OpenCores
URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositories zipcpu

[/] [zipcpu/] [trunk/] [rtl/] [core/] [zipcpu.v] - Diff between revs 201 and 205

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 201 Rev 205
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    zipcpu.v
// Filename:    zipcpu.v
//
//
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
//
//
// Purpose:     This is the top level module holding the core of the Zip CPU
// Purpose:     This is the top level module holding the core of the Zip CPU
//              together.  The Zip CPU is designed to be as simple as possible.
//              together.  The Zip CPU is designed to be as simple as possible.
//      (actual implementation aside ...)  The instruction set is about as
//      (actual implementation aside ...)  The instruction set is about as
//      RISC as you can get, with only 26 instruction types currently supported.
//      RISC as you can get, with only 26 instruction types currently supported.
//      (There are still 8-instruction Op-Codes reserved for floating point,
//      (There are still 8-instruction Op-Codes reserved for floating point,
//      and 5 which can be used for transactions not requiring registers.)
//      and 5 which can be used for transactions not requiring registers.)
//      Please see the accompanying spec.pdf file for a description of these
//      Please see the accompanying spec.pdf file for a description of these
//      instructions.
//      instructions.
//
//
//      All instructions are 32-bits wide.  All bus accesses, both address and
//      All instructions are 32-bits wide.  All bus accesses, both address and
//      data, are 32-bits over a wishbone bus.
//      data, are 32-bits over a wishbone bus.
//
//
//      The Zip CPU is fully pipelined with the following pipeline stages:
//      The Zip CPU is fully pipelined with the following pipeline stages:
//
//
//              1. Prefetch, returns the instruction from memory.
//              1. Prefetch, returns the instruction from memory.
//
//
//              2. Instruction Decode
//              2. Instruction Decode
//
//
//              3. Read Operands
//              3. Read Operands
//
//
//              4. Apply Instruction
//              4. Apply Instruction
//
//
//              4. Write-back Results
//              4. Write-back Results
//
//
//      Further information about the inner workings of this CPU, such as
//      Further information about the inner workings of this CPU, such as
//      what causes pipeline stalls, may be found in the spec.pdf file.  (The
//      what causes pipeline stalls, may be found in the spec.pdf file.  (The
//      documentation within this file had become out of date and out of sync
//      documentation within this file had become out of date and out of sync
//      with the spec.pdf, so look to the spec.pdf for accurate and up to date
//      with the spec.pdf, so look to the spec.pdf for accurate and up to date
//      information.)
//      information.)
//
//
//
//
//      In general, the pipelining is controlled by three pieces of logic
//      In general, the pipelining is controlled by three pieces of logic
//      per stage: _ce, _stall, and _valid.  _valid means that the stage
//      per stage: _ce, _stall, and _valid.  _valid means that the stage
//      holds a valid instruction.  _ce means that the instruction from the
//      holds a valid instruction.  _ce means that the instruction from the
//      previous stage is to move into this one, and _stall means that the
//      previous stage is to move into this one, and _stall means that the
//      instruction from the previous stage may not move into this one.
//      instruction from the previous stage may not move into this one.
//      The difference between these control signals allows individual stages
//      The difference between these control signals allows individual stages
//      to propagate instructions independently.  In general, the logic works
//      to propagate instructions independently.  In general, the logic works
//      as:
//      as:
//
//
//
//
//      assign  (n)_ce = (n-1)_valid && (~(n)_stall)
//      assign  (n)_ce = (n-1)_valid && (!(n)_stall)
//
//
//
//
//      always @(posedge i_clk)
//      always @(posedge i_clk)
//              if ((i_rst)||(clear_pipeline))
//              if ((i_rst)||(clear_pipeline))
//                      (n)_valid = 0
