OpenCores
URL https://opencores.org/ocsvn/wbscope/wbscope/trunk

Subversion Repositories wbscope

[/] [wbscope/] [trunk/] [sw/] [scopecls.cpp] - Diff between revs 12 and 13

Only display areas with differences | Details | Blame | View Log

Rev 12 Rev 13
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    scopecls.cpp
// Filename:    scopecls.cpp
//
//
// Project:     WBScope, a wishbone hosted scope
// Project:     WBScope, a wishbone hosted scope
//
//
// Purpose:     After rebuilding the same code over and over again for every
// Purpose:     After rebuilding the same code over and over again for every
//              "scope" I tried to interact with, I thought it would be simpler
//              "scope" I tried to interact with, I thought it would be simpler
//      to try to make a more generic interface, that other things could plug
//      to try to make a more generic interface, that other things could plug
//      into.  This is that more generic interface.
//      into.  This is that more generic interface.
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// You should have received a copy of the GNU General Public License along
// You should have received a copy of the GNU General Public License along
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// target there if the PDF file isn't present.)  If not, see
// target there if the PDF file isn't present.)  If not, see
// <http://www.gnu.org/licenses/> for a copy.
// <http://www.gnu.org/licenses/> for a copy.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <unistd.h>
#include <unistd.h>
#include <strings.h>
#include <strings.h>
#include <ctype.h>
#include <ctype.h>
#include <string.h>
#include <string.h>
#include <signal.h>
#include <signal.h>
#include <assert.h>
#include <assert.h>
#include <time.h>
#include <time.h>
 
 
#include "devbus.h"
#include "devbus.h"
#include "scopecls.h"
#include "scopecls.h"
 
 
bool    SCOPE::ready() {
bool    SCOPE::ready() {
        unsigned v;
        unsigned v;
        v = m_fpga->readio(m_addr);
        v = m_fpga->readio(m_addr);
        if (m_scoplen == 0) {
        if (m_scoplen == 0) {
                m_scoplen = (1<<((v>>20)&0x01f));
                m_scoplen = (1<<((v>>20)&0x01f));
 
                m_holdoff = (v & ((1<<20)-1));
        } v = (v>>28)&6;
        } v = (v>>28)&6;
        return (v==6);
        return (v==6);
}
}
 
 
void    SCOPE::decode_control(void) {
void    SCOPE::decode_control(void) {
        unsigned        v;
        unsigned        v;
 
 
        v = m_fpga->readio(m_addr);
        v = m_fpga->readio(m_addr);
 
        printf("\tCNTRL-REG:\t0x%08x\n", v);
        printf("\t31. RESET:\t%s\n", (v&0x80000000)?"Ongoing":"Complete");
        printf("\t31. RESET:\t%s\n", (v&0x80000000)?"Ongoing":"Complete");
        printf("\t30. STOPPED:\t%s\n", (v&0x40000000)?"Yes":"No");
        printf("\t30. STOPPED:\t%s\n", (v&0x40000000)?"Yes":"No");
        printf("\t29. TRIGGERED:\t%s\n", (v&0x20000000)?"Yes":"No");
        printf("\t29. TRIGGERED:\t%s\n", (v&0x20000000)?"Yes":"No");
        printf("\t28. PRIMED:\t%s\n", (v&0x10000000)?"Yes":"No");
        printf("\t28. PRIMED:\t%s\n", (v&0x10000000)?"Yes":"No");
        printf("\t27. MANUAL:\t%s\n", (v&0x08000000)?"Yes":"No");
        printf("\t27. MANUAL:\t%s\n", (v&0x08000000)?"Yes":"No");
        printf("\t26. DISABLED:\t%s\n", (v&0x04000000)?"Yes":"No");
        printf("\t26. DISABLED:\t%s\n", (v&0x04000000)?"Yes":"No");
        printf("\t25. ZERO:\t%s\n", (v&0x02000000)?"Yes":"No");
        printf("\t25. ZERO:\t%s\n", (v&0x02000000)?"Yes":"No");
        printf("\tSCOPLEN:\t%08x (%d)\n", m_scoplen, m_scoplen);
        printf("\tSCOPLEN:\t%08x (%d)\n", m_scoplen, m_scoplen);
        printf("\tHOLDOFF:\t%08x\n", (v&0x0fffff));
        printf("\tHOLDOFF:\t%08x\n", (v&0x0fffff));
        printf("\tTRIGLOC:\t%d\n", m_scoplen-(v&0x0fffff));
        printf("\tTRIGLOC:\t%d\n", m_scoplen-(v&0x0fffff));
}
}
 
 
int     SCOPE::scoplen(void) {
int     SCOPE::scoplen(void) {
        unsigned        v, lgln;
        unsigned        v, lgln;
 
