OpenCores
URL https://opencores.org/ocsvn/s6soc/s6soc/trunk

Subversion Repositories s6soc

[/] [s6soc/] [trunk/] [bench/] [cpp/] [zip_sim.cpp] - Diff between revs 2 and 10

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 2 Rev 10
 
////////////////////////////////////////////////////////////////////////////////
//
//
 
// Filename:    zip_sim.cpp
//
//
// Filename:    busmaster_tb.cpp
// Project:     CMod S6 System on a Chip, ZipCPU demonstration project
//
//
// Project:     FPGA library development (S6 development board)
// Purpose:     This provides a simulation capability for the CMod S6 SoC.
//
//
// Purpose:     
// Creator:     Dan Gisselquist, Ph.D.
 
//              Gisselquist Technology, LLC
//
//
// Creator:     Dan Gisselquist
////////////////////////////////////////////////////////////////////////////////
//              Gisselquist Tecnology, LLC
 
//
//
// Copyright:   2015
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
 
//
 
// This program is free software (firmware): you can redistribute it and/or
 
// modify it under the terms of  the GNU General Public License as published
 
// by the Free Software Foundation, either version 3 of the License, or (at
 
// your option) any later version.
 
//
 
// This program is distributed in the hope that it will be useful, but WITHOUT
 
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
 
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 
// for more details.
 
//
 
// You should have received a copy of the GNU General Public License along
 
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
 
// target there if the PDF file isn't present.)  If not, see
 
// <http://www.gnu.org/licenses/> for a copy.
 
//
 
// License:     GPL, v3, as defined and found on www.gnu.org,
 
//              http://www.gnu.org/licenses/gpl.html
 
//
 
//
 
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
#include <stdio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <fcntl.h>
#include <signal.h>
#include <signal.h>
#include <time.h>
#include <time.h>
#include <unistd.h>
#include <unistd.h>
 
#include <stdint.h>
 
 
#include "verilated.h"
#include "verilated.h"
#include "Vbusmaster.h"
#include "Vbusmaster.h"
 
 
 
#include "regdefs.h"
#include "testb.h"
#include "testb.h"
// #include "twoc.h"
// #include "twoc.h"
#include "qspiflashsim.h"
#include "qspiflashsim.h"
#include "uartsim.h"
#include "uartsim.h"
 
 
 
typedef uint32_t        BUSW;
 
 
class   GPIOSIM {
class   GPIOSIM {
public:
public:
        unsigned operator()(const unsigned o_gpio) { return 0; }
        unsigned operator()(const unsigned o_gpio) { return 0; }
};
};
 
 
class   KEYPADSIM {
class   KEYPADSIM {
public:
public:
        unsigned operator()(const unsigned o_kpd) { return 0; }
        unsigned operator()(const unsigned o_kpd) { return 0; }
};
};
 
 
// Add a reset line, since Vbusmaster doesn't have one
// Add a reset line, since Vbusmaster doesn't have one
class   Vbusmasterr : public Vbusmaster {
class   Vbusmasterr : public Vbusmaster {
public:
public:
        int     i_rst;
        int     i_rst;
};
};
 
 
// No particular "parameters" need definition or redefinition here.
// No particular "parameters" need definition or redefinition here.
class   ZIPSIM_TB : public TESTB<Vbusmasterr> {
class   ZIPSIM_TB : public TESTB<Vbusmasterr> {
public:
public:
        QSPIFLASHSIM    m_flash;
        QSPIFLASHSIM    m_flash;
        UARTSIM         m_uart;
        UARTSIM         m_uart;
        GPIOSIM         m_gpio;
        GPIOSIM         m_gpio;
        KEYPADSIM       m_keypad;
        KEYPADSIM       m_keypad;
        unsigned        m_last_led;
        unsigned        m_last_led;
        time_t          m_start_time;
        time_t          m_start_time;
 
