OpenCores
URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositories zipcpu

[/] [zipcpu/] [trunk/] [rtl/] [core/] [pipefetch.v] - Diff between revs 11 and 18

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 11 Rev 18
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    pipefetch.v
// Filename:    pipefetch.v
//
//
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
//
//
// Purpose:     Keeping our CPU fed with instructions, at one per clock and
// Purpose:     Keeping our CPU fed with instructions, at one per clock and
//              with no stalls, can be quite a chore.  Worse, the Wishbone
//              with no stalls, can be quite a chore.  Worse, the Wishbone
//              takes a couple of cycles just to read one instruction from
//              takes a couple of cycles just to read one instruction from
//              the bus.  However, if we use pipeline accesses to the Wishbone
//              the bus.  However, if we use pipeline accesses to the Wishbone
//              bus, then we can read more and faster.  Further, if we cache
//              bus, then we can read more and faster.  Further, if we cache
//              these results so that we have them before we need them, then
//              these results so that we have them before we need them, then
//              we have a chance of keeping our CPU from stalling.  Those are
//              we have a chance of keeping our CPU from stalling.  Those are
//              the purposes of this instruction fetch module: 1) Pipeline
//              the purposes of this instruction fetch module: 1) Pipeline
//              wishbone accesses, and 2) an instruction cache.
//              wishbone accesses, and 2) an instruction cache.
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Tecnology, LLC
//              Gisselquist Tecnology, LLC
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
module  pipefetch(i_clk, i_rst, i_new_pc, i_stall_n, i_pc,
module  pipefetch(i_clk, i_rst, i_new_pc, i_clear_cache, i_stall_n, i_pc,
                        o_i, o_pc, o_v,
                        o_i, o_pc, o_v,
                o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
                o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
                        i_wb_ack, i_wb_stall, i_wb_data, i_wb_request);
                        i_wb_ack, i_wb_stall, i_wb_data, i_wb_request);
        parameter       RESET_ADDRESS=32'h0010_0000,
        parameter       RESET_ADDRESS=32'h0010_0000,
                        LGCACHELEN = 6, CACHELEN=(1<<LGCACHELEN),
                        LGCACHELEN = 6, CACHELEN=(1<<LGCACHELEN),
                        BUSW=32;
                        BUSW=32;
        input                           i_clk, i_rst, i_new_pc, i_stall_n;
        input                           i_clk, i_rst, i_new_pc,
 
                                        i_clear_cache, i_stall_n;
        input           [(BUSW-1):0]     i_pc;
        input           [(BUSW-1):0]     i_pc;
        output  reg     [(BUSW-1):0]     o_i;
        output  reg     [(BUSW-1):0]     o_i;
        output  reg     [(BUSW-1):0]     o_pc;
        output  reg     [(BUSW-1):0]     o_pc;
        output  wire                    o_v;
        output  wire                    o_v;
        //
        //
        output  reg             o_wb_cyc, o_wb_stb;
        output  reg             o_wb_cyc, o_wb_stb;
        output  wire            o_wb_we;
        output  wire            o_wb_we;
        output  reg     [(BUSW-1):0]     o_wb_addr;
        output  reg     [(BUSW-1):0]     o_wb_addr;
        output  wire    [(BUSW-1):0]     o_wb_data;
        output  wire    [(BUSW-1):0]     o_wb_data;
        //
        //
        input                   i_wb_ack, i_wb_stall;
        input                   i_wb_ack, i_wb_stall;
        input           [(BUSW-1):0]     i_wb_data;
        input           [(BUSW-1):0]     i_wb_data;
        //
        //
        // Is the (data) memory unit also requesting access to the bus?
        // Is the (data) memory unit also requesting access to the bus?
        input                           i_wb_request;
        input                           i_wb_request;
 