 
        // If the scope length is zero, then the scope isn't present.
        // If the scope length is zero, then the scope isn't present.
        // We use a length of zero here to also represent whether or not we've
        // We use a length of zero here to also represent whether or not we've
        // looked up the length by reading from the scope.
        // looked up the length by reading from the scope.
        if (m_scoplen == 0) {
        if (m_scoplen == 0) {
                v = m_fpga->readio(m_addr);
                v = m_fpga->readio(m_addr);
 
                m_holdoff = (v & ((1<<20)-1));
 
 
                // Since the length of the scope memory is a configuration
                // Since the length of the scope memory is a configuration
                // parameter internal to the scope, we read it here to find
                // parameter internal to the scope, we read it here to find
                // out how the scope was configured.
                // out how the scope was configured.
                lgln = (v>>20) & 0x1f;
                lgln = (v>>20) & 0x1f;
 
 
                // If the length is still zero, then there is no scope installed
                // If the length is still zero, then there is no scope installed
                if (lgln != 0) {
                if (lgln != 0) {
                        // Otherwise, the scope length contained in the device
                        // Otherwise, the scope length contained in the device
                        // control register is the log base 2 of the actual
                        // control register is the log base 2 of the actual
                        // length of what's in the FPGA.  Here, we just convert
                        // length of what's in the FPGA.  Here, we just convert
                        // that to the actual length of the scope.
                        // that to the actual length of the scope.
                        m_scoplen = (1<<lgln);
                        m_scoplen = (1<<lgln);
                }
                }
        // else we already know the length of the scope, and don't need to 
        // else we already know the length of the scope, and don't need to
        // slow down to read that length from the device a second time.
        // slow down to read that length from the device a second time.
        } return m_scoplen;
        } return m_scoplen;
}
}
 
 
//
//
// rawread
// rawread
//
//
// Read the scope data from the scope.
// Read the scope data from the scope.
void    SCOPE::rawread(void) {
void    SCOPE::rawread(void) {
        // If we've already read the data from the scope, then we don't need
        // If we've already read the data from the scope, then we don't need
        // to read it a second time.
        // to read it a second time.
        if (m_data)
        if (m_data)
                return;
                return;
 
 
        // Let's get the length of the scope, and check that it is a valid
        // Let's get the length of the scope, and check that it is a valid
        // length
        // length
        if (scoplen() <= 4) {
        if (scoplen() <= 4) {
                printf("ERR: Scope has less than a minimum length.  Is it truly a scope?\n");
                printf("ERR: Scope has less than a minimum length.  Is it truly a scope?\n");
                return;
                return;
        }
        }
 
 
        // Now that we know the size of the scopes buffer, let's allocate a
        // Now that we know the size of the scopes buffer, let's allocate a
        // buffer to hold all this data
        // buffer to hold all this data
        m_data = new DEVBUS::BUSW[m_scoplen];
        m_data = new DEVBUS::BUSW[m_scoplen];
 
 
        // There are two means of reading from a DEVBUS interface: The first
        // There are two means of reading from a DEVBUS interface: The first
        // is a vector read, optimized so that the address and read command
        // is a vector read, optimized so that the address and read command
        // only needs to be sent once.  This is the optimal means.  However,
        // only needs to be sent once.  This is the optimal means.  However,
        // if the bus isn't (yet) trustworthy, it may be more reliable to access
        // if the bus isn't (yet) trustworthy, it may be more reliable to access
        // the port by reading one register at a time--hence the second method.
        // the port by reading one register at a time--hence the second method.
        // If the bus works, you'll want to use readz(): read scoplen values
        // If the bus works, you'll want to use readz(): read scoplen values
        // into the buffer, from the address WBSCOPEDATA, without incrementing
        // into the buffer, from the address WBSCOPEDATA, without incrementing
        // the address each time (hence the 'z' in readz--for zero increment).
        // the address each time (hence the 'z' in readz--for zero increment).
        if (m_vector_read) {
        if (m_vector_read) {
                m_fpga->readz(m_addr+4, m_scoplen, m_data);
                m_fpga->readz(m_addr+4, m_scoplen, m_data);
        } else {
        } else {
                for(unsigned int i=0; i<m_scoplen; i++)
                for(unsigned int i=0; i<m_scoplen; i++)
                        m_data[i] = m_fpga->readio(m_addr+4);
                        m_data[i] = m_fpga->readio(m_addr+4);
        }
        }
}
}
 
 
void    SCOPE::print(void) {
void    SCOPE::print(void) {
        DEVBUS::BUSW    addrv = 0;
        unsigned long addrv = 0, alen;
 
        int     offset;
 
 
        rawread();
        rawread();
 
 
 
        // Count how many values are in our (possibly compressed) buffer.
 
