OpenCores
URL https://opencores.org/ocsvn/s6soc/s6soc/trunk

Subversion Repositories s6soc

[/] [s6soc/] [trunk/] [sw/] [host/] [zipload.cpp] - Diff between revs 19 and 26

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 19 Rev 26
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    zipload.cpp
// Filename:    zipload.cpp
//
//
// Project:     CMod S6 System on a Chip, ZipCPU demonstration project
// Project:     CMod S6 System on a Chip, ZipCPU demonstration project
//
//
// Purpose:     To load the flash--both a the two configurations and the 
// Purpose:     To load the flash--both a the two configurations and the 
//              a program for the ZipCPU into (flash) memory.
//              a program for the ZipCPU into (flash) memory.
//
//
//      Steps:
//      Steps:
//              1. Reboot the CMod into the alternate/debug/command mode
//              1. Reboot the CMod into the alternate/debug/command mode
//              2. Load flash memory
//              2. Load flash memory
//              3. Reload (reboot) the CMod configuration into ZipCPU mode
//              3. Reload (reboot) the CMod configuration into ZipCPU mode
//              4. Program should start on its own.
//              4. Program should start on its own.
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
//
//
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <fcntl.h>
#include <unistd.h>
#include <unistd.h>
#include <strings.h>
#include <strings.h>
#include <ctype.h>
#include <ctype.h>
#include <string.h>
#include <string.h>
#include <signal.h>
#include <signal.h>
#include <assert.h>
#include <assert.h>
 
 
#include "devbus.h"
#include "devbus.h"
#include "llcomms.h"
#include "llcomms.h"
#include "deppi.h"
#include "deppi.h"
#include "regdefs.h"
#include "regdefs.h"
#include "flashdrvr.h"
#include "flashdrvr.h"
 
 
bool    iself(const char *fname) {
bool    iself(const char *fname) {
        FILE    *fp;
        FILE    *fp;
        bool    ret = true;
        bool    ret = true;
 
 
        if ((!fname)||(!fname[0]))
        if ((!fname)||(!fname[0]))
                return false;
                return false;
 
 
        fp = fopen(fname, "rb");
        fp = fopen(fname, "rb");
 
 
        if (!fp)        return false;
        if (!fp)        return false;
        if (0x7f != fgetc(fp))  ret = false;
        if (0x7f != fgetc(fp))  ret = false;
        if ('E'  != fgetc(fp))  ret = false;
        if ('E'  != fgetc(fp))  ret = false;
        if ('L'  != fgetc(fp))  ret = false;
        if ('L'  != fgetc(fp))  ret = false;
        if ('F'  != fgetc(fp))  ret = false;
        if ('F'  != fgetc(fp))  ret = false;
        fclose(fp);
        fclose(fp);
        return  ret;
        return  ret;
}
}
 
 
long    fgetwords(FILE *fp) {
long    fgetwords(FILE *fp) {
        // Return the number of words in the current file, and return the 
        // Return the number of words in the current file, and return the 
        // file as though it had never been adjusted
        // file as though it had never been adjusted
        long    fpos, flen;
        long    fpos, flen;
        fpos = ftell(fp);
        fpos = ftell(fp);
        if (0 != fseek(fp, 0l, SEEK_END)) {
        if (0 != fseek(fp, 0l, SEEK_END)) {
                fprintf(stderr, "ERR: Could not determine file size\n");
                fprintf(stderr, "ERR: Could not determine file size\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } flen = ftell(fp);
        } flen = ftell(fp);
        if (0 != fseek(fp, fpos, SEEK_SET)) {
        if (0 != fseek(fp, fpos, SEEK_SET)) {
                fprintf(stderr, "ERR: Could not seek on file\n");
                fprintf(stderr, "ERR: Could not seek on file\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } flen /= sizeof(FPGA::BUSW);
        } flen /= sizeof(FPGA::BUSW);
        return flen;
        return flen;
}
}
 
 
FPGA    *m_fpga;
FPGA    *m_fpga;
class   SECTION {
class   SECTION {
public:
public:
        unsigned        m_start, m_len;
        unsigned        m_start, m_len;
        FPGA::BUSW      m_data[1];
        FPGA::BUSW      m_data[1];
};
};
 