 
        // Fixed bus outputs: we read from the bus only, never write.
        // Fixed bus outputs: we read from the bus only, never write.
        // Thus the output data is ... irrelevant and don't care.  We set it
        // Thus the output data is ... irrelevant and don't care.  We set it
        // to zero just to set it to something.
        // to zero just to set it to something.
        assign  o_wb_we = 1'b0;
        assign  o_wb_we = 1'b0;
        assign  o_wb_data = 0;
        assign  o_wb_data = 0;
 
 
        reg     [(BUSW-1):0]             r_cache_base;
        reg     [(BUSW-1):0]             r_cache_base;
        reg     [(LGCACHELEN):0] r_nvalid, r_acks_waiting;
        reg     [(LGCACHELEN):0] r_nvalid, r_acks_waiting;
        reg     [(BUSW-1):0]             cache[0:(CACHELEN-1)];
        reg     [(BUSW-1):0]             cache[0:(CACHELEN-1)];
 
 
        reg     [(LGCACHELEN-1):0]       r_cache_offset;
        reg     [(LGCACHELEN-1):0]       r_cache_offset;
 
 
        reg                     r_addr_set;
        reg                     r_addr_set;
        reg     [(BUSW-1):0]     r_addr;
        reg     [(BUSW-1):0]     r_addr;
 
 
        wire    [(BUSW-1):0]     bus_nvalid;
        wire    [(BUSW-1):0]     bus_nvalid;
        assign  bus_nvalid = { {(BUSW-LGCACHELEN-1){1'b0}}, r_nvalid };
        assign  bus_nvalid = { {(BUSW-LGCACHELEN-1){1'b0}}, r_nvalid };
 
 
        // What are some of the conditions for which we need to restart the
        // What are some of the conditions for which we need to restart the
        // cache?
        // cache?
        wire    w_pc_out_of_bounds;
        wire    w_pc_out_of_bounds;
        assign  w_pc_out_of_bounds = ((i_new_pc)&&((r_nvalid == 0)
        assign  w_pc_out_of_bounds = ((i_new_pc)&&((r_nvalid == 0)
                                        ||(i_pc < r_cache_base)
                                        ||(i_pc < r_cache_base)
                                        ||(i_pc >= r_cache_base + CACHELEN)));
                                        ||(i_pc >= r_cache_base + CACHELEN)));
        wire    w_ran_off_end_of_cache;
        wire    w_ran_off_end_of_cache;
        assign  w_ran_off_end_of_cache =((r_addr_set)&&((r_addr < r_cache_base)
        assign  w_ran_off_end_of_cache =((r_addr_set)&&((r_addr < r_cache_base)
                                        ||(r_addr >= r_cache_base + CACHELEN)));
                                        ||(r_addr >= r_cache_base + CACHELEN)));
        wire    w_running_out_of_cache;
        wire    w_running_out_of_cache;
        assign  w_running_out_of_cache = (r_addr_set)
        assign  w_running_out_of_cache = (r_addr_set)
                        &&(r_addr >= r_cache_base + (1<<(LGCACHELEN-2))
                        &&(r_addr >= r_cache_base + (1<<(LGCACHELEN-2))
                                                + (1<<(LGCACHELEN-1)));
                                                + (1<<(LGCACHELEN-1)));
        initial r_nvalid = 0;
        initial r_nvalid = 0;
        initial r_cache_base = RESET_ADDRESS;
        initial r_cache_base = RESET_ADDRESS;
        always @(posedge i_clk)
        always @(posedge i_clk)
        begin
        begin
                if (i_rst)
                if ((i_rst)||(i_clear_cache))
                begin
                begin
                        o_wb_cyc <= 1'b0;
                        o_wb_cyc <= 1'b0;
 