//                      (n)_valid = 0
//              else if (n)_ce
//              else if (n)_ce
//                      (n)_valid = 1
//                      (n)_valid = 1
//              else if (n+1)_ce
//              else if (n+1)_ce
//                      (n)_valid = 0
//                      (n)_valid = 0
//
//
//      assign (n)_stall = (  (n-1)_valid && ( pipeline hazard detection )  )
//      assign (n)_stall = (  (n-1)_valid && ( pipeline hazard detection )  )
//                      || (  (n)_valid && (n+1)_stall );
//                      || (  (n)_valid && (n+1)_stall );
//
//
//      and ...
//      and ...
//
//
//      always @(posedge i_clk)
//      always @(posedge i_clk)
//              if (n)_ce
//              if (n)_ce
//                      (n)_variable = ... whatever logic for this stage
//                      (n)_variable = ... whatever logic for this stage
//
//
//      Note that a stage can stall even if no instruction is loaded into
//      Note that a stage can stall even if no instruction is loaded into
//      it.
//      it.
//
//
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// You should have received a copy of the GNU General Public License along
// You should have received a copy of the GNU General Public License along
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
// target there if the PDF file isn't present.)  If not, see
// target there if the PDF file isn't present.)  If not, see
// <http://www.gnu.org/licenses/> for a copy.
// <http://www.gnu.org/licenses/> for a copy.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
//
//
`define CPU_CC_REG      4'he
`define CPU_CC_REG      4'he
`define CPU_PC_REG      4'hf
`define CPU_PC_REG      4'hf
`define CPU_CLRCACHE_BIT 14     // Set to clear the I-cache, automatically clears
`define CPU_CLRCACHE_BIT 14     // Set to clear the I-cache, automatically clears
`define CPU_PHASE_BIT   13      // Set if we are executing the latter half of a CIS
`define CPU_PHASE_BIT   13      // Set if we are executing the latter half of a CIS
`define CPU_FPUERR_BIT  12      // Floating point error flag, set on error
`define CPU_FPUERR_BIT  12      // Floating point error flag, set on error
`define CPU_DIVERR_BIT  11      // Divide error flag, set on divide by zero
`define CPU_DIVERR_BIT  11      // Divide error flag, set on divide by zero
`define CPU_BUSERR_BIT  10      // Bus error flag, set on error
`define CPU_BUSERR_BIT  10      // Bus error flag, set on error
`define CPU_TRAP_BIT    9       // User TRAP has taken place
`define CPU_TRAP_BIT    9       // User TRAP has taken place
`define CPU_ILL_BIT     8       // Illegal instruction
`define CPU_ILL_BIT     8       // Illegal instruction
`define CPU_BREAK_BIT   7
`define CPU_BREAK_BIT   7
`define CPU_STEP_BIT    6       // Will step one (or two CIS) instructions
`define CPU_STEP_BIT    6       // Will step one (or two CIS) instructions
`define CPU_GIE_BIT     5
`define CPU_GIE_BIT     5
`define CPU_SLEEP_BIT   4
`define CPU_SLEEP_BIT   4
// Compile time defines
// Compile time defines
//
//
`include "cpudefs.v"
`include "cpudefs.v"
//
//
//
//
module  zipcpu(i_clk, i_rst, i_interrupt,
module  zipcpu(i_clk, i_rst, i_interrupt,
                // Debug interface
                // Debug interface
                i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
                i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
                        o_dbg_stall, o_dbg_reg, o_dbg_cc,
                        o_dbg_stall, o_dbg_reg, o_dbg_cc,
                        o_break,
                        o_break,
                // CPU interface to the wishbone bus
                // CPU interface to the wishbone bus
                o_wb_gbl_cyc, o_wb_gbl_stb,
                o_wb_gbl_cyc, o_wb_gbl_stb,
                        o_wb_lcl_cyc, o_wb_lcl_stb,
                        o_wb_lcl_cyc, o_wb_lcl_stb,
                        o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
                        o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
                        i_wb_ack, i_wb_stall, i_wb_data,
                        i_wb_ack, i_wb_stall, i_wb_data,
                        i_wb_err,
                        i_wb_err,
                // Accounting/CPU usage interface
                // Accounting/CPU usage interface
                o_op_stall, o_pf_stall, o_i_count