 
SECTION **singlesection(int nwords) {
SECTION **singlesection(int nwords) {
        fprintf(stderr, "NWORDS = %d\n", nwords);
        fprintf(stderr, "NWORDS = %d\n", nwords);
        size_t  sz = (2*(sizeof(SECTION)+sizeof(SECTION *))
        size_t  sz = (2*(sizeof(SECTION)+sizeof(SECTION *))
                +(nwords-1)*(sizeof(FPGA::BUSW)));
                +(nwords-1)*(sizeof(FPGA::BUSW)));
        char    *d = (char *)malloc(sz);
        char    *d = (char *)malloc(sz);
        SECTION **r = (SECTION **)d;
        SECTION **r = (SECTION **)d;
        memset(r, 0, sz);
        memset(r, 0, sz);
        r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]);
        r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]);
        r[0]->m_len   = nwords;
        r[0]->m_len   = nwords;
        r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]);
        r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]);
        r[0]->m_start = 0;
        r[0]->m_start = 0;
        r[1]->m_start = 0;
        r[1]->m_start = 0;
        r[1]->m_len   = 0;
        r[1]->m_len   = 0;
 
 
        return r;
        return r;
}
}
 
 
SECTION **rawsection(const char *fname) {
SECTION **rawsection(const char *fname) {
        SECTION         **secpp, *secp;
        SECTION         **secpp, *secp;
        unsigned        num_words;
        unsigned        num_words;
        FILE            *fp;
        FILE            *fp;
        int             nr;
        int             nr;
 
 
        fp = fopen(fname, "r");
        fp = fopen(fname, "r");
        if (fp == NULL) {
        if (fp == NULL) {
                fprintf(stderr, "Could not open: %s\n", fname);
                fprintf(stderr, "Could not open: %s\n", fname);
                exit(-1);
                exit(-1);
        }
        }
 
 
        if ((num_words=fgetwords(fp)) > FLASHWORDS-(RESET_ADDRESS-SPIFLASH)) {
        if ((num_words=fgetwords(fp)) > FLASHWORDS-(RESET_ADDRESS-SPIFLASH)) {
                fprintf(stderr, "File overruns flash memory\n");
                fprintf(stderr, "File overruns flash memory\n");
                exit(-1);
                exit(-1);
        }
        }
        secpp = singlesection(num_words);
        secpp = singlesection(num_words);
        secp = secpp[0];
        secp = secpp[0];
        secp->m_start = RAMBASE;
        secp->m_start = RAMBASE;
        secp->m_len = num_words;
        secp->m_len = num_words;
        nr= fread(secp->m_data, sizeof(FPGA::BUSW), num_words, fp);
        nr= fread(secp->m_data, sizeof(FPGA::BUSW), num_words, fp);
        if (nr != (int)num_words) {
        if (nr != (int)num_words) {
                fprintf(stderr, "Could not read entire file\n");
                fprintf(stderr, "Could not read entire file\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } assert(secpp[1]->m_len == 0);
        } assert(secpp[1]->m_len == 0);
 
 
        return secpp;
        return secpp;
}
}
 
 
unsigned        byteswap(unsigned n) {
unsigned        byteswap(unsigned n) {
        unsigned        r;
        unsigned        r;
 
 
        r = (n&0x0ff); n>>= 8;
        r = (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
 
 
        return r;
        return r;
}
}
 
 
// #define      CHEAP_AND_EASY
// #define      CHEAP_AND_EASY
#ifdef  CHEAP_AND_EASY
#ifdef  CHEAP_AND_EASY
#else
#else
#include <libelf.h>
#include <libelf.h>
#include <gelf.h>
#include <gelf.h>
 