                        o_wb_stb <= 1'b0;
                        // r_cache_base <= RESET_ADDRESS;
                        // r_cache_base <= RESET_ADDRESS;
                // end else if ((~o_wb_cyc)&&(i_new_pc)&&(r_nvalid != 0)
                // end else if ((~o_wb_cyc)&&(i_new_pc)&&(r_nvalid != 0)
                //              &&(i_pc >= r_cache_base)
                //              &&(i_pc >= r_cache_base)
                //              &&(i_pc < r_cache_base + bus_nvalid))
                //              &&(i_pc < r_cache_base + bus_nvalid))
                // begin
                // begin
                        // The new instruction is in our cache, do nothing
                        // The new instruction is in our cache, do nothing
                        // with the bus here.
                        // with the bus here.
                end else if ((o_wb_cyc)&&(w_pc_out_of_bounds))
                end else if ((o_wb_cyc)&&(w_pc_out_of_bounds))
                begin
                begin
                        // We need to abandon our bus action to start over in
                        // We need to abandon our bus action to start over in
                        // a new region, setting up a new cache.  This may
                        // a new region, setting up a new cache.  This may
                        // happen mid cycle while waiting for a result.  By
                        // happen mid cycle while waiting for a result.  By
                        // dropping o_wb_cyc, we state that we are no longer
                        // dropping o_wb_cyc, we state that we are no longer
                        // interested in that result--whatever it might be.
                        // interested in that result--whatever it might be.
                        o_wb_cyc <= 1'b0;
                        o_wb_cyc <= 1'b0;
                        o_wb_stb <= 1'b0;
                        o_wb_stb <= 1'b0;
                end else if ((~o_wb_cyc)&&(~r_nvalid[LGCACHELEN])&&(~i_wb_request)&&(r_addr_set))
                end else if ((~o_wb_cyc)&&(~r_nvalid[LGCACHELEN])&&(~i_wb_request)&&(r_addr_set))
                begin
                begin
                        // Restart a bus cycle that was interrupted when the
                        // Restart a bus cycle that was interrupted when the
                        // data section wanted access to our bus.
                        // data section wanted access to our bus.
                        o_wb_cyc <= 1'b1;
                        o_wb_cyc <= 1'b1;
                        o_wb_stb <= 1'b1;
                        o_wb_stb <= 1'b1;
                        // o_wb_addr <= r_cache_base + bus_nvalid;
                        // o_wb_addr <= r_cache_base + bus_nvalid;
                end else if ((~o_wb_cyc)&&(
                end else if ((~o_wb_cyc)&&(
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                begin
                begin
                        // Start a bus transaction
                        // Start a bus transaction
                        o_wb_cyc <= 1'b1;
                        o_wb_cyc <= 1'b1;
                        o_wb_stb <= 1'b1;
                        o_wb_stb <= 1'b1;
                        // o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
                        // o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
                        // r_nvalid <= 0;
                        // r_nvalid <= 0;
                        // r_cache_base <= (i_new_pc) ? i_pc : r_addr;
                        // r_cache_base <= (i_new_pc) ? i_pc : r_addr;
                        // r_cache_offset <= 0;
                        // r_cache_offset <= 0;
                end else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                end else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                begin
                begin
                        // If we're using the last quarter of the cache, then
                        // If we're using the last quarter of the cache, then
                        // let's start a bus transaction to extend the cache.
                        // let's start a bus transaction to extend the cache.
                        o_wb_cyc <= 1'b1;
                        o_wb_cyc <= 1'b1;
                        o_wb_stb <= 1'b1;
                        o_wb_stb <= 1'b1;
                        // o_wb_addr <= r_cache_base + (1<<(LGCACHELEN));
                        // o_wb_addr <= r_cache_base + (1<<(LGCACHELEN));
                        // r_nvalid <= r_nvalid - (1<<(LGCACHELEN-2));
                        // r_nvalid <= r_nvalid - (1<<(LGCACHELEN-2));
                        // r_cache_base <= r_cache_base + (1<<(LGCACHELEN-2));
                        // r_cache_base <= r_cache_base + (1<<(LGCACHELEN-2));
                        // r_cache_offset <= r_cache_offset + (1<<(LGCACHELEN-2));
                        // r_cache_offset <= r_cache_offset + (1<<(LGCACHELEN-2));
                end else if (o_wb_cyc)
                end else if (o_wb_cyc)
                begin
                begin
                        // This handles everything ... but the case where
                        // This handles everything ... but the case where
                        // while reading we need to extend our cache.
                        // while reading we need to extend our cache.
                        if ((o_wb_stb)&&(~i_wb_stall))
                        if ((o_wb_stb)&&(~i_wb_stall))
                        begin
                        begin
                                // o_wb_addr <= o_wb_addr + 1;
                                // o_wb_addr <= o_wb_addr + 1;
                                if ((o_wb_addr - r_cache_base >= CACHELEN-1)
                                if ((o_wb_addr - r_cache_base >= CACHELEN-1)
                                        ||(i_wb_request))
                                        ||(i_wb_request))
                                        o_wb_stb <= 1'b0;
                                        o_wb_stb <= 1'b0;
                        end
                        end
 