 
        ZIPSIM_TB(void) : m_uart(0x2b6) {
        ZIPSIM_TB(void) : m_uart(0x2b6) {
                m_start_time = time(NULL);
                m_start_time = time(NULL);
        }
        }
 
 
        void    reset(void) {
        void    reset(void) {
                m_flash.debug(false);
                m_flash.debug(false);
        }
        }
 
 
        void    tick(void) {
        void    tick(void) {
                if ((m_tickcount & ((1<<28)-1))==0) {
                if ((m_tickcount & ((1<<28)-1))==0) {
                        double  ticks_per_second = m_tickcount;
                        double  ticks_per_second = m_tickcount;
                        time_t  nsecs = (time(NULL)-m_start_time);
                        time_t  nsecs = (time(NULL)-m_start_time);
                        if (nsecs > 0) {
                        if (nsecs > 0) {
                                ticks_per_second /= (double)nsecs;
                                ticks_per_second /= (double)nsecs;
                                printf(" ********   %.6f TICKS PER SECOND\n",
                                printf(" ********   %.6f TICKS PER SECOND\n",
                                        ticks_per_second);
                                        ticks_per_second);
                        }
                        }
                }
                }
 
 
                // Set up the bus before any clock tick
                // Set up the bus before any clock tick
 
 
                // We've got the flash to deal with ...
                // We've got the flash to deal with ...
                m_core->i_qspi_dat = m_flash(m_core->o_qspi_cs_n,
                m_core->i_qspi_dat = m_flash(m_core->o_qspi_cs_n,
                                                m_core->o_qspi_sck,
                                                m_core->o_qspi_sck,
                                                m_core->o_qspi_dat);
                                                m_core->o_qspi_dat);
 
 
                // And the GPIO lines
                // And the GPIO lines
                m_core->i_gpio = m_gpio(m_core->o_gpio);
                m_core->i_gpio = m_gpio(m_core->o_gpio);
 
 
                m_core->i_btn = 0; // 2'b0
                m_core->i_btn = 0; // 2'b0
                // o_led, o_pwm, o_pwm_aux
                // o_led, o_pwm, o_pwm_aux
 
 
                // And the keypad
                // And the keypad
                m_core->i_kp_row = m_keypad(m_core->o_kp_col);
                m_core->i_kp_row = m_keypad(m_core->o_kp_col);
 
 
                // And the UART
                // And the UART
                m_core->i_rx_stb  = m_uart.rx(m_core->i_rx_data);
                m_core->i_rx_stb  = m_uart.rx(m_core->i_rx_data);
                m_core->i_tx_busy = m_uart.tx(m_core->o_tx_stb, m_core->o_tx_data);
                m_core->i_tx_busy = m_uart.tx(m_core->o_tx_stb, m_core->o_tx_data);
 
 
                TESTB<Vbusmasterr>::tick();
                TESTB<Vbusmasterr>::tick();
 
 
                if (m_core->o_led != m_last_led) {
                if (m_core->o_led != m_last_led) {
                        printf("LED: %08x\n", m_core->o_led);
                        printf("LED: %08x\n", m_core->o_led);
 
                        m_last_led = m_core->o_led;
                }
                }
 
 
                /*
                /*
 
                printf("PC: %08x:%08x [%08x:%08x:%08x:%08x:%08x],%08x,%08x,%d,%08x,%08x (%x,%x)\n",
                printf("PC: %08x:%08x [%08x:%08x:%08x:%08x:%08x],%08x,%08x,%d,%08x,%08x\n",
 
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__ipc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__ipc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__upc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__upc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[0],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[0],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[1],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[1],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[2],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[2],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[3],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[3],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[15],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__regset[15],
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_decoder__DOT__r_I,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_decoder__DOT__r_I,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__r_opB,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__r_opB,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_decoder__DOT__w_dcdR_pc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_decoder__DOT__w_dcdR_pc,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__r_opA,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__r_opA,
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__wr_reg_vl);
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__wr_reg_vl,
                */
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__w_iflags,
 