        // If it weren't for the compression, this'd be m_scoplen
 
        alen = getaddresslen();
 
 
 
        // If the holdoff is zero, the triggered item is the very
 
        // last one.
 
        offset = alen - m_holdoff -1;
 
 
        if(m_compressed) {
        if(m_compressed) {
                for(int i=0; i<(int)m_scoplen; i++) {
                for(int i=0; i<(int)m_scoplen; i++) {
                        if ((m_data[i]>>31)&1) {
                        if ((m_data[i]>>31)&1) {
                                addrv += (m_data[i]&0x7fffffff);
                                addrv += (m_data[i]&0x7fffffff) + 1;
                                printf(" ** (+0x%08x = %8d)\n",
                                printf(" ** (+0x%08x = %8d)\n",
                                        (m_data[i]&0x07fffffff),
                                        (m_data[i]&0x07fffffff),
                                        (m_data[i]&0x07fffffff));
                                        (m_data[i]&0x07fffffff));
                                continue;
                                continue;
                        }
                        }
                        printf("%10d %08x: ", addrv++, m_data[i]);
                        printf("%10ld %08x: ", addrv++, m_data[i]);
                        decode(m_data[i]);
                        decode(m_data[i]);
 
                        if ((int)addrv == offset)
 
                                printf(" <--- TRIGGER");
                        printf("\n");
                        printf("\n");
                }
                }
        } else {
        } else {
                for(int i=0; i<(int)m_scoplen; i++) {
                for(int i=0; i<(int)m_scoplen; i++) {
                        if ((i>0)&&(m_data[i] == m_data[i-1])&&(i<(int)(m_scoplen-1))) {
                        if ((i>0)&&(m_data[i] == m_data[i-1])&&(i<(int)(m_scoplen-1))) {
                                if ((i>2)&&(m_data[i] != m_data[i-2]))
                                if ((i>2)&&(m_data[i] != m_data[i-2]))
                                        printf(" **** ****\n");
                                        printf(" **** ****\n");
                                continue;
                                continue;
                        } printf("%9d %08x: ", i, m_data[i]);
                        } printf("%9d %08x: ", i, m_data[i]);
                        decode(m_data[i]);
                        decode(m_data[i]);
 
 
 
                        if (i == offset)
 
                                printf(" <--- TRIGGER");
                        printf("\n");
                        printf("\n");
                }
                }
        }
        }
}
}
 
 
void    SCOPE::write_trace_timescale(FILE *fp) {
void    SCOPE::write_trace_timescale(FILE *fp) {
        fprintf(fp, "$timescle 1ns $end\n\n");
        fprintf(fp, "$timescale 1ns $end\n\n");
 
}
 
 
 
void    SCOPE::write_trace_timezero(FILE *fp, int offset) {
 
        double          dwhen;
 
        long            when_ns;
 
 
 
        dwhen = 1.0/((double)m_clkfreq_hz) * (offset);
 
        when_ns = (unsigned long)(dwhen * 1e9);
 
        fprintf(fp, "$timezero %ld $end\n\n", -when_ns);
}
}
 
 
// $dumpoff and $dumpon
// $dumpoff and $dumpon
void    SCOPE::write_trace_header(FILE *fp) {
void    SCOPE::write_trace_header(FILE *fp, int offset) {
        time_t  now;
        time_t  now;
 
 
        time(&now);
        time(&now);
        fprintf(fp, "$version Generated by WBScope $end\n");
        fprintf(fp, "$version Generated by WBScope $end\n");
        fprintf(fp, "$date %s\n $end\n", ctime(&now));
        fprintf(fp, "$date %s\n $end\n", ctime(&now));
        write_trace_timescale(fp);
        write_trace_timescale(fp);
 
        if (offset != 0)
 
                write_trace_timezero(fp, offset);
 
 
        fprintf(fp, " $scope module WBSCOPE $end\n");
        fprintf(fp, " $scope module WBSCOPE $end\n");
        // Print out all of the various values
        // Print out all of the various values
 
        if (m_compressed) {
 
                fprintf(fp, "  $var wire %2d \'R _raw_data [%d:0] $end\n", 31,
 
                        30);
 
