECTOR_ERASE) {
                        if (m_debug) printf("Actually Erasing sector, from %08x\n", m_addr);
                        if (m_debug) printf("Actually Erasing sector, from %08x\n", m_addr);
                        m_write_count = tSE;
                        m_write_count = tSE;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        m_addr &= (-1<<16);
                        m_addr &= (-1<<16);
                        for(int i=0; i<(1<<16); i++)
                        for(int i=0; i<(1<<16); i++)
                                m_mem[m_addr + i] = 0x0ff;
                                m_mem[m_addr + i] = 0x0ff;
                        if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count);
                        if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count);
                } else if (QSPIF_WRSR == m_state) {
                } else if (QSPIF_WRSR == m_state) {
                        if (m_debug) printf("Actually writing status register\n");
                        if (m_debug) printf("Actually writing status register\n");
                        m_write_count = tW;
                        m_write_count = tW;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                } else if (QSPIF_CLSR == m_state) {
                } else if (QSPIF_CLSR == m_state) {
                        if (m_debug) printf("Actually clearing the status register bits\n");
                        if (m_debug) printf("Actually clearing the status register bits\n");
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= 0x09f;
                        m_sreg &= 0x09f;
                } else if (m_state == QSPIF_BULK_ERASE) {
                } else if (m_state == QSPIF_BULK_ERASE) {
                        m_write_count = tBE;
                        m_write_count = tBE;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        m_sreg |= (QSPIF_WIP_FLAG);
                        for(int i=0; i<MEMBYTES; i++)
                        for(int i=0; i<MEMBYTES; i++)
                                m_mem[i] = 0x0ff;
                                m_mem[i] = 0x0ff;
                } else if (m_state == QSPIF_DEEP_POWER_DOWN) {
                } else if (m_state == QSPIF_DEEP_POWER_DOWN) {
                        m_write_count = tDP;
                        m_write_count = tDP;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                } else if (m_state == QSPIF_RELEASE) {
                } else if (m_state == QSPIF_RELEASE) {
                        m_write_count = tRES;
                        m_write_count = tRES;
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                } else if (m_state == QSPIF_QUAD_READ_CMD) {
                } else if (m_state == QSPIF_QUAD_READ_CMD) {
                        if ((m_mode_byte & 0x0f0)!=0x0a0)
                        if ((m_mode_byte & 0x0f0)!=0x0a0)
                                m_quad_mode = false;
                                m_quad_mode = false;
                        else
                        else
                                m_state = QSPIF_QUAD_READ_IDLE;
                                m_state = QSPIF_QUAD_READ_IDLE;
                } else if (m_state == QSPIF_QUAD_READ) {
                } else if (m_state == QSPIF_QUAD_READ) {
                        if ((m_mode_byte & 0x0f0)!=0x0a0)
                        if ((m_mode_byte & 0x0f0)!=0x0a0)
                                m_quad_mode = false;
                                m_quad_mode = false;
                        else
                        else
                                m_state = QSPIF_QUAD_READ_IDLE;
                                m_state = QSPIF_QUAD_READ_IDLE;
                } else if (m_state == QSPIF_QUAD_READ_IDLE) {
                } else if (m_state == QSPIF_QUAD_READ_IDLE) {
                }
                }
 
 
                m_oreg = 0x0fe;
                m_oreg = 0x0fe;
                return dat;
                return dat;
        } else if ((!m_last_sck)||(sck == m_last_sck)) {
        } else if ((!m_last_sck)||(sck == m_last_sck)) {
                // Only change on the falling clock edge
                // Only change on the falling clock edge
                // printf("SFLASH-SKIP, CLK=%d -> %d\n", m_last_sck, sck);
                // printf("SFLASH-SKIP, CLK=%d -> %d\n", m_last_sck, sck);
                m_last_sck = sck;
                m_last_sck = sck;
                if (m_quad_mode)
                if (m_quad_mode)
                        return (m_oreg>>8)&0x0f;
                        return (m_oreg>>8)&0x0f;
                else
                else
                        // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d);
                        // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d);
                        return (m_oreg & 0x0100)?2:0;
                        return (m_oreg & 0x0100)?2:0;
        }
        }
 
 
        // We'll only get here if ...