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__w_iflags,
 
                        m_core->v__DOT__thecpu__DOT__thecpu__DOT__pf_pc
 
                        );
 
                if (m_core->v__DOT__wb_cyc) {
 
                printf("WB: %s/%s/%s[@0x%08x] %08x ->%s/%s %08x\n",
 
                        (m_core->v__DOT__wb_cyc)?"CYC":"   ",
 
                        (m_core->v__DOT__wb_stb)?"STB":"   ",
 
                        (m_core->v__DOT__wb_we )?"WE ":"   ",
 
                        (m_core->v__DOT__w_zip_addr),
 
                        (m_core->v__DOT__wb_data),
 
                        (m_core->v__DOT__wb_ack)?"ACK":"   ",
 
                        (m_core->v__DOT__wb_stall)?"STL":"   ",
 
                        (m_core->v__DOT__wb_idata)
 
                        );
 
                }
 
 
                /*
 
                if (m_core->v__DOT__thecpu__DOT__thecpu__DOT__pf_valid)
                if (m_core->v__DOT__thecpu__DOT__thecpu__DOT__pf_valid)
                        printf("PC: %08x - %08x, uart=%d,%d, pic = %d,%04x,%0d,%04x\n",
                        printf("PC: %08x - %08x, uart=%d,%d, pic = %d,%04x,%0d,%04x\n",
                                m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_pc,
                                m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction_pc,
                                m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction,
                                m_core->v__DOT__thecpu__DOT__thecpu__DOT__instruction,
                                m_core->i_rx_stb, m_core->i_tx_busy,
                                m_core->i_rx_stb, m_core->i_tx_busy,
                                m_core->v__DOT__pic__DOT__r_gie,
                                m_core->v__DOT__pic__DOT__r_gie,
                                m_core->v__DOT__pic__DOT__r_int_enable,
                                m_core->v__DOT__pic__DOT__r_int_enable,
                                m_core->v__DOT__pic__DOT__r_any,
                                m_core->v__DOT__pic__DOT__r_any,
                                m_core->v__DOT__pic__DOT__r_int_state);
                                m_core->v__DOT__pic__DOT__r_int_state);
                */
                */
 
 
 
                printf("%08x\n", m_core->v__DOT__zipt_a__DOT__r_value);
        }
        }
};
};
 
 
ZIPSIM_TB       *tb;
ZIPSIM_TB       *tb;
 
 
bool    iself(const char *fname) {
bool    iself(const char *fname) {
        FILE    *fp;
        FILE    *fp;
        bool    ret = true;
        bool    ret = true;
        fp = fopen(fname, "rb");
 
 
 
        if (!fp)
        if ((!fname)||(!fname[0]))
                return false;
                return false;
        if (0x7f != fgetc(fp))
 
                ret = false;
 
        if ('E' != fgetc(fp))
 
                ret = false;
 
        if ('L' != fgetc(fp))
 
                ret = false;
 
        if ('F' != fgetc(fp))
 
                ret = false;
 
 
 
 
        fp = fopen(fname, "rb");
 
 
 
        if (!fp)        return false;
 
        if (0x7f != fgetc(fp))  ret = false;
 
        if ('E'  != fgetc(fp))  ret = false;
 
        if ('L'  != fgetc(fp))  ret = false;
 
        if ('F'  != fgetc(fp))  ret = false;
        fclose(fp);
        fclose(fp);
        return ret;
        return  ret;
}
}
 
 
 
long    fgetwords(FILE *fp) {
 
        // Return the number of words in the current file, and return the 
 
        // file as though it had never been adjusted
 
        long    fpos, flen;
 
        fpos = ftell(fp);
 
        if (0 != fseek(fp, 0l, SEEK_END)) {
 
                fprintf(stderr, "ERR: Could not determine file size\n");
 
                perror("O/S Err:");
 
                exit(-2);
 