        } else {
        fprintf(fp, "  $var wire %2d \'C clk $end\n", 1);
        fprintf(fp, "  $var wire %2d \'C clk $end\n", 1);
        fprintf(fp, "  $var wire %2d \'R _raw_data [%d:0] $end\n",
                fprintf(fp, "  $var wire %2d \'R _raw_data [%d:0] $end\n", 32,
                        (m_compressed)?31:32,
                        31);
                        (m_compressed)?30:31);
        }
 
 
 
        // Add in a fake _trigger variable to the VCD file we are producing,
 
        // so we can see when our trigger took place (assuming the holdoff is
 
        // such that it is within the collect)
 
        fprintf(fp, "  $var wire %2d \'T _trigger $end\n", 1);
 
 
        for(unsigned i=0; i<m_traces.size(); i++) {
        for(unsigned i=0; i<m_traces.size(); i++) {
                TRACEINFO *info = m_traces[i];
                TRACEINFO *info = m_traces[i];
                fprintf(fp, "  $var wire %2d %s %s",
                fprintf(fp, "  $var wire %2d %s %s",
                        info->m_nbits, info->m_key, info->m_name);
                        info->m_nbits, info->m_key, info->m_name);
                if ((info->m_nbits > 0)&&(NULL == strchr(info->m_name, '[')))
                if ((info->m_nbits > 0)&&(NULL == strchr(info->m_name, '[')))
                        fprintf(fp, "[%d:0] $end\n", info->m_nbits-1);
                        fprintf(fp, "[%d:0] $end\n", info->m_nbits-1);
                else
                else
                        fprintf(fp, " $end\n");
                        fprintf(fp, " $end\n");
        }
        }
 
 
        fprintf(fp, " $upscope $end\n");
        fprintf(fp, " $upscope $end\n");
        fprintf(fp, "$enddefinitions $end\n");
        fprintf(fp, "$enddefinitions $end\n");
}
}
 
 
void    SCOPE::write_binary_trace(FILE *fp, const int nbits, unsigned val,
void    SCOPE::write_binary_trace(FILE *fp, const int nbits, unsigned val,
                const char *str) {
                const char *str) {
        if (nbits <= 1) {
        if (nbits <= 1) {
                fprintf(fp, "%d%s\n", val&1, str);
                fprintf(fp, "%d%s\n", val&1, str);
                return;
                return;
        }
        }
        if ((unsigned)nbits < sizeof(val)*8)
        if ((unsigned)nbits < sizeof(val)*8)
                val &= ~(-1<<nbits);
                val &= ~(-1<<nbits);
        fputs("b", fp);
        fputs("b", fp);
        for(int i=0; i<nbits; i++)
        for(int i=0; i<nbits; i++)
                fprintf(fp, "%d", (val>>(nbits-1-i))&1);
                fprintf(fp, "%d", (val>>(nbits-1-i))&1);
        fprintf(fp, " %s\n", str);
        fprintf(fp, " %s\n", str);
}
}
 
 
void    SCOPE::write_binary_trace(FILE *fp, TRACEINFO *info, unsigned value) {
void    SCOPE::write_binary_trace(FILE *fp, TRACEINFO *info, unsigned value) {
        write_binary_trace(fp, info->m_nbits, (value>>info->m_nshift),
        write_binary_trace(fp, info->m_nbits, (value>>info->m_nshift),
                info->m_key);
                info->m_key);
}
}
 
 
void    SCOPE::register_trace(const char *name,
void    SCOPE::register_trace(const char *name,
                unsigned nbits, unsigned shift) {
                unsigned nbits, unsigned shift) {
        TRACEINFO       *info = new TRACEINFO;
        TRACEINFO       *info = new TRACEINFO;
        int     nkey = m_traces.size();
        int     nkey = m_traces.size();
 
 
        info->m_name   = name;
        info->m_name   = name;
        info->m_nbits  = nbits;
        info->m_nbits  = nbits;
        info->m_nshift = shift;
        info->m_nshift = shift;
 