        // We'll only get here if ...
        //      last_sck = 1, and sck = 0, thus transitioning on the
        //      last_sck = 1, and sck = 0, thus transitioning on the
        //      negative edge as with everything else in this interface
        //      negative edge as with everything else in this interface
        if (m_quad_mode) {
        if (m_quad_mode) {
                m_ireg = (m_ireg << 4) | (dat & 0x0f);
                m_ireg = (m_ireg << 4) | (dat & 0x0f);
                m_count+=4;
                m_count+=4;
                m_oreg <<= 4;
                m_oreg <<= 4;
        } else {
        } else {
                m_ireg = (m_ireg << 1) | (dat & 1);
                m_ireg = (m_ireg << 1) | (dat & 1);
                m_count++;
                m_count++;
                m_oreg <<= 1;
                m_oreg <<= 1;
        }
        }
 
 
 
 
        // printf("PROCESS, COUNT = %d, IREG = %02x\n", m_count, m_ireg);
        // printf("PROCESS, COUNT = %d, IREG = %02x\n", m_count, m_ireg);
        if (m_state == QSPIF_QUAD_READ_IDLE) {
        if (m_state == QSPIF_QUAD_READ_IDLE) {
                assert(m_quad_mode);
                assert(m_quad_mode);
                if (m_count == 24) {
                if (m_count == 24) {
                        if (m_debug) printf("QSPI: Entering from Quad-Read Idle to Quad-Read\n");
                        if (m_debug) printf("QSPI: Entering from Quad-Read Idle to Quad-Read\n");
                        if (m_debug) printf("QSPI: QI/O Idle Addr = %02x\n", m_ireg&0x0ffffff);
                        if (m_debug) printf("QSPI: QI/O Idle Addr = %02x\n", m_ireg&MEMMASK);
                        m_addr = (m_ireg) & 0x0ffffff;
                        m_addr = (m_ireg) & MEMMASK;
                        assert((m_addr & 0xfc00000)==0);
                        assert((m_addr & (~(MEMMASK)))==0);
                        m_state = QSPIF_QUAD_READ;
                        m_state = QSPIF_QUAD_READ;
                } m_oreg = 0;
                } m_oreg = 0;
        } else if (m_count == 8) {
        } else if (m_count == 8) {
                QOREG(0x0a5);
                QOREG(0x0a5);
                // printf("SFLASH-CMD = %02x\n", m_ireg & 0x0ff);
                // printf("SFLASH-CMD = %02x\n", m_ireg & 0x0ff);
                // Figure out what command we've been given
                // Figure out what command we've been given
                if (m_debug) printf("SPI FLASH CMD %02x\n", m_ireg&0x0ff);
                if (m_debug) printf("SPI FLASH CMD %02x\n", m_ireg&0x0ff);
                switch(m_ireg & 0x0ff) {
                switch(m_ireg & 0x0ff) {
                case 0x01: // Write status register
                case 0x01: // Write status register
                        if (2 !=(m_sreg & 0x203)) {
                        if (2 !=(m_sreg & 0x203)) {
                                if (m_debug) printf("QSPI: WEL not set, cannot write status reg\n");
                                if (m_debug) printf("QSPI: WEL not set, cannot write status reg\n");
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else
                        } else
                                m_state = QSPIF_WRSR;
                                m_state = QSPIF_WRSR;
                        break;
                        break;
                case 0x02: // Page program
                case 0x02: // Page program
                        if (2 != (m_sreg & 0x203)) {
                        if (2 != (m_sreg & 0x203)) {
                                if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg);
                                if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg);
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else {
                        } else {
                                m_state = QSPIF_PP;
                                m_state = QSPIF_PP;
                                if (m_debug) printf("PAGE-PROGRAM COMMAND ACCEPTED\n");
                                if (m_debug) printf("PAGE-PROGRAM COMMAND ACCEPTED\n");
                        }
                        }
                        break;
                        break;
                case 0x03: // Read data bytes
                case 0x03: // Read data bytes
                        // Our clock won't support this command, so go
                        // Our clock won't support this command, so go
                        // to an invalid state
                        // to an invalid state
                        if (m_debug) printf("QSPI INVALID: This sim does not support slow reading\n");
                        if (m_debug) printf("QSPI INVALID: This sim does not support slow reading\n");