 
void    elfread(const char *fname, unsigned &entry, SECTION **&sections) {
void    elfread(const char *fname, unsigned &entry, SECTION **&sections) {
        Elf     *e;
        Elf     *e;
        int     fd, i;
        int     fd, i;
        size_t  n;
        size_t  n;
        char    *id;
        char    *id;
        Elf_Kind        ek;
        Elf_Kind        ek;
        GElf_Ehdr       ehdr;
        GElf_Ehdr       ehdr;
        GElf_Phdr       phdr;
        GElf_Phdr       phdr;
        const   bool    dbg = false;
        const   bool    dbg = false;
 
 
        if (elf_version(EV_CURRENT) == EV_NONE) {
        if (elf_version(EV_CURRENT) == EV_NONE) {
                fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1));
                fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1));
                perror("O/S Err:");
                perror("O/S Err:");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((fd = open(fname, O_RDONLY, 0)) < 0) {
        } if ((fd = open(fname, O_RDONLY, 0)) < 0) {
                fprintf(stderr, "Could not open %s\n", fname);
                fprintf(stderr, "Could not open %s\n", fname);
                perror("O/S Err:");
                perror("O/S Err:");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) {
        } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) {
                fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1));
                fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        ek = elf_kind(e);
        ek = elf_kind(e);
        if (ek == ELF_K_ELF) {
        if (ek == ELF_K_ELF) {
                ; // This is the kind of file we should expect
                ; // This is the kind of file we should expect
        } else if (ek == ELF_K_AR) {
        } else if (ek == ELF_K_AR) {
                fprintf(stderr, "Cannot run an archive!\n");
                fprintf(stderr, "Cannot run an archive!\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } else if (ek == ELF_K_NONE) {
        } else if (ek == ELF_K_NONE) {
                ;
                ;
        } else {
        } else {
                fprintf(stderr, "Unexpected ELF file kind!\n");
                fprintf(stderr, "Unexpected ELF file kind!\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        if (gelf_getehdr(e, &ehdr) == NULL) {
        if (gelf_getehdr(e, &ehdr) == NULL) {
                fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((i=gelf_getclass(e)) == ELFCLASSNONE) {
        } if ((i=gelf_getclass(e)) == ELFCLASSNONE) {
                fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((id = elf_getident(e, NULL)) == NULL) {
        } if ((id = elf_getident(e, NULL)) == NULL) {
                fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if (i != ELFCLASS32) {
        } if (i != ELFCLASS32) {
                fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n");
                fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        if (dbg) {
        if (dbg) {
        printf("    %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type);
        printf("    %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type);
        printf("    %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine);
        printf("    %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine);
        printf("    %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version);
        printf("    %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version);
        printf("    %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry);
        printf("    %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry);
        printf("    %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff);
        printf("    %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff);
        printf("    %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff);
        printf("    %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff);
        printf("    %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags);
        printf("    %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags);
        printf("    %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize);
        printf("    %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize);
        printf("    %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize);
        printf("    %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize);
        printf("    %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize);
        printf("    %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize);
        printf("\n");
        printf("\n");
        }
        }
 
 
 
 
        // Check whether or not this is an ELF file for the ZipCPU ...
        // Check whether or not this is an ELF file for the ZipCPU ...
        if (ehdr.e_machine != 0x0dadd) {
        if (ehdr.e_machine != 0x0dadd) {
                fprintf(stderr, "This is not a ZipCPU ELF file\n");
                fprintf(stderr, "This is not a ZipCPU ELF file\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        // Get our entry address
        // Get our entry address
        entry = ehdr.e_entry;
        entry = ehdr.e_entry;
 
 
 
 
        // Now, let's go look at the program header
        // Now, let's go look at the program header
        if (elf_getphdrnum(e, &n) != 0) {
        if (elf_getphdrnum(e, &n) != 0) {
                fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        unsigned total_octets = 0, current_offset=0, current_section=0;
        unsigned total_octets = 0, current_offset=0, current_section=0;
        for(i=0; i<(int)n; i++) {
        for(i=0; i<(int)n; i++) {
                total_octets += sizeof(SECTION *)+sizeof(SECTION);
                total_octets += sizeof(SECTION *)+sizeof(SECTION);
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                if (dbg) {
                if (dbg) {
                printf("    %-20s 0x%x\n", "p_type",   phdr.p_type);
                printf("    %-20s 0x%x\n", "p_type",   phdr.p_type);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_W)        printf(" Write");
                if (phdr.p_flags & PF_W)        printf(" Write");
                printf("]\n");
                printf("]\n");
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                }
                }
 
 
                total_octets += phdr.p_memsz;
                total_octets += phdr.p_memsz;
        }
        }
 
 
        char    *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *));
        char    *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *));
        memset(d, 0, total_octets);
        memset(d, 0, total_octets);
 