                o_op_stall, o_pf_stall, o_i_count
`ifdef  DEBUG_SCOPE
`ifdef  DEBUG_SCOPE
                , o_debug
                , o_debug
`endif
`endif
                );
                );
        parameter [31:0] RESET_ADDRESS=32'h0100000;
        parameter [31:0] RESET_ADDRESS=32'h0100000;
        parameter       ADDRESS_WIDTH=30,
        parameter       ADDRESS_WIDTH=30,
                        LGICACHE=8;
                        LGICACHE=8;
`ifdef  OPT_MULTIPLY
`ifdef  OPT_MULTIPLY
        parameter       IMPLEMENT_MPY = `OPT_MULTIPLY;
        parameter       IMPLEMENT_MPY = `OPT_MULTIPLY;
`else
`else
        parameter       IMPLEMENT_MPY = 0;
        parameter       IMPLEMENT_MPY = 0;
`endif
`endif
`ifdef  OPT_DIVIDE
`ifdef  OPT_DIVIDE
        parameter       IMPLEMENT_DIVIDE = 1;
        parameter       IMPLEMENT_DIVIDE = 1;
`else
`else
        parameter       IMPLEMENT_DIVIDE = 0;
        parameter       IMPLEMENT_DIVIDE = 0;
`endif
`endif
`ifdef  OPT_IMPLEMENT_FPU
`ifdef  OPT_IMPLEMENT_FPU
        parameter       IMPLEMENT_FPU = 1,
        parameter       IMPLEMENT_FPU = 1,
`else
`else
        parameter       IMPLEMENT_FPU = 0,
        parameter       IMPLEMENT_FPU = 0,
`endif
`endif
                        IMPLEMENT_LOCK=1;
                        IMPLEMENT_LOCK=1;
`ifdef  OPT_EARLY_BRANCHING
`ifdef  OPT_EARLY_BRANCHING
        parameter       EARLY_BRANCHING = 1;
        parameter       EARLY_BRANCHING = 1;
`else
`else
        parameter       EARLY_BRANCHING = 0;
        parameter       EARLY_BRANCHING = 0;
`endif
`endif
        parameter       WITH_LOCAL_BUS = 1;
        parameter       WITH_LOCAL_BUS = 1;
        localparam      AW=ADDRESS_WIDTH;
        localparam      AW=ADDRESS_WIDTH;
        localparam      [(AW-1):0]       RESET_BUS_ADDRESS = RESET_ADDRESS[(AW+1):2];
        localparam      [(AW-1):0]       RESET_BUS_ADDRESS = RESET_ADDRESS[(AW+1):2];
        input                   i_clk, i_rst, i_interrupt;
        input                   i_clk, i_rst, i_interrupt;
        // Debug interface -- inputs
        // Debug interface -- inputs
        input                   i_halt, i_clear_pf_cache;
        input                   i_halt, i_clear_pf_cache;
        input           [4:0]    i_dbg_reg;
        input           [4:0]    i_dbg_reg;
        input                   i_dbg_we;
        input                   i_dbg_we;
        input           [31:0]   i_dbg_data;
        input           [31:0]   i_dbg_data;
        // Debug interface -- outputs
        // Debug interface -- outputs
        output  wire            o_dbg_stall;
        output  wire            o_dbg_stall;
        output  reg     [31:0]   o_dbg_reg;
        output  reg     [31:0]   o_dbg_reg;
        output  reg     [3:0]    o_dbg_cc;
        output  reg     [3:0]    o_dbg_cc;
        output  wire            o_break;
        output  wire            o_break;
        // Wishbone interface -- outputs
        // Wishbone interface -- outputs
        output  wire            o_wb_gbl_cyc, o_wb_gbl_stb;
        output  wire            o_wb_gbl_cyc, o_wb_gbl_stb;
        output  wire            o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
        output  wire            o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
        output  wire    [(AW-1):0]       o_wb_addr;
        output  wire    [(AW-1):0]       o_wb_addr;
        output  wire    [31:0]   o_wb_data;
        output  wire    [31:0]   o_wb_data;
        output  wire    [3:0]    o_wb_sel;
        output  wire    [3:0]    o_wb_sel;
        // Wishbone interface -- inputs
        // Wishbone interface -- inputs
        input                   i_wb_ack, i_wb_stall;
        input                   i_wb_ack, i_wb_stall;
        input           [31:0]   i_wb_data;
        input           [31:0]   i_wb_data;
        input                   i_wb_err;
        input                   i_wb_err;
        // Accounting outputs ... to help us count stalls and usage
        // Accounting outputs ... to help us count stalls and usage
        output  wire            o_op_stall;
        output  wire            o_op_stall;
        output  wire            o_pf_stall;
        output  wire            o_pf_stall;
        output  wire            o_i_count;
        output  wire            o_i_count;
        //
        //
`ifdef  DEBUG_SCOPE
`ifdef  DEBUG_SCOPE
        output  reg     [31:0]   o_debug;
        output  reg     [31:0]   o_debug;
`endif
`endif
 