 
                        if (i_wb_ack)
                        if (i_wb_ack)
                        begin
                        begin
                                // r_nvalid <= r_nvalid + 1;
                                // r_nvalid <= r_nvalid + 1;
                                if ((r_acks_waiting == 1)&&(~o_wb_stb))
                                if ((r_acks_waiting == 1)&&(~o_wb_stb))
                                        o_wb_cyc <= 1'b0;
                                        o_wb_cyc <= 1'b0;
                        end
                        end
                end
                end
        end
        end
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst) // Required, so we can reload memoy and then reset
                if ((i_rst)||(i_clear_cache)) // Required, so we can reload memoy and then reset
                        r_nvalid <= 0;
                        r_nvalid <= 0;
                else if ((~o_wb_cyc)&&(
                else if ((~o_wb_cyc)&&(
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                        r_nvalid <= 0;
                        r_nvalid <= 0;
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                        r_nvalid <= r_nvalid - (1<<(LGCACHELEN-2));
                        r_nvalid <= r_nvalid - (1<<(LGCACHELEN-2));
                else if ((o_wb_cyc)&&(i_wb_ack))
                else if ((o_wb_cyc)&&(i_wb_ack))
                        r_nvalid <= r_nvalid+1;
                        r_nvalid <= r_nvalid+1;
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((~o_wb_cyc)&&(
                if (i_clear_cache)
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                        r_cache_base <= i_pc;
 
                else if ((~o_wb_cyc)&&(
 
                                (w_pc_out_of_bounds)
 
                                ||(w_ran_off_end_of_cache)))
                        r_cache_base <= (i_new_pc) ? i_pc : r_addr;
                        r_cache_base <= (i_new_pc) ? i_pc : r_addr;
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                        r_cache_base <= r_cache_base + (1<<(LGCACHELEN-2));
                        r_cache_base <= r_cache_base + (1<<(LGCACHELEN-2));
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((~o_wb_cyc)&&(
                if (i_clear_cache)
                                (w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
                        r_cache_offset <= 0;
 
                else if ((~o_wb_cyc)&&(
 
                                (w_pc_out_of_bounds)
 
                                ||(w_ran_off_end_of_cache)))
                        r_cache_offset <= 0;
                        r_cache_offset <= 0;
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                else if ((~o_wb_cyc)&&(w_running_out_of_cache))
                        r_cache_offset <= r_cache_offset + (1<<(LGCACHELEN-2));
                        r_cache_offset <= r_cache_offset + (1<<(LGCACHELEN-2));
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((~o_wb_cyc)&&((w_pc_out_of_bounds)
                if (i_clear_cache)
 