 
        SECTION **r = sections = (SECTION **)d;
        SECTION **r = sections = (SECTION **)d;
        current_offset = (n+1)*sizeof(SECTION *);
        current_offset = (n+1)*sizeof(SECTION *);
        current_section = 0;
        current_section = 0;
 
 
        for(i=0; i<(int)n; i++) {
        for(i=0; i<(int)n; i++) {
                r[i] = (SECTION *)(&d[current_offset]);
                r[i] = (SECTION *)(&d[current_offset]);
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                if (dbg) {
                if (dbg) {
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_W)        printf(" Write");
                if (phdr.p_flags & PF_W)        printf(" Write");
                printf("]\n");
                printf("]\n");
 
 
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                }
                }
 
 
                current_section++;
                current_section++;
 
 
                r[i]->m_start = phdr.p_vaddr;
                r[i]->m_start = phdr.p_paddr;
                r[i]->m_len   = phdr.p_filesz/ sizeof(FPGA::BUSW);
                r[i]->m_len   = phdr.p_filesz/ sizeof(FPGA::BUSW);
 
 
                current_offset += phdr.p_memsz + sizeof(SECTION);
                current_offset += phdr.p_memsz + sizeof(SECTION);
 
 
                // Now, let's read in our section ...
                // Now, let's read in our section ...
                if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) {
                if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) {
                        fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset);
                        fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset);
                        perror("O/S Err:");
                        perror("O/S Err:");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                } if (phdr.p_filesz > phdr.p_memsz)
                } if (phdr.p_filesz > phdr.p_memsz)
                        phdr.p_filesz = 0;
                        phdr.p_filesz = 0;
                if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) {
                if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) {
                        fprintf(stderr, "Didnt read entire section\n");
                        fprintf(stderr, "Didnt read entire section\n");
                        perror("O/S Err:");
                        perror("O/S Err:");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                // Next, we need to byte swap it from big to little endian
                // Next, we need to byte swap it from big to little endian
                for(unsigned j=0; j<r[i]->m_len; j++)
                for(unsigned j=0; j<r[i]->m_len; j++)
                        r[i]->m_data[j] = byteswap(r[i]->m_data[j]);
                        r[i]->m_data[j] = byteswap(r[i]->m_data[j]);
 
 
                if (dbg) for(unsigned j=0; j<r[i]->m_len; j++)
                if (dbg) for(unsigned j=0; j<r[i]->m_len; j++)
                        fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j,
                        fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j,
                        r[i]->m_data[j]);
                        r[i]->m_data[j]);
        }
        }
 
 
        r[i] = (SECTION *)(&d[current_offset]);
        r[i] = (SECTION *)(&d[current_offset]);
        r[current_section]->m_start = 0;
        r[current_section]->m_start = 0;
        r[current_section]->m_len   = 0;
        r[current_section]->m_len   = 0;
 
 
        elf_end(e);
        elf_end(e);
        close(fd);
        close(fd);
}
}
#endif
#endif
 
 
void    usage(void) {
void    usage(void) {
        printf("USAGE: ziprun [-h] [<bit-file> [<alt-bit-file>]] <zip-program-file>\n");
        printf("USAGE: ziprun [-h] [<bit-file> [<alt-bit-file>]] <zip-program-file>\n");
        printf("\n"
        printf("\n"
"\t-h\tDisplay this usage statement\n");
"\t-h\tDisplay this usage statement\n");
}
}
 