 
        info->m_key[0] = 'v';
        info->m_key[0] = 'v';
        if (nkey < 26)
        if (nkey < 26)
                info->m_key[1] = 'a'+nkey;
                info->m_key[1] = 'a'+nkey;
        else if (nkey < 26+26)
        else if (nkey < 26+26)
                info->m_key[1] = 'A'+nkey-26;
                info->m_key[1] = 'A'+nkey-26;
        else // if (nkey < 26+26+10)    // Should never happen
        else // if (nkey < 26+26+10)    // Should never happen
                info->m_key[1] = '0'+nkey-26-26;
                info->m_key[1] = '0'+nkey-26-26;
        info->m_key[2] = '\0';
        info->m_key[2] = '\0';
        info->m_key[3] = '\0';
        info->m_key[3] = '\0';
 
 
        m_traces.push_back(info);
        m_traces.push_back(info);
}
}
 
 
void    SCOPE::define_traces(void) {}
/*
 
 * getaddresslen(void)
void    SCOPE::writevcd(const char *trace_file_name) {
 *
        FILE    *fp = fopen(trace_file_name, "w");
 * Returns the number of items in the scope's buffer.  For the uncompressed
 
 * scope, this is just the size of hte scope.  For the compressed scope ... this
 
 * is a touch longer.
 
 */
 
unsigned        SCOPE::getaddresslen(void) {
 
        // Find the offset to the trigger
 
        if (m_compressed) {
 
                // First, find the overall length
 
                //
 
                // If we are compressed, then *every* item increments
 
                // the address length
 
                unsigned alen = m_scoplen;
 
                //
 
                // Some items increment it more.
 
                for(int i=0; i<(int)m_scoplen; i++) {
 
                        if ((m_data[i]&0x80000000)&&(i!=0))
 
                                alen += m_data[i] & 0x7fffffff;
 
                }
 
 
        if (fp == NULL) {
                return alen;
                fprintf(stderr, "ERR: Cannot open %s for writing!\n", trace_file_name);
        } return m_scoplen;
                fprintf(stderr, "ERR: Trace file not written\n");
 
                return;
 
        }
        }
 
 
 
/*
 
 * define_traces
 
 *
 
 * This is a user stub.  User programs should define this function.
 
 */
 
void    SCOPE::define_traces(void) {}
 
 
 
void    SCOPE::writevcd(FILE *fp) {
 
        unsigned        alen;
 
        int     offset = 0;
 
 
        if (!m_data)
        if (!m_data)
                rawread();
                rawread();
 
 
        write_trace_header(fp);
        // If the traces haven't yet been defined, then define them now.
 
        if (m_traces.size()==0)
 
                define_traces();
 
 
 
        // Count how many values are in our (possibly compressed) buffer.
 
        // If it weren't for the compression, this'd be m_scoplen
 
        alen = getaddresslen();
 
 
 
        // If the holdoff is zero, the triggered item is the very
 
        // last one.
 
        offset = alen - m_holdoff -1;
 
 
 
        // Write the file header.
 
        write_trace_header(fp, offset);
 
 
 
        // And split into two paths--one for compressed scopes (wbscopc), and
 
        // the other for the more normal scopes (wbscope).
 
        if(m_compressed) {
 
                // With compressed scopes, you need to track the address
 
                // relative to the beginning.
 
                unsigned long   addrv = 0;
 
                unsigned long   now_ns;
 
                double          dnow;
 
                bool            last_trigger = true;
 
 
 
                // Loop over each data word read from the scope
 
                for(int i=0; i<(int)m_scoplen; i++) {
 
                        // If the high bit is set, the address jumps by more
 
                        // than an increment
 
                        if ((m_data[i]>>31)&1) {
 
                                if (i!=0) {
 
                                        if (last_trigger) {
 
                                                // If the trigger was valid
 
                                                // on the last clock, then we
 
                                                // need to include the change
 
                                                // to drop it.
 
                                                //
 
                                                dnow   = 1.0/((double)m_clkfreq_hz) * (addrv+1);
 
                                                now_ns = (unsigned long)(dnow * 1e9);
 
                                                fprintf(fp, "#%ld\n", now_ns);
 
                                                fprintf(fp, "0\'T\n");
 
                                        }
 
                                        // But ... with nothing to write out.
 
                                        addrv += (m_data[i]&0x7fffffff) + 1;
 
                                } continue;
 
                        }
 
 
 
                        // Produce a line identifying the time associated with
 
                        // this piece of data.
 