                        o_wb_addr <= i_pc;
 
                else if ((~o_wb_cyc)&&((w_pc_out_of_bounds)
                                        ||(w_ran_off_end_of_cache)))
                                        ||(w_ran_off_end_of_cache)))
                        o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
                        o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
                else if ((o_wb_cyc)&&(o_wb_stb)&&(~i_wb_stall))
                else if ((o_wb_cyc)&&(o_wb_stb)&&(~i_wb_stall))
                        o_wb_addr <= o_wb_addr + 1;
                        o_wb_addr <= o_wb_addr + 1;
 
 
        initial r_acks_waiting = 0;
        initial r_acks_waiting = 0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (~o_wb_cyc)
                if (~o_wb_cyc)
                        r_acks_waiting <= 0;
                        r_acks_waiting <= 0;
                else if ((o_wb_stb)&&(~i_wb_stall)&&(~i_wb_ack))
                else if ((o_wb_stb)&&(~i_wb_stall)&&(~i_wb_ack))
                        r_acks_waiting <= r_acks_waiting + ((i_wb_ack)? 0:1);
                        r_acks_waiting <= r_acks_waiting + ((i_wb_ack)? 0:1);
                else if ((i_wb_ack)&&((~o_wb_stb)||(i_wb_stall)))
                else if ((i_wb_ack)&&((~o_wb_stb)||(i_wb_stall)))
                                r_acks_waiting <= r_acks_waiting - 1;
                                r_acks_waiting <= r_acks_waiting - 1;
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((o_wb_cyc)&&(i_wb_ack))
                if ((o_wb_cyc)&&(i_wb_ack))
                        cache[r_nvalid[(LGCACHELEN-1):0]+r_cache_offset]
                        cache[r_nvalid[(LGCACHELEN-1):0]+r_cache_offset]
                                        <= i_wb_data;
                                        <= i_wb_data;
 
 
        initial r_addr_set = 1'b0;
        initial r_addr_set = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if ((i_rst)||(i_clear_cache))
                        r_addr_set <= 1'b0;
                        r_addr_set <= 1'b0;
                else if (i_new_pc)
                else if (i_new_pc)
                        r_addr_set <= 1'b1;
                        r_addr_set <= 1'b1;
 
 
        // Now, read from the cache
        // Now, read from the cache
        wire    w_cv;   // Cache valid, address is in the cache
        wire    w_cv;   // Cache valid, address is in the cache
        reg     r_cv;
        reg     r_cv;
        assign  w_cv = ((r_nvalid != 0)&&(r_addr>=r_cache_base)
        assign  w_cv = ((r_nvalid != 0)&&(r_addr>=r_cache_base)
                        &&(r_addr-r_cache_base < bus_nvalid));
                        &&(r_addr-r_cache_base < bus_nvalid));
        always @(posedge i_clk)
        always @(posedge i_clk)
                r_cv <= (~i_new_pc)&&(w_cv);
                r_cv <= (~i_new_pc)&&(w_cv);
        assign  o_v = (r_cv)&&(~i_new_pc);
        assign  o_v = (r_cv)&&(~i_new_pc);
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_new_pc)
                if (i_new_pc)
                        r_addr <= i_pc;
                        r_addr <= i_pc;
                else if ((i_stall_n)&&(w_cv))
                else if ((i_stall_n)&&(w_cv))
                        r_addr <= r_addr + 1;
                        r_addr <= r_addr + 1;
 
 
        wire    [(LGCACHELEN-1):0]       c_rdaddr, c_cache_base;
        wire    [(LGCACHELEN-1):0]       c_rdaddr, c_cache_base;
        assign  c_cache_base   = r_cache_base[(LGCACHELEN-1):0];
        assign  c_cache_base   = r_cache_base[(LGCACHELEN-1):0];
        assign  c_rdaddr = r_addr[(LGCACHELEN-1):0]-c_cache_base+r_cache_offset;
        assign  c_rdaddr = r_addr[(LGCACHELEN-1):0]-c_cache_base+r_cache_offset;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_stall_n)
                if (i_stall_n)
                        o_i <= cache[c_rdaddr];
                        o_i <= cache[c_rdaddr];
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_stall_n)
                if (i_stall_n)
                        o_pc <= r_addr;
                        o_pc <= r_addr;
 
 
 
 
endmodule
endmodule
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.