 
 
 
        // Registers
        // Registers
        //
        //
        //      The distributed RAM style comment is necessary on the
        //      The distributed RAM style comment is necessary on the
        // SPARTAN6 with XST to prevent XST from oversimplifying the register
        // SPARTAN6 with XST to prevent XST from oversimplifying the register
        // set and in the process ruining everything else.  It basically
        // set and in the process ruining everything else.  It basically
        // optimizes logic away, to where it no longer works.  The logic
        // optimizes logic away, to where it no longer works.  The logic
        // as described herein will work, this just makes sure XST implements
        // as described herein will work, this just makes sure XST implements
        // that logic.
        // that logic.
        //
        //
        (* ram_style = "distributed" *)
        (* ram_style = "distributed" *)
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        reg     [31:0]   regset [0:15];
        reg     [31:0]   regset [0:15];
`else
`else
        reg     [31:0]   regset [0:31];
        reg     [31:0]   regset [0:31];
`endif
`endif
 
 
        // Condition codes
        // Condition codes
        // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
        // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
        reg     [3:0]    flags, iflags;
        reg     [3:0]    flags, iflags;
        wire    [14:0]   w_uflags, w_iflags;
        wire    [14:0]   w_uflags, w_iflags;
        reg             break_en, step, sleep, r_halted;
        reg             break_en, step, sleep, r_halted;
        wire            break_pending, trap, gie, ubreak;
        wire            break_pending, trap, gie, ubreak;
        wire            w_clear_icache, ill_err_u;
        wire            w_clear_icache, ill_err_u;
        reg             ill_err_i;
        reg             ill_err_i;
        reg             ibus_err_flag;
        reg             ibus_err_flag;
        wire            ubus_err_flag;
        wire            ubus_err_flag;
        wire            idiv_err_flag, udiv_err_flag;
        wire            idiv_err_flag, udiv_err_flag;
        wire            ifpu_err_flag, ufpu_err_flag;
        wire            ifpu_err_flag, ufpu_err_flag;
        wire            ihalt_phase, uhalt_phase;
        wire            ihalt_phase, uhalt_phase;
 
 
        // The master chip enable
        // The master chip enable
        wire            master_ce;
        wire            master_ce;
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #1 :: Prefetch
        //      PIPELINE STAGE #1 :: Prefetch
        //              Variable declarations
        //              Variable declarations
        //
        //
        reg     [(AW+1):0]       pf_pc;
        reg     [(AW+1):0]       pf_pc;
        reg     new_pc;
        reg     new_pc;
        wire    clear_pipeline;
        wire    clear_pipeline;
        assign  clear_pipeline = new_pc;
        assign  clear_pipeline = new_pc;
 
 
        wire            dcd_stalled;
        wire            dcd_stalled;
        wire            pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
        wire            pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
        wire    [(AW-1):0]       pf_addr;
        wire    [(AW-1):0]       pf_addr;
        wire    [31:0]           pf_data;
        wire    [31:0]           pf_data;
        wire    [31:0]           pf_instruction;
        wire    [31:0]           pf_instruction;
        wire    [(AW-1):0]       pf_instruction_pc;
        wire    [(AW-1):0]       pf_instruction_pc;
        wire    pf_valid, pf_gie, pf_illegal;
        wire    pf_valid, pf_gie, pf_illegal;
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #2 :: Instruction Decode
        //      PIPELINE STAGE #2 :: Instruction Decode
        //              Variable declarations
        //              Variable declarations
        //
        //
        //
        //
        reg             op_valid /* verilator public_flat */,
        reg             op_valid /* verilator public_flat */,
                        op_valid_mem, op_valid_alu;
                        op_valid_mem, op_valid_alu;
        reg             op_valid_div, op_valid_fpu;
        reg             op_valid_div, op_valid_fpu;
        wire            op_stall, dcd_ce, dcd_phase;
        wire            op_stall, dcd_ce, dcd_phase;
        wire    [3:0]    dcd_opn;
        wire    [3:0]    dcd_opn;
        wire    [4:0]    dcd_A, dcd_B, dcd_R;
        wire    [4:0]    dcd_A, dcd_B, dcd_R;
        wire            dcd_Acc, dcd_Bcc, dcd_Apc, dcd_Bpc, dcd_Rcc, dcd_Rpc;
        wire            dcd_Acc, dcd_Bcc, dcd_Apc, dcd_Bpc, dcd_Rcc, dcd_Rpc;
        wire    [3:0]    dcd_F;
        wire    [3:0]    dcd_F;
        wire            dcd_wR, dcd_rA, dcd_rB,
        wire            dcd_wR, dcd_rA, dcd_rB,
                                dcd_ALU, dcd_M, dcd_DIV, dcd_FP,
                                dcd_ALU, dcd_M, dcd_DIV, dcd_FP,
                                dcd_wF, dcd_gie, dcd_break, dcd_lock,
                                dcd_wF, dcd_gie, dcd_break, dcd_lock,
                                dcd_pipe, dcd_ljmp;
                                dcd_pipe, dcd_ljmp;
        reg             r_dcd_valid;
 