                        //
 
                        // dnow is the current time represented as a double
 
                        dnow = 1.0/((double)m_clkfreq_hz) * addrv;
 
                        // Convert to nanoseconds, and to integers.
 
                        now_ns = (unsigned long)(dnow * 1e9);
 
 
 
                        fprintf(fp, "#%ld\n", now_ns);
 
 
 
                        if ((int)(addrv-alen) == offset) {
 
                                fprintf(fp, "1\'T\n");
 
                                last_trigger = true;
 
                        } else if (last_trigger)
 
                                fprintf(fp, "0\'T\n");
 
 
 
                        // For compressed data, only the lower 31 bits are
 
                        // valid.  Write those bits to the VCD file as a raw
 
                        // value.
 
                        write_binary_trace(fp, 31, m_data[i], "\'R\n");
 
 
 
                        // Finally, walk through all of the user defined traces,
 
                        // writing each to the VCD file.
 
                        for(unsigned k=0; k<m_traces.size(); k++) {
 
                                TRACEINFO *info = m_traces[k];
 
                                write_binary_trace(fp, info, m_data[i]);
 
                        }
 
 
 
                        addrv++;
 
                }
 
        } else {
 
                //
 
                // Uncompressed scope.
 
                //
 
                unsigned now_ns;
 
                double  dnow;
 
 
 
                // We assume a clock signal, and set it to one and zero.
 
                // We also assume everything changes on the positive edge of
 
                // that clock within here.
 
 
 
                // Loop over all data words
        for(int i=0; i<(int)m_scoplen; i++) {
        for(int i=0; i<(int)m_scoplen; i++) {
                // Positive edge of the clock (everything is assumed to
                        // Positive edge of the clock (everything is assumed to
                // be on the positive edge)
                // be on the positive edge)
                fprintf(fp, "#%d\n", m_scoplen * 10);
 
 
 
 
                        //
 
                        // Clock goes high
 
                        //
 
 
 
                        // Write the current (relative) time of this data word
 
                        dnow = 1.0/((double)m_clkfreq_hz) * i;
 
                        now_ns = (unsigned)(dnow * 1e9 + 0.5);
 
                        fprintf(fp, "#%d\n", now_ns);
 
 
                fprintf(fp, "1\'C\n");
                fprintf(fp, "1\'C\n");
                write_binary_trace(fp, (m_compressed)?31:32,
                        write_binary_trace(fp, (m_compressed)?31:32,
                        m_data[i], "\'R\n");
                                m_data[i], "\'R\n");
 
 
 
                        if (i == offset)
 
                                fprintf(fp, "1\'T\n");
 
                        else // if (addrv == offset+1)
 
                                fprintf(fp, "0\'T\n");
 
 
                for(unsigned k=0; k<m_traces.size(); k++) {
                for(unsigned k=0; k<m_traces.size(); k++) {
                        TRACEINFO *info = m_traces[k];
                                TRACEINFO *info = m_traces[k];
                        write_binary_trace(fp, info, m_data[i]);
                                write_binary_trace(fp, info, m_data[i]);
                }
                        }
 
 
 
                        //
                // Clock goes to zero
                // Clock goes to zero
                fprintf(fp, "#%d\n", m_scoplen * 10 + 5);
                        //
 
 
 
                        // Add half a clock period to our time
 
                        dnow += 1.0/((double)m_clkfreq_hz)/2.;
 
                        now_ns = (unsigned)(dnow * 1e9 + 0.5);
 
                        fprintf(fp, "#%d\n", now_ns);
 
 
 
                        // Now finally write the clock as zero.
                fprintf(fp, "0\'C\n");
                fprintf(fp, "0\'C\n");
        }
                }
}
}
 
}
 
 
 
/*
 
 * writevcd
 
 *
 
 * Main user entry point for VCD file creation.  This just opens a file of the
 
 * given name, and writes the VCD info to it.  If the file cannot be opened,
 
 * an error is written to the standard error stream, and the routine returns.
 
 */
 
void    SCOPE::writevcd(const char *trace_file_name) {
 
        FILE    *fp = fopen(trace_file_name, "w");
 
 
 
        if (fp == NULL) {
 
                fprintf(stderr, "ERR: Cannot open %s for writing!\n", trace_file_name);
 
                fprintf(stderr, "ERR: Trace file not written\n");
 
                return;
 
        }
 
 
 
        writevcd(fp);
 
 
 
        fclose(fp);
 
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.