        } flen = ftell(fp);
 
        if (0 != fseek(fp, fpos, SEEK_SET)) {
 
                fprintf(stderr, "ERR: Could not seek on file\n");
 
                perror("O/S Err:");
 
                exit(-2);
 
        } flen /= sizeof(BUSW);
 
        return flen;
 
}
 
 
 
class   SECTION {
 
public:
 
        unsigned        m_start, m_len;
 
        BUSW    m_data[1];
 
};
 
 
 
SECTION **singlesection(int nwords) {
 
        fprintf(stderr, "NWORDS = %d\n", nwords);
 
        size_t  sz = (2*(sizeof(SECTION)+sizeof(SECTION *))
 
                +(nwords-1)*(sizeof(BUSW)));
 
        char    *d = (char *)malloc(sz);
 
        SECTION **r = (SECTION **)d;
 
        memset(r, 0, sz);
 
        r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]);
 
        r[0]->m_len   = nwords;
 
        r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]);
 
        r[0]->m_start = 0;
 
        r[1]->m_start = 0;
 
        r[1]->m_len   = 0;
 
 
 
        return r;
 
}
 
 
 
SECTION **rawsection(const char *fname) {
 
        SECTION         **secpp, *secp;
 
        unsigned        num_words;
 
        FILE            *fp;
 
        int             nr;
 
 
 
        fp = fopen(fname, "r");
 
        if (fp == NULL) {
 
                fprintf(stderr, "Could not open: %s\n", fname);
 
                exit(-1);
 
        }
 
 
 
        if ((num_words=fgetwords(fp)) > FLASHWORDS) {
 
                fprintf(stderr, "File overruns flash memory\n");
 
                exit(-1);
 
        }
 
        secpp = singlesection(num_words);
 
        secp = secpp[0];
 
        secp->m_start = RESET_ADDRESS;
 
        secp->m_len = num_words;
 
        nr= fread(secp->m_data, sizeof(BUSW), num_words, fp);
 
        if (nr != (int)num_words) {
 
                fprintf(stderr, "Could not read entire file\n");
 
                perror("O/S Err:");
 
                exit(-2);
 
        } assert(secpp[1]->m_len == 0);
 
 
 
        return secpp;
 
}
 
 
 
unsigned        byteswap(unsigned n) {
 
        unsigned        r;
 
 
 
        r = (n&0x0ff); n>>= 8;
 
        r = (r<<8) | (n&0x0ff); n>>= 8;
 
        r = (r<<8) | (n&0x0ff); n>>= 8;
 
        r = (r<<8) | (n&0x0ff); n>>= 8;
 
 
 
        return r;
 
}
 
 
 
#include <libelf.h>
 
#include <gelf.h>
 
 
 
void    elfread(const char *fname, unsigned &entry, SECTION **&sections) {
 
        Elf     *e;
 
        int     fd, i;
 
        size_t  n;
 
        char    *id;
 
        Elf_Kind        ek;
 
        GElf_Ehdr       ehdr;
 
        GElf_Phdr       phdr;
 
        const   bool    dbg = false;
 
 
 
        if (elf_version(EV_CURRENT) == EV_NONE) {
 
                fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1));
 
                perror("O/S Err:");
 
                exit(EXIT_FAILURE);
 
        } if ((fd = open(fname, O_RDONLY, 0)) < 0) {
 
                fprintf(stderr, "Could not open %s\n", fname);
 
                perror("O/S Err:");
 
                exit(EXIT_FAILURE);
 
        } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) {
 
                fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1));
 
                exit(EXIT_FAILURE);
 
        }
 
 
 
        ek = elf_kind(e);
 
        if (ek == ELF_K_ELF) {
 
                ; // This is the kind of file we should expect
 
        } else if (ek == ELF_K_AR) {
 
                fprintf(stderr, "Cannot run an archive!\n");
 
                exit(EXIT_FAILURE);
 