 
int main(int argc, char **argv) {
int main(int argc, char **argv) {
        int             skp=0;
        int             skp=0;
        bool            permit_raw_files = false;
        bool            permit_raw_files = false, debug_only = false;
        unsigned        entry = RAMBASE;
        unsigned        entry = RAMBASE;
        FLASHDRVR       *flash = NULL;
        FLASHDRVR       *flash = NULL;
        const char      *bitfile = NULL, *altbitfile = NULL;
        const char      *bitfile = NULL, *altbitfile = NULL;
 
 
        if (argc < 2) {
        if (argc < 2) {
                usage();
                usage();
                exit(EXIT_SUCCESS);
                exit(EXIT_SUCCESS);
        }
        }
 
 
        skp=1;
        skp=1;
        for(int argn=0; argn<argc-skp; argn++) {
        for(int argn=0; argn<argc-skp; argn++) {
                if (argv[argn+skp][0] == '-') {
                if (argv[argn+skp][0] == '-') {
                        switch(argv[argn+skp][1]) {
                        switch(argv[argn+skp][1]) {
 
                        case 'd':
 
                                debug_only = true;
 
                                break;
                        case 'h':
                        case 'h':
                                usage();
                                usage();
                                exit(EXIT_SUCCESS);
                                exit(EXIT_SUCCESS);
 
                                break;
                        case 'r':
                        case 'r':
                                permit_raw_files = true;
                                permit_raw_files = true;
                                break;
                                break;
 
                        default:
 
                                fprintf(stderr, "Unknown option, -%c\n\n",
 
                                        argv[argn+skp][0]);
 
                                usage();
 
                                exit(EXIT_FAILURE);
 
                                break;
                        } skp++; argn--;
                        } skp++; argn--;
                } else { // Check for bit files
                } else { // Check for bit files
                        int sl = strlen(argv[argn+skp]);
                        int sl = strlen(argv[argn+skp]);
                        if ((sl>4)&&(strcmp(&argv[argn+skp][sl-4],".bit")==0)) {
                        if ((sl>4)&&(strcmp(&argv[argn+skp][sl-4],".bit")==0)) {
                                if (bitfile == NULL)
                                if (bitfile == NULL)
                                        bitfile = argv[argn+skp];
                                        bitfile = argv[argn+skp];
                                else if (altbitfile == NULL)
                                else if (altbitfile == NULL)
                                        altbitfile = argv[argn+skp];
                                        altbitfile = argv[argn+skp];
                                else {
                                else {
                                        fprintf(stderr, "Err: Too many bit files listed\n");
                                        fprintf(stderr, "Err: Too many bit files listed\n");
                                        exit(EXIT_FAILURE);
                                        exit(EXIT_FAILURE);
                                } skp++; argn--;
                                } skp++; argn--;
                        } else
                        } else
                                argv[argn] = argv[argn+skp];
                                argv[argn] = argv[argn+skp];
                }
                }
        } argc -= skp;
        } argc -= skp;
 
 
 
 
        if ((bitfile)&&(access(bitfile,R_OK)!=0)) {
        if ((bitfile)&&(access(bitfile,R_OK)!=0)) {
                fprintf(stderr, "Cannot open bitfile, %s\n", bitfile);
                fprintf(stderr, "Cannot open bitfile, %s\n", bitfile);
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((altbitfile)&&(access(altbitfile,R_OK)!=0)) {
        } if ((altbitfile)&&(access(altbitfile,R_OK)!=0)) {
                fprintf(stderr, "Cannot open alternate bitfile, %s\n",
                fprintf(stderr, "Cannot open alternate bitfile, %s\n",
                        altbitfile);
                        altbitfile);
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if(((!bitfile)&&(argc<=0)) || ((argc>0)&&(access(argv[0],R_OK)!=0))) {
        } if(((!bitfile)&&(argc<=0)) || ((argc>0)&&(access(argv[0],R_OK)!=0))) {
                // If there's no code file, or the code file cannot be opened
                // If there's no code file, or the code file cannot be opened
                if (argc>0)
                if (argc>0)
                        fprintf(stderr, "Cannot open executable, %s\n", argv[0]);
                        fprintf(stderr, "Cannot open executable, %s\n", argv[0]);
                else
                else
                        usage();
                        usage();
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        const char *codef = (argc>0)?argv[0]:NULL;
        const char *codef = (argc>0)?argv[0]:NULL;
        DEVBUS::BUSW    *fbuf = new DEVBUS::BUSW[FLASHWORDS];
        DEVBUS::BUSW    *fbuf = new DEVBUS::BUSW[FLASHWORDS];
 