                        m_state = QSPIF_INVALID;
                        m_state = QSPIF_INVALID;
                        break;
                        break;
                case 0x04: // Write disable
                case 0x04: // Write disable
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        m_sreg &= (~QSPIF_WEL_FLAG);
                        break;
                        break;
                case 0x05: // Read status register
                case 0x05: // Read status register
                        m_state = QSPIF_RDSR;
                        m_state = QSPIF_RDSR;
                        if (m_debug) printf("QSPI: READING STATUS REGISTER: %02x\n", m_sreg);
                        if (m_debug) printf("QSPI: READING STATUS REGISTER: %02x\n", m_sreg);
                        QOREG(m_sreg);
                        QOREG(m_sreg);
                        break;
                        break;
                case 0x06: // Write enable
                case 0x06: // Write enable
                        m_state = QSPIF_IDLE;
                        m_state = QSPIF_IDLE;
                        m_sreg |= QSPIF_WEL_FLAG;
                        m_sreg |= QSPIF_WEL_FLAG;
                        if (m_debug) printf("QSPI: WRITE-ENABLE COMMAND ACCEPTED\n");
                        if (m_debug) printf("QSPI: WRITE-ENABLE COMMAND ACCEPTED\n");
                        break;
                        break;
                case 0x0b: // Here's the read that we support
                case 0x0b: // Here's the read that we support
                        if (m_debug) printf("QSPI: FAST-READ (single-bit)\n");
                        if (m_debug) printf("QSPI: FAST-READ (single-bit)\n");
                        m_state = QSPIF_FAST_READ;
                        m_state = QSPIF_FAST_READ;
                        break;
                        break;
                case 0x30:
                case 0x30:
                        if (m_debug) printf("QSPI: CLEAR STATUS REGISTER COMMAND\n");
                        if (m_debug) printf("QSPI: CLEAR STATUS REGISTER COMMAND\n");
                        m_state = QSPIF_CLSR;
                        m_state = QSPIF_CLSR;
                        break;
                        break;
                case 0x32: // QUAD Page program, 4 bits at a time
                case 0x32: // QUAD Page program, 4 bits at a time
                        if (2 != (m_sreg & 0x203)) {
                        if (2 != (m_sreg & 0x203)) {
                                if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg);
                                if (m_debug) printf("QSPI: Cannot program at this time, SREG = %x\n", m_sreg);
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else {
                        } else {
                                m_state = QSPIF_QPP;
                                m_state = QSPIF_QPP;
                                if (m_debug) printf("QSPI: QUAD-PAGE-PROGRAM COMMAND ACCEPTED\n");
                                if (m_debug) printf("QSPI: QUAD-PAGE-PROGRAM COMMAND ACCEPTED\n");
                                if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem);
                                if (m_debug) printf("QSPI: pmem = %08lx\n", (unsigned long)m_pmem);
                        }
                        }
                        break;
                        break;
                case 0x35: // Read configuration register
                case 0x35: // Read configuration register
                        m_state = QSPIF_RDCR;
                        m_state = QSPIF_RDCR;
                        if (m_debug) printf("QSPI: READING CONFIGURATION REGISTER: %02x\n", m_creg);
                        if (m_debug) printf("QSPI: READING CONFIGURATION REGISTER: %02x\n", m_creg);
                        QOREG(m_creg);
                        QOREG(m_creg);
                        break;
                        break;
                case 0x9f: // Read ID
                case 0x9f: // Read ID
                        m_state = QSPIF_RDID;
                        m_state = QSPIF_RDID;
                        if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>24)&0x0ff);
                        if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>24)&0x0ff);
                        QOREG(0xfe);
                        QOREG(0xfe);
                        break;
                        break;
                case 0xab: // Release from DEEP POWER DOWN
                case 0xab: // Release from DEEP POWER DOWN
                        if (m_sreg & QSPIF_DEEP_POWER_DOWN_FLAG) {
                        if (m_sreg & QSPIF_DEEP_POWER_DOWN_FLAG) {