        } else if (ek == ELF_K_NONE) {
 
                ;
 
        } else {
 
                fprintf(stderr, "Unexpected ELF file kind!\n");
 
                exit(EXIT_FAILURE);
 
        }
 
 
 
        if (gelf_getehdr(e, &ehdr) == NULL) {
 
                fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1));
 
                exit(EXIT_FAILURE);
 
        } if ((i=gelf_getclass(e)) == ELFCLASSNONE) {
 
                fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1));
 
                exit(EXIT_FAILURE);
 
        } if ((id = elf_getident(e, NULL)) == NULL) {
 
                fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1));
 
                exit(EXIT_FAILURE);
 
        } if (i != ELFCLASS32) {
 
                fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n");
 
                exit(EXIT_FAILURE);
 
        }
 
 
 
        if (dbg) {
 
        printf("    %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type);
 
        printf("    %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine);
 
        printf("    %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version);
 
        printf("    %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry);
 
        printf("    %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff);
 
        printf("    %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff);
 
        printf("    %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags);
 
        printf("    %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize);
 
        printf("    %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize);
 
        printf("    %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize);
 
        printf("\n");
 
        }
 
 
 
 
 
        // Check whether or not this is an ELF file for the ZipCPU ...
 
        if (ehdr.e_machine != 0x0dadd) {
 
                fprintf(stderr, "This is not a ZipCPU ELF file\n");
 
                exit(EXIT_FAILURE);
 
        }
 
 
 
        // Get our entry address
 
        entry = ehdr.e_entry;
 
 
 
 
 
        // Now, let's go look at the program header
 
        if (elf_getphdrnum(e, &n) != 0) {
 
                fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1));
 
                exit(EXIT_FAILURE);
 
        }
 
 
 
        unsigned total_octets = 0, current_offset=0, current_section=0;
 
        for(i=0; i<(int)n; i++) {
 
                total_octets += sizeof(SECTION *)+sizeof(SECTION);
 
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
 
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
 
                        exit(EXIT_FAILURE);
 
                }
 
 
 
                if (dbg) {
 
                printf("    %-20s 0x%x\n", "p_type",   phdr.p_type);
 
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
 
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
 
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
 
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
 
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
 
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
 
                if (phdr.p_flags & PF_R)        printf(" Read");
 
                if (phdr.p_flags & PF_W)        printf(" Write");
 
                printf("]\n");
 
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
 
                }
 
 
 
                total_octets += phdr.p_memsz;
 
        }
 
 
 
        char    *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *));
 
        memset(d, 0, total_octets);
 
 
 
        SECTION **r = sections = (SECTION **)d;
 
        current_offset = (n+1)*sizeof(SECTION *);
 
        current_section = 0;
 
 
 
        for(i=0; i<(int)n; i++) {
 
                r[i] = (SECTION *)(&d[current_offset]);
 
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
 
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
 
                        exit(EXIT_FAILURE);
 
                }
 
 
 
                if (dbg) {
 
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
 
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
 
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
 
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
 
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
 
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
 
                if (phdr.p_flags & PF_R)        printf(" Read");
 
                if (phdr.p_flags & PF_W)        printf(" Write");
 
                printf("]\n");
 
 
 
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
 
                }
 
 
 
                current_section++;
 
 
 
                r[i]->m_start = phdr.p_vaddr;
 
                r[i]->m_len   = phdr.p_filesz/ sizeof(BUSW);
 
 
 
                current_offset += phdr.p_memsz + sizeof(SECTION);
 
 
 
                // Now, let's read in our section ...
 
                if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) {
 
                        fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset);
 
                        perror("O/S Err:");
 
                        exit(EXIT_FAILURE);
 
                } if (phdr.p_filesz > phdr.p_memsz)
 
                        phdr.p_filesz = 0;
 
                if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) {
 
                        fprintf(stderr, "Didnt read entire section\n");
 