        wire            dcd_valid;
        wire            dcd_valid;
        wire    [AW:0]   dcd_pc /* verilator public_flat */;
        wire    [AW:0]   dcd_pc /* verilator public_flat */;
        wire    [31:0]   dcd_I;
        wire    [31:0]   dcd_I;
        wire            dcd_zI; // true if dcd_I == 0
        wire            dcd_zI; // true if dcd_I == 0
        wire    dcd_A_stall, dcd_B_stall, dcd_F_stall;
        wire    dcd_A_stall, dcd_B_stall, dcd_F_stall;
 
 
        wire    dcd_illegal;
        wire    dcd_illegal;
        wire                    dcd_early_branch;
        wire                    dcd_early_branch;
        wire    [(AW-1):0]       dcd_branch_pc;
        wire    [(AW-1):0]       dcd_branch_pc;
 
 
        wire            dcd_sim;
        wire            dcd_sim;
        wire    [22:0]   dcd_sim_immv;
        wire    [22:0]   dcd_sim_immv;
 
 
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #3 :: Read Operands
        //      PIPELINE STAGE #3 :: Read Operands
        //              Variable declarations
        //              Variable declarations
        //
        //
        //
        //
        //
        //
        // Now, let's read our operands
        // Now, let's read our operands
        reg     [4:0]    alu_reg;
        reg     [4:0]    alu_reg;
        wire    [3:0]    op_opn;
        wire    [3:0]    op_opn;
        wire    [4:0]    op_R;
        wire    [4:0]    op_R;
        reg     [31:0]   r_op_Av, r_op_Bv;
        reg     [31:0]   r_op_Av, r_op_Bv;
        reg     [(AW-1):0]       op_pc;
        reg     [(AW-1):0]       op_pc;
        wire    [31:0]   w_op_Av, w_op_Bv;
        wire    [31:0]   w_op_Av, w_op_Bv;
        wire    [31:0]   op_A_nowait, op_B_nowait, op_Av, op_Bv;
        wire    [31:0]   op_A_nowait, op_B_nowait, op_Av, op_Bv;
        reg             op_wR, op_wF;
        reg             op_wR, op_wF;
        wire            op_gie, op_Rcc;
        wire            op_gie, op_Rcc;
        wire    [14:0]   op_Fl;
        wire    [14:0]   op_Fl;
        reg     [6:0]    r_op_F;
        reg     [6:0]    r_op_F;
        wire    [7:0]    op_F;
        wire    [7:0]    op_F;
        wire            op_ce, op_phase, op_pipe, op_change_data_ce;
        wire            op_ce, op_phase, op_pipe, op_change_data_ce;
        // Some pipeline control wires
        // Some pipeline control wires
`ifdef  OPT_PIPELINED
 
        reg     op_A_alu, op_A_mem;
 
        reg     op_B_alu, op_B_mem;
 
`endif
 
        reg     op_illegal;
        reg     op_illegal;
        wire    op_break;
        wire    op_break;
        wire    op_lock;
        wire    op_lock;
 
 
`ifdef  VERILATOR
`ifdef  VERILATOR
        reg             op_sim          /* verilator public_flat */;
        reg             op_sim          /* verilator public_flat */;
        reg     [22:0]   op_sim_immv     /* verilator public_flat */;
        reg     [22:0]   op_sim_immv     /* verilator public_flat */;
`endif
`endif
 