                                if (m_debug) printf("QSPI: Release from deep power down\n");
                                if (m_debug) printf("QSPI: Release from deep power down\n");
                                m_sreg &= (~QSPIF_DEEP_POWER_DOWN_FLAG);
                                m_sreg &= (~QSPIF_DEEP_POWER_DOWN_FLAG);
                                m_write_count = tRES;
                                m_write_count = tRES;
                        } m_state = QSPIF_RELEASE;
                        } m_state = QSPIF_RELEASE;
                        break;
                        break;
                case 0xb9: // DEEP POWER DOWN
                case 0xb9: // DEEP POWER DOWN
                        if (0 != (m_sreg & 0x01)) {
                        if (0 != (m_sreg & 0x01)) {
                                if (m_debug) printf("QSPI: Cannot enter DEEP POWER DOWN, in middle of write/erase\n");
                                if (m_debug) printf("QSPI: Cannot enter DEEP POWER DOWN, in middle of write/erase\n");
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else {
                        } else {
                                m_sreg  |= QSPIF_DEEP_POWER_DOWN_FLAG;
                                m_sreg  |= QSPIF_DEEP_POWER_DOWN_FLAG;
                                m_state  = QSPIF_IDLE;
                                m_state  = QSPIF_IDLE;
                        }
                        }
                        break;
                        break;
                case 0xc7: // Bulk Erase
                case 0xc7: // Bulk Erase
                        if (2 != (m_sreg & 0x203)) {
                        if (2 != (m_sreg & 0x203)) {
                                if (m_debug) printf("QSPI: WEL not set, cannot erase device\n");
                                if (m_debug) printf("QSPI: WEL not set, cannot erase device\n");
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else
                        } else
                                m_state = QSPIF_BULK_ERASE;
                                m_state = QSPIF_BULK_ERASE;
                        break;
                        break;
                case 0xd8: // Sector Erase
                case 0xd8: // Sector Erase
                        if (2 != (m_sreg & 0x203)) {
                        if (2 != (m_sreg & 0x203)) {
                                if (m_debug) printf("QSPI: WEL not set, cannot erase sector\n");
                                if (m_debug) printf("QSPI: WEL not set, cannot erase sector\n");
                                m_state = QSPIF_INVALID;
                                m_state = QSPIF_INVALID;
                        } else {
                        } else {
                                m_state = QSPIF_SECTOR_ERASE;
                                m_state = QSPIF_SECTOR_ERASE;
                                if (m_debug) printf("QSPI: SECTOR_ERASE COMMAND\n");
                                if (m_debug) printf("QSPI: SECTOR_ERASE COMMAND\n");
                        }
                        }
                        break;
                        break;
                case 0x0eb: // Here's the (other) read that we support
                case 0x0eb: // Here's the (other) read that we support
                        // printf("QSPI: QUAD-I/O-READ\n");
                        // printf("QSPI: QUAD-I/O-READ\n");
                        m_state = QSPIF_QUAD_READ_CMD;
                        m_state = QSPIF_QUAD_READ_CMD;
                        m_quad_mode = true;
                        m_quad_mode = true;
                        break;
                        break;
                default:
                default:
                        printf("QSPI: UNRECOGNIZED SPI FLASH CMD: %02x\n", m_ireg&0x0ff);
                        printf("QSPI: UNRECOGNIZED SPI FLASH CMD: %02x\n", m_ireg&0x0ff);
                        m_state = QSPIF_INVALID;
                        m_state = QSPIF_INVALID;
                        assert(0 && "Unrecognized command\n");
                        assert(0 && "Unrecognized command\n");
                        break;
                        break;
                }
                }
        } else if ((0 == (m_count&0x07))&&(m_count != 0)) {
        } else if ((0 == (m_count&0x07))&&(m_count != 0)) {
                QOREG(0);
                QOREG(0);
                switch(m_state) {
                switch(m_state) {
                case QSPIF_IDLE:
                case QSPIF_IDLE:
                        printf("TOO MANY CLOCKS, SPIF in IDLE\n");
                        printf("TOO MANY CLOCKS, SPIF in IDLE\n");
                        break;
                        break;
                case QSPIF_WRSR:
                case QSPIF_WRSR:
                        if (m_count == 16) {
                        if (m_count == 16) {
                                m_sreg = (m_sreg & 0x061) | (m_ireg & 0x09c);
                                m_sreg = (m_sreg & 0x061) | (m_ireg & 0x09c);
                                if (m_debug) printf("Request to set sreg to 0x%02x\n",
                                if (m_debug) printf("Request to set sreg to 0x%02x\n",
                                        m_ireg&0x0ff);
                                        m_ireg&0x0ff);
                        } else if (m_count == 24) {
                        } else if (m_count == 24) {
                                m_creg = (m_creg & 0x0fd) | (m_ireg & 0x02);
                                m_creg = (m_creg & 0x0fd) | (m_ireg & 0x02);
                                if (m_debug) printf("Request to set creg to 0x%02x\n",
                                if (m_debug) printf("Request to set creg to 0x%02x\n",
                                        m_ireg&0x0ff);
                                        m_ireg&0x0ff);
                        } else {
                        } else {
                                printf("TOO MANY CLOCKS FOR WRR!!!\n");
                                printf("TOO MANY CLOCKS FOR WRR!!!\n");
                                exit(-2);
                                exit(-2);
                                m_state = QSPIF_IDLE;
                                m_state = QSPIF_IDLE;
                        }
                        }
                        break;
                        break;
                case QSPIF_CLSR:
                case QSPIF_CLSR:
                        assert(0 && "Too many clocks for CLSR command!!\n");
                        assert(0 && "Too many clocks for CLSR command!!\n");
                        break;
                        break;
                case QSPIF_RDID:
                case QSPIF_RDID:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffffff;
                                m_addr = m_ireg & MEMMASK;
                                if (m_debug) printf("READID, ADDR = %08x\n", m_addr);
                                if (m_debug) printf("READID, ADDR = %08x\n", m_addr);
                                QOREG((DEVID>>8));
                                QOREG((DEVID>>8));
                                if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>8)&0x0ff);
                                if (m_debug) printf("QSPI: READING ID, %02x\n", (DEVID>>8)&0x0ff);
                        } else if (m_count > 32) {
                        } else if (m_count > 32) {
                                if (((m_count-32)>>3)&1)
                                if (((m_count-32)>>3)&1)
                                        QOREG((DEVID));
                                        QOREG((DEVID));
                                else
                                else
                                        QOREG((DEVID>>8));
                                        QOREG((DEVID>>8));
                                if (m_debug) printf("QSPI: READING ID, %02x -- DONE\n", 0x00);
                                if (m_debug) printf("QSPI: READING ID, %02x -- DONE\n", 0x00);
                        }
                        }
                        // m_oreg = (DEVID >> (2-(m_count>>3)-1)) & 0x0ff;
                        // m_oreg = (DEVID >> (2-(m_count>>3)-1)) & 0x0ff;
                        break;
                        break;
                case QSPIF_RDSR:
                case QSPIF_RDSR:
                        // printf("Read SREG = %02x, wait = %08x\n", m_sreg,
                        // printf("Read SREG = %02x, wait = %08x\n", m_sreg,
                                // m_write_count);
                                // m_write_count);
                        QOREG(m_sreg);
                        QOREG(m_sreg);
                        break;
                        break;
                case QSPIF_RDCR:
                case QSPIF_RDCR:
                        if (m_debug) printf("Read CREG = %02x\n", m_creg);
                        if (m_debug) printf("Read CREG = %02x\n", m_creg);
                        QOREG(m_creg);
                        QOREG(m_creg);
                        break;
                        break;
                case QSPIF_FAST_READ:
                case QSPIF_FAST_READ:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffffff;
                                m_addr = m_ireg & MEMMASK;
                                if (m_debug) printf("FAST READ, ADDR = %08x\n", m_addr);
                                if (m_debug) printf("FAST READ, ADDR = %08x\n", m_addr);