 
        // Set the flash buffer to all ones
        // Set the flash buffer to all ones
        memset(fbuf, -1, FLASHWORDS*sizeof(fbuf[0]));
        memset(fbuf, -1, FLASHWORDS*sizeof(fbuf[0]));
 
 
        {
        if (debug_only) {
 
                m_fpga = NULL;
 
        } else {
                char    szSel[64];
                char    szSel[64];
                strcpy(szSel, "SN:210282768825");
                strcpy(szSel, "SN:210282768825");
                m_fpga = new FPGA(new DEPPI(szSel));
                m_fpga = new FPGA(new DEPPI(szSel));
        }
        }
 
 
        flash = new FLASHDRVR(m_fpga);
        flash = (debug_only)?NULL : new FLASHDRVR(m_fpga);
 
 
        // First, see if we need to load a bit file
        // First, see if we need to load a bit file
        if (bitfile) {
        if (bitfile) {
                int     len;
                int     len;
                FILE    *fp = fopen(bitfile, "rb");
                FILE    *fp = fopen(bitfile, "rb");
 
 
                fseek(fp, 0x5dl, SEEK_SET);
                fseek(fp, 0x5dl, SEEK_SET);
                len = fread(&fbuf[CONFIG_ADDRESS-SPIFLASH],
                len = fread(&fbuf[CONFIG_ADDRESS-SPIFLASH],
                                sizeof(fbuf[0]),
                                sizeof(fbuf[0]),
                                FLASHWORDS-(CONFIG_ADDRESS-SPIFLASH), fp);
                                FLASHWORDS-(CONFIG_ADDRESS-SPIFLASH), fp);
                assert(len + CONFIG_ADDRESS < ALTCONFIG_ADDRESS);
                assert(len + CONFIG_ADDRESS < ALTCONFIG_ADDRESS);
                fclose(fp);
                fclose(fp);
 
 
                for(int i=0; i<4; i++) {
                for(int i=0; i<4; i++) {
                        // printf("0x%08x\n", fbuf[i]);
                        // printf("0x%08x\n", fbuf[i]);
                        assert(fbuf[i] == 0x0ffffffff);
                        assert(fbuf[i] == 0x0ffffffff);
                } // printf("0x%08x\n", fbuf[4]);
                } // printf("0x%08x\n", fbuf[4]);
                assert(fbuf[4] == 0x0665599aa);
                assert(fbuf[4] == 0x0665599aa);
 
 
                printf("Loading: %s\n", bitfile);
                printf("Loading: %s\n", bitfile);
                if (!flash->write(CONFIG_ADDRESS, len, &fbuf[CONFIG_ADDRESS-SPIFLASH], true)) {
                if ((flash)&&(!flash->write(CONFIG_ADDRESS, len, &fbuf[CONFIG_ADDRESS-SPIFLASH], true))) {
                        fprintf(stderr, "Could not write primary bitfile\n");
                        fprintf(stderr, "Could not write primary bitfile\n");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
        } if (altbitfile) {
        } if (altbitfile) {
                int     len;
                int     len;
                FILE    *fp = fopen(altbitfile, "rb");
                FILE    *fp = fopen(altbitfile, "rb");
 