 
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #4 :: ALU / Memory
        //      PIPELINE STAGE #4 :: ALU / Memory
        //              Variable declarations
        //              Variable declarations
        //
        //
        //
        //
        wire    [(AW-1):0]       alu_pc;
        wire    [(AW-1):0]       alu_pc;
        reg             r_alu_pc_valid, mem_pc_valid;
        reg             r_alu_pc_valid, mem_pc_valid;
        wire            alu_pc_valid;
        wire            alu_pc_valid;
        wire            alu_phase;
        wire            alu_phase;
        wire            alu_ce /* verilator public_flat */, alu_stall;
        wire            alu_ce /* verilator public_flat */, alu_stall;
        wire    [31:0]   alu_result;
        wire    [31:0]   alu_result;
        wire    [3:0]    alu_flags;
        wire    [3:0]    alu_flags;
        wire            alu_valid, alu_busy;
        wire            alu_valid, alu_busy;
        wire            set_cond;
        wire            set_cond;
        reg             alu_wR, alu_wF;
        reg             alu_wR, alu_wF;
        wire            alu_gie, alu_illegal;
        wire            alu_gie, alu_illegal;
 
 
 
 
 
 
        wire    mem_ce, mem_stalled;
        wire    mem_ce, mem_stalled;
        wire    mem_pipe_stalled;
        wire    mem_pipe_stalled;
        wire    mem_valid, mem_ack, mem_stall, mem_err, bus_err,
        wire    mem_valid, mem_ack, mem_stall, mem_err, bus_err,
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
        wire    [4:0]            mem_wreg;
        wire    [4:0]            mem_wreg;
 
 
        wire                    mem_busy, mem_rdbusy;
        wire                    mem_busy, mem_rdbusy;
        wire    [(AW-1):0]       mem_addr;
        wire    [(AW-1):0]       mem_addr;
        wire    [31:0]           mem_data, mem_result;
        wire    [31:0]           mem_data, mem_result;
        wire    [3:0]            mem_sel;
        wire    [3:0]            mem_sel;
 
 
        wire    div_ce, div_error, div_busy, div_valid;
        wire    div_ce, div_error, div_busy, div_valid;
        wire    [31:0]   div_result;
        wire    [31:0]   div_result;
        wire    [3:0]    div_flags;
        wire    [3:0]    div_flags;
 
 
        assign  div_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_div)
        assign  div_ce = (master_ce)&&(!clear_pipeline)&&(op_valid_div)
                                &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
                                &&(!mem_rdbusy)&&(!div_busy)&&(!fpu_busy)
                                &&(set_cond);
                                &&(set_cond);
 
 
        wire    fpu_ce, fpu_error, fpu_busy, fpu_valid;
        wire    fpu_ce, fpu_error, fpu_busy, fpu_valid;
        wire    [31:0]   fpu_result;
        wire    [31:0]   fpu_result;
        wire    [3:0]    fpu_flags;
        wire    [3:0]    fpu_flags;
 
 
        assign  fpu_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_fpu)
        assign  fpu_ce = (master_ce)&&(!clear_pipeline)&&(op_valid_fpu)
                                &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
                                &&(!mem_rdbusy)&&(!div_busy)&&(!fpu_busy)
                                &&(set_cond);
                                &&(set_cond);
 
 
        wire    adf_ce_unconditional;
        wire    adf_ce_unconditional;
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #5 :: Write-back
        //      PIPELINE STAGE #5 :: Write-back
        //              Variable declarations
        //              Variable declarations
        //
        //
        wire            wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc,
        wire            wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc,
                        wr_write_scc, wr_write_ucc;
                        wr_write_scc, wr_write_ucc;
        wire    [4:0]    wr_reg_id;
        wire    [4:0]    wr_reg_id;
        wire    [31:0]   wr_gpreg_vl, wr_spreg_vl;
        wire    [31:0]   wr_gpreg_vl, wr_spreg_vl;
        wire    w_switch_to_interrupt, w_release_from_interrupt;
        wire    w_switch_to_interrupt, w_release_from_interrupt;
        reg     [(AW+1):0]       ipc;
        reg     [(AW+1):0]       ipc;
        wire    [(AW+1):0]       upc;
        wire    [(AW+1):0]       upc;
 
 
 
 
 
 
        //
        //
        //      MASTER: clock enable.
        //      MASTER: clock enable.
        //
        //
        assign  master_ce = ((~i_halt)||(alu_phase))&&(~o_break)&&(~sleep);
        assign  master_ce = ((!i_halt)||(alu_phase))&&(!o_break)&&(!sleep);
 
 
 