                                QOREG(0x0c3);
                                QOREG(0x0c3);
                                assert((m_addr & 0xfc00000)==0);
                                if (m_addr & (~(MEMMASK))) {
 
                                        printf("QSPI: ADDR = %08x ? !!\n", m_addr);
 
                                } assert((m_addr & (~(MEMMASK)))==0);
                        } else if ((m_count >= 40)&&(0 == (m_sreg&0x01))) {
                        } else if ((m_count >= 40)&&(0 == (m_sreg&0x01))) {
                                //if (m_count == 40)
 
                                        //printf("DUMMY BYTE COMPLETE ...\n");
 
                                QOREG(m_mem[m_addr++]);
                                QOREG(m_mem[m_addr++]);
                                // if (m_debug) printf("SPIF[%08x] = %02x\n", m_addr-1, m_oreg);
                                if (m_debug) printf("SPIF[%08x] = %02x\n", m_addr-1, m_oreg);
                        } else m_oreg = 0;
                        } else m_oreg = 0;
                        break;
                        break;
                case QSPIF_QUAD_READ_CMD:
                case QSPIF_QUAD_READ_CMD:
                        // The command to go into quad read mode took 8 bits
                        // The command to go into quad read mode took 8 bits
                        // that changes the timings, else we'd use quad_Read
                        // that changes the timings, else we'd use quad_Read
                        // below
                        // below
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffffff;
                                m_addr = m_ireg & MEMMASK;
                                // printf("FAST READ, ADDR = %08x\n", m_addr);
                                if (m_debug) printf("QSPI: QUAD READ, ADDR = %06x\n", m_addr);
                                // printf("QSPI: QUAD READ, ADDR = %06x\n", m_addr);
                                assert((m_addr & (~(MEMMASK)))==0);
                                assert((m_addr & 0xfc00000)==0);
 
                        } else if (m_count == 32+24) {
                        } else if (m_count == 32+24) {
                                m_mode_byte = (m_ireg>>16) & 0x0ff;
                                m_mode_byte = (m_ireg>>16) & 0x0ff;
                                // printf("QSPI: MODE BYTE = %02x\n", m_mode_byte);
                                if (m_debug) printf("QSPI: MODE BYTE = %02x\n", m_mode_byte);
 
                                // Send the first byte in the response ... since it's time to start sending bytes
 
                                QOREG(m_mem[m_addr++]);
                        } else if ((m_count > 32+24)&&(0 == (m_sreg&0x01))) {
                        } else if ((m_count > 32+24)&&(0 == (m_sreg&0x01))) {
                                QOREG(m_mem[m_addr++]);
                                QOREG(m_mem[m_addr++]);
                                // printf("QSPIF[%08x]/QR = %02x\n",
                                if (m_debug) printf("QSPIF[%08x]/QR = %02x\n",
                                        // m_addr-1, m_oreg);
                                        m_addr-1, m_oreg);
                        } else m_oreg = 0;
                        } else m_oreg = 0;
                        break;
                        break;
                case QSPIF_QUAD_READ:
                case QSPIF_QUAD_READ:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_mode_byte = (m_ireg & 0x0ff);
                                m_mode_byte = (m_ireg & 0x0ff);
                                // printf("QSPI/QR: MODE BYTE = %02x\n", m_mode_byte);
                                // printf("QSPI/QR: MODE BYTE = %02x\n", m_mode_byte);
                        } else if ((m_count >= 32+16)&&(0 == (m_sreg&0x01))) {
                        } else if ((m_count >= 32+16)&&(0 == (m_sreg&0x01))) {
                                QOREG(m_mem[m_addr++]);
                                QOREG(m_mem[m_addr++]);
                                // printf("QSPIF[%08x]/QR = %02x\n", m_addr-1, m_oreg & 0x0ff);
                                if (m_debug) printf("QSPIF[%08x]/QR = %02x\n", m_addr-1, m_oreg & 0x0ff);
                        } else m_oreg = 0;
                        } else m_oreg = 0;
                        break;
                        break;
                case QSPIF_PP:
                case QSPIF_PP:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffffff;
                                m_addr = m_ireg & MEMMASK;
                                if (m_debug) printf("QSPI: PAGE-PROGRAM ADDR = %06x\n", m_addr);
                                if (m_debug) printf("QSPI: PAGE-PROGRAM ADDR = %06x\n", m_addr);