 
                // The alternate configuration follows the first configuration
                // The alternate configuration follows the first configuration
                len = fread(&fbuf[ALTCONFIG_ADDRESS-SPIFLASH],
                len = fread(&fbuf[ALTCONFIG_ADDRESS-SPIFLASH],
                                sizeof(fbuf[0]),
                                sizeof(fbuf[0]),
                                FLASHWORDS-(ALTCONFIG_ADDRESS-SPIFLASH), fp);
                                FLASHWORDS-(ALTCONFIG_ADDRESS-SPIFLASH), fp);
                assert(len + ALTCONFIG_ADDRESS < RESET_ADDRESS);
                assert(len + ALTCONFIG_ADDRESS < RESET_ADDRESS);
                fclose(fp);
                fclose(fp);
                printf("Loading: %s\n", altbitfile);
                printf("Loading: %s\n", altbitfile);
 
 
                if (!flash->write(ALTCONFIG_ADDRESS, len, &fbuf[ALTCONFIG_ADDRESS-SPIFLASH], true)) {
                if ((flash)&&(!flash->write(ALTCONFIG_ADDRESS, len, &fbuf[ALTCONFIG_ADDRESS-SPIFLASH], true))) {
                        fprintf(stderr, "Could not write alternate bitfile\n");
                        fprintf(stderr, "Could not write alternate bitfile\n");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
        }
        }
 
 
        if (codef) try {
        if (codef) try {
                SECTION **secpp = NULL, *secp;
                SECTION **secpp = NULL, *secp;
 
 
                if(iself(codef)) {
                if(iself(codef)) {
                        // zip-readelf will help with both of these ...
                        // zip-readelf will help with both of these ...
                        elfread(codef, entry, secpp);
                        elfread(codef, entry, secpp);
                        assert(entry == RESET_ADDRESS);
                        assert(entry == RESET_ADDRESS);
                } else if (permit_raw_files) {
                } else if (permit_raw_files) {
                        secpp = rawsection(codef);
                        secpp = rawsection(codef);
                        entry = RESET_ADDRESS;
                        entry = RESET_ADDRESS;
                } else {
                } else {
                        fprintf(stderr, "ERR: %s is not in ELF format\n", codef);
                        fprintf(stderr, "ERR: %s is not in ELF format\n", codef);
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                printf("Loading: %s\n", codef);
                printf("Loading: %s\n", codef);
                // assert(secpp[1]->m_len = 0);
                // assert(secpp[1]->m_len = 0);
                for(int i=0; secpp[i]->m_len; i++) {
                for(int i=0; secpp[i]->m_len; i++) {
                        bool    valid = false;
                        bool    valid = false;
                        secp=  secpp[i];
                        secp=  secpp[i];
                        if ((secp->m_start >= RESET_ADDRESS)
                        if ((secp->m_start >= RESET_ADDRESS)
                                &&(secp->m_start+secp->m_len
                                &&(secp->m_start+secp->m_len
                                                <= SPIFLASH+FLASHWORDS))
                                                <= SPIFLASH+FLASHWORDS))
                                valid = true;
                                valid = true;
                        if ((secp->m_start >= RAMBASE)
                        if ((secp->m_start >= RAMBASE)
                                &&(secp->m_start+secp->m_len
                                &&(secp->m_start+secp->m_len
                                                <= RAMBASE+MEMWORDS))
                                                <= RAMBASE+MEMWORDS))
                                valid = true;
                                valid = true;
                        if (!valid) {
                        if (!valid) {
                                fprintf(stderr, "No such memory on board: 0x%08x - %08x\n",
                                fprintf(stderr, "No such memory on board: 0x%08x - %08x\n",
                                        secp->m_start, secp->m_start+secp->m_len);
                                        secp->m_start, secp->m_start+secp->m_len);
                                exit(EXIT_FAILURE);
                                exit(EXIT_FAILURE);
                        }
                        }
                }
                }
 