 
        //
        //
        //      PIPELINE STAGE #1 :: Prefetch
        //      PIPELINE STAGE #1 :: Prefetch
        //              Calculate stall conditions
        //              Calculate stall conditions
        //
        //
        //      These are calculated externally, within the prefetch module.
        //      These are calculated externally, within the prefetch module.
        //
        //
 
 
        //
        //
        //      PIPELINE STAGE #2 :: Instruction Decode
        //      PIPELINE STAGE #2 :: Instruction Decode
        //              Calculate stall conditions
        //              Calculate stall conditions
        assign          dcd_ce = ((~dcd_valid)||(~dcd_stalled))&&(~clear_pipeline);
 
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        assign          dcd_stalled = (dcd_valid)&&(op_stall);
        assign          dcd_stalled = (dcd_valid)&&(op_stall);
`else
`else // Not pipelined -- either double or single fetch
        // If not pipelined, there will be no op_valid_ anything, and the
        assign          dcd_stalled = (dcd_valid)&&(op_stall);
        // op_stall will be false, dcd_X_stall will be false, thus we can simply
 
        // do a ...
 
        assign          dcd_stalled = 1'b0;
 
`endif
`endif
        //
        //
        //      PIPELINE STAGE #3 :: Read Operands
        //      PIPELINE STAGE #3 :: Read Operands
        //              Calculate stall conditions
        //              Calculate stall conditions
        wire    prelock_stall;
        wire    prelock_stall;
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        reg     cc_invalid_for_dcd;
        reg     cc_invalid_for_dcd;
        always @(posedge i_clk)
        always @(posedge i_clk)
                cc_invalid_for_dcd <= (wr_flags_ce)
                cc_invalid_for_dcd <= (wr_flags_ce)
                        ||(wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_CC_REG)
                        ||(wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_CC_REG)
                        ||(op_valid)&&((op_wF)||((op_wR)&&(op_R[3:0] == `CPU_CC_REG)))
                        ||(op_valid)&&((op_wF)||((op_wR)&&(op_R[3:0] == `CPU_CC_REG)))
                        ||((alu_wF)||((alu_wR)&&(alu_reg[3:0] == `CPU_CC_REG)))
                        ||((alu_wF)||((alu_wR)&&(alu_reg[3:0] == `CPU_CC_REG)))
                        ||(mem_busy)||(div_busy)||(fpu_busy);
                        ||(mem_busy)||(div_busy)||(fpu_busy);
 
 
        assign  op_stall = (op_valid)&&( // Only stall if we're loaded w/validins
        assign  op_stall = (op_valid)&&( // Only stall if we're loaded w/validins
                        // Stall if we're stopped, and not allowed to execute
                        // Stall if we're stopped, and not allowed to execute
                        // an instruction
                        // an instruction
                        // (~master_ce)         // Already captured in alu_stall
                        // (!master_ce)         // Already captured in alu_stall
                        //
                        //
                        // Stall if going into the ALU and the ALU is stalled
                        // Stall if going into the ALU and the ALU is stalled
                        //      i.e. if the memory is busy, or we are single
                        //      i.e. if the memory is busy, or we are single
                        //      stepping.  This also includes our stalls for
                        //      stepping.  This also includes our stalls for
                        //      op_break and op_lock, so we don't need to
                        //      op_break and op_lock, so we don't need to
                        //      include those as well here.
                        //      include those as well here.
                        // This also includes whether or not the divide or
                        // This also includes whether or not the divide or
                        // floating point units are busy.
                        // floating point units are busy.
                        (alu_stall)
                        (alu_stall)
                        ||(((op_valid_div)||(op_valid_fpu))
                        ||(((op_valid_div)||(op_valid_fpu))
                                &&(!adf_ce_unconditional))
                                &&(!adf_ce_unconditional))
                        //
                        //
                        // Stall if we are going into memory with an operation
                        // Stall if we are going into memory with an operation
                        //      that cannot be pipelined, and the memory is
                        //      that cannot be pipelined, and the memory is
                        //      already busy
                        //      already busy
                        ||(mem_stalled) // &&(op_valid_mem) part of mem_stalled
                        ||(mem_stalled) // &&(op_valid_mem) part of mem_stalled
                        ||(op_Rcc)
                        ||(op_Rcc)
                        )
                        )
                        ||(dcd_valid)&&(
                        ||(dcd_valid)&&(
                                // Stall if we need to wait for an operand A
                                // Stall if we need to wait for an operand A
                                // to be ready to read
                                // to be ready to read
                                (dcd_A_stall)
                                (dcd_A_stall)
                                // Likewise for B, also includes logic
                                // Likewise for B, also includes logic
                                // regarding immediate offset (register must
                                // regarding immediate offset (register must
                                // be in register file if we need to add to
                                // be in register file if we need to add to
                                // an immediate)
                                // an immediate)
                                ||(dcd_B_stall)
                                ||(dcd_B_stall)
                                // Or if we need to wait on flags to work on the
                                // Or if we need to wait on flags to work on the
                                // CC register
                                // CC register
                                ||(dcd_F_stall)
                                ||(dcd_F_stall)
                        );
                        );
        assign  op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
        assign  op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
 