                                assert((m_addr & 0xfc00000)==0);
                                assert((m_addr & (~(MEMMASK)))==0);
                                // m_page = m_addr >> 8;
                                // m_page = m_addr >> 8;
                                for(int i=0; i<256; i++)
                                for(int i=0; i<256; i++)
                                        m_pmem[i] = 0x0ff;
                                        m_pmem[i] = 0x0ff;
                        } else if (m_count >= 40) {
                        } else if (m_count >= 40) {
                                m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
                                m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
                                // printf("QSPI: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
                                // printf("QSPI: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
                                m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
                                m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
                        } break;
                        } break;
                case QSPIF_QPP:
                case QSPIF_QPP:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffffff;
                                m_addr = m_ireg & MEMMASK;
                                m_quad_mode = true;
                                m_quad_mode = true;
                                if (m_debug) printf("QSPI/QR: PAGE-PROGRAM ADDR = %06x\n", m_addr);
                                if (m_debug) printf("QSPI/QR: PAGE-PROGRAM ADDR = %06x\n", m_addr);
                                assert((m_addr & 0xfc00000)==0);
                                assert((m_addr & (~(MEMMASK)))==0);
                                // m_page = m_addr >> 8;
                                // m_page = m_addr >> 8;
                                for(int i=0; i<256; i++)
                                for(int i=0; i<256; i++)
                                        m_pmem[i] = 0x0ff;
                                        m_pmem[i] = 0x0ff;
                        } else if (m_count >= 40) {
                        } else if (m_count >= 40) {
                                m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
                                m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
                                // printf("QSPI/QR: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
                                // printf("QSPI/QR: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
                                m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
                                m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
                        } break;
                        } break;
                case QSPIF_SECTOR_ERASE:
                case QSPIF_SECTOR_ERASE:
                        if (m_count == 32) {
                        if (m_count == 32) {
                                m_addr = m_ireg & 0x0ffc000;
                                m_addr = m_ireg & 0x0ffc000;
                                if (m_debug) printf("SECTOR_ERASE ADDRESS = %08x\n", m_addr);
                                if (m_debug) printf("SECTOR_ERASE ADDRESS = %08x\n", m_addr);
                                assert((m_addr & 0xfc00000)==0);
                                assert((m_addr & (~(MEMMASK)))==0);
                        } break;
                        } break;
                case QSPIF_RELEASE:
                case QSPIF_RELEASE:
                        if (m_count >= 32) {
                        if (m_count >= 32) {
                                QOREG(DEVESD);
                                QOREG(DEVESD);
                        } break;
                        } break;
                default:
                default:
                        break;
                        break;
                }
                }
        } // else printf("SFLASH->count = %d\n", m_count);
        } // else printf("SFLASH->count = %d\n", m_count);
 
 
        m_last_sck = sck;
        m_last_sck = sck;
        if (m_quad_mode)
        if (m_quad_mode)
                return (m_oreg>>8)&0x0f;
                return (m_oreg>>8)&0x0f;
        else
        else
                // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d);
                // return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d);
                return (m_oreg & 0x0100)?2:0;
                return (m_oreg & 0x0100)?2:0;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.