 
                unsigned        startaddr = RESET_ADDRESS, codelen = 0;
                unsigned        startaddr = RESET_ADDRESS, codelen = 0;
                for(int i=0; secpp[i]->m_len; i++) {
                for(int i=0; secpp[i]->m_len; i++) {
                        secp = secpp[i];
                        secp = secpp[i];
                        if ((secp->m_start >= RAMBASE)
                        if ((secp->m_start >= RAMBASE)
                                &&(secp->m_start+secp->m_len
                                &&(secp->m_start+secp->m_len
                                                <= RAMBASE+MEMWORDS)) {
                                                <= RAMBASE+MEMWORDS)) {
                                for(int i=0; (unsigned)i<secp->m_len; i++) {
                                for(int i=0; (unsigned)i<secp->m_len; i++) {
                                        if (secp->m_data[i] != 0) {
                                        if (secp->m_data[i] != 0) {
                                                fprintf(stderr, "ERR: Cannot set RAM upon bootup!\n");
                                                fprintf(stderr, "ERR: Cannot set RAM upon bootup!\n");
                                                fprintf(stderr, "(The bootloaders just not that smart ... yet)\n");
                                                fprintf(stderr, "(The bootloaders just not that smart ... yet)\n");
                                                fprintf(stderr, "Attempting to set %08x - %08x\n", secp->m_start, secp->m_start+secp->m_len-1);
                                                fprintf(stderr, "Attempting to set %08x - %08x\n", secp->m_start, secp->m_start+secp->m_len-1);
                                                fprintf(stderr, "%08x cannot be set to %08x\n", secp->m_start+i, secp->m_data[i]);
                                                fprintf(stderr, "%08x cannot be set to %08x\n", secp->m_start+i, secp->m_data[i]);
                                                exit(EXIT_FAILURE);
                                                exit(EXIT_FAILURE);
                                        }
                                        }
                                }
                                }
                        } else {
                        } else {
                                if (secp->m_start < startaddr) {
                                if (secp->m_start < startaddr) {
                                        codelen += (startaddr-secp->m_start);
                                        codelen += (startaddr-secp->m_start);
                                        startaddr = secp->m_start;
                                        startaddr = secp->m_start;
                                } if (secp->m_start+secp->m_len > startaddr+codelen) {
                                } if (secp->m_start+secp->m_len > startaddr+codelen) {
                                        codelen = secp->m_start+secp->m_len-startaddr;
                                        codelen = secp->m_start+secp->m_len-startaddr;
                                } memcpy(&fbuf[secp->m_start-SPIFLASH],
                                } memcpy(&fbuf[secp->m_start-SPIFLASH],
                                        secp->m_data,
                                        secp->m_data,
                                        secp->m_len*sizeof(FPGA::BUSW));
                                        secp->m_len*sizeof(FPGA::BUSW));
                        }
                        }
                }
                }
                if (!flash->write(startaddr, codelen, &fbuf[startaddr-SPIFLASH], true)) {
                if ((flash)&&(!flash->write(startaddr, codelen, &fbuf[startaddr-SPIFLASH], true))) {
                        fprintf(stderr, "ERR: Could not write program to flash\n");
                        fprintf(stderr, "ERR: Could not write program to flash\n");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                } else if (!flash)
                m_fpga->readio(R_VERSION); // Check for bus errors
                        printf("flash->write(%08x, %d, ... );\n", startaddr,
 
                                codelen);
 
                if (m_fpga) m_fpga->readio(R_VERSION); // Check for bus errors
 
 
                // Now ... how shall we start this CPU?
                // Now ... how shall we start this CPU?
                printf("The CPU should be fully loaded, you may now start\n");
                printf("The CPU should be fully loaded, you may now start\n");
                printf("it.  To start the CPU, either toggle power or type\n");
                printf("it.  To start the CPU, either toggle power or type\n");
                printf("%% wbregs fpgagen1 0 \n");
                printf("%% wbregs fpgagen1 0 \n");
                printf("%% wbregs fpgagen2 0x0300 \n");
                printf("%% wbregs fpgagen2 0x0300 \n");
                printf("%% wbregs fpgacmd  14 \n");
                printf("%% wbregs fpgacmd  14 \n");
        } catch(BUSERR a) {
        } catch(BUSERR a) {
                fprintf(stderr, "XULA-BUS error: %08x\n", a.addr);
                fprintf(stderr, "XULA-BUS error: %08x\n", a.addr);
                exit(-2);
                exit(-2);
        }
        }
 
 
        delete  m_fpga;
        if (m_fpga) delete      m_fpga;
 
 
        return EXIT_SUCCESS;
        return EXIT_SUCCESS;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.