                        perror("O/S Err:");
 
                        exit(EXIT_FAILURE);
 
                }
 
 
 
                // Next, we need to byte swap it from big to little endian
 
                for(unsigned j=0; j<r[i]->m_len; j++)
 
                        r[i]->m_data[j] = byteswap(r[i]->m_data[j]);
 
 
 
                if (dbg) for(unsigned j=0; j<r[i]->m_len; j++)
 
                        fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j,
 
                        r[i]->m_data[j]);
 
        }
 
 
 
        r[i] = (SECTION *)(&d[current_offset]);
 
        r[current_section]->m_start = 0;
 
        r[current_section]->m_len   = 0;
 
 
 
        elf_end(e);
 
        close(fd);
 
}
 
 
 
 
void    usage(void) {
void    usage(void) {
        fprintf(stderr, "Usage: zip_sim flash_program\n");
        fprintf(stderr, "Usage: zip_sim flash_program\n");
}
}
 
 
int     main(int argc, char **argv) {
int     main(int argc, char **argv) {
        Verilated::commandArgs(argc, argv);
        Verilated::commandArgs(argc, argv);
        tb = new ZIPSIM_TB;
        tb = new ZIPSIM_TB;
        const char      *codef = NULL;
        const char      *codef = NULL;
 
 
        for(int argn=1; argn<argc; argn++) {
        for(int argn=1; argn<argc; argn++) {
                if (argv[argn][0] == '-') {
                if (argv[argn][0] == '-') {
                        usage();
                        usage();
                        exit(-1);
                        exit(-1);
                } else
                } else
                        codef = argv[argn];
                        codef = argv[argn];
        }
        }
 
 
        if ((!codef)||(!codef[0]))
        if ((!codef)||(!codef[0]))
                fprintf(stderr, "No executable code filename found!\n");
                fprintf(stderr, "No executable code filename found!\n");
 
 
        if (access(codef, R_OK)!=0)
        if (access(codef, R_OK)!=0)
                fprintf(stderr, "Cannot read code filename, %s\n", codef);
                fprintf(stderr, "Cannot read code filename, %s\n", codef);
 
 
        if (iself(codef)) {
        if (iself(codef)) {
                char    tmpbuf[TMP_MAX], cmdbuf[256];
                SECTION **secpp, *secp;
                int     unused_fd;
                BUSW    entry;
                strcpy(tmpbuf, "/var/tmp/zipsimXXXX");
                elfread(codef, entry, secpp);
 
 
                // Make a temporary file
                for(int i=0; secpp[i]->m_len; i++) {
                unused_fd = mkostemp(tmpbuf, O_CREAT|O_TRUNC|O_RDWR);
                        secp = secpp[i];
                // Close it, though, since we don't want to write to it here
                        tb->m_flash.write(secp->m_start, secp->m_len, secp->m_data);
                close(unused_fd);
 
 
 
                // Now we right to it, as part of calling objcopy       
 
                sprintf(cmdbuf, "zip-objcopy -S -O binary --reverse-bytes=4 %s %s\n",
 
                        codef, tmpbuf);
 
                if (system(cmdbuf) != 0) {
 
                        unlink(tmpbuf);
 
                        fprintf(stderr, "ZIP_SIM::Could not convert ELF binary to a raw file\n");
 
                        exit(-2);
 
                }
                }
 
 
                tb->m_flash.load(0x0400, tmpbuf);
 
                unlink(tmpbuf);
 
        } else {
        } else {
                tb->m_flash.load(0x0400, codef);
                tb->m_flash.load(RESET_ADDRESS, codef);
        }
        }
 
 
        tb->reset();
        tb->reset();
 
 
        while(1)
        while(1)
                tb->tick();
                tb->tick();
 
 
        printf("SUCCESS!\n");
        printf("SUCCESS!\n");
        exit(0);
        exit(0);
}
}
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.