 
 
`else
 
        assign  op_stall = (alu_busy)||(div_busy)||(fpu_busy)||(wr_reg_ce)
 
                        ||(mem_busy)||(op_valid)||(!master_ce)||(wr_flags_ce);
 
        assign  op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
 
`endif
 
 
        // BUT ... op_ce is too complex for many of the data operations.  So
        // BUT ... op_ce is too complex for many of the data operations.  So
        // let's make their circuit enable code simpler.  In particular, if
        // let's make their circuit enable code simpler.  In particular, if
        // op_ doesn't need to be preserved, we can change it all we want
        // op_ doesn't need to be preserved, we can change it all we want
        // ... right?  The clear_pipeline code, for example, really only needs
        // ... right?  The clear_pipeline code, for example, really only needs
        // to determine whether op_valid is true.
        // to determine whether op_valid is true.
        assign  op_change_data_ce = (~op_stall);
        assign  op_change_data_ce = (!op_stall);
`else
 
        assign  op_stall = (op_valid)&&(~master_ce);
 
        assign  op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(~clear_pipeline);
 
        assign  op_change_data_ce = 1'b1;
 
`endif
 
 
 
        //
        //
        //      PIPELINE STAGE #4 :: ALU / Memory
        //      PIPELINE STAGE #4 :: ALU / Memory
        //              Calculate stall conditions
        //              Calculate stall conditions
        //
        //
        // 1. Basic stall is if the previous stage is valid and the next is
        // 1. Basic stall is if the previous stage is valid and the next is
        //      busy.
        //      busy.
        // 2. Also stall if the prior stage is valid and the master clock enable
        // 2. Also stall if the prior stage is valid and the master clock enable
        //      is de-selected
        //      is de-selected
        // 3. Stall if someone on the other end is writing the CC register,
        // 3. Stall if someone on the other end is writing the CC register,
        //      since we don't know if it'll put us to sleep or not.
        //      since we don't know if it'll put us to sleep or not.
        // 4. Last case: Stall if we would otherwise move a break instruction
        // 4. Last case: Stall if we would otherwise move a break instruction
        //      through the ALU.  Break instructions are not allowed through
        //      through the ALU.  Break instructions are not allowed through
        //      the ALU.
        //      the ALU.
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        assign  alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(op_valid_alu)) //Case 1&2
        assign  alu_stall = (((!master_ce)||(mem_rdbusy)||(alu_busy))&&(op_valid_alu)) //Case 1&2
                        ||(prelock_stall)
                        ||(prelock_stall)
                        ||((op_valid)&&(op_break))
                        ||((op_valid)&&(op_break))
                        ||(wr_reg_ce)&&(wr_write_cc)
                        ||(wr_reg_ce)&&(wr_write_cc)
                        ||(div_busy)||(fpu_busy);
                        ||(div_busy)||(fpu_busy);
        assign  alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall)
        assign  alu_ce = (master_ce)&&(op_valid_alu)&&(!alu_stall)
                                &&(~clear_pipeline);
                                &&(!clear_pipeline);
`else
`else
        assign  alu_stall = (op_valid_alu)&&((~master_ce)||(op_break));
        assign  alu_stall = (op_valid_alu)&&((!master_ce)||(op_break));
        assign  alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall)&&(~clear_pipeline);
        assign  alu_ce = (master_ce)&&(op_valid_alu)&&(!alu_stall)&&(!clear_pipeline);
`endif
`endif
        //
        //
 
 
        //
        //
        // Note: if you change the conditions for mem_ce, you must also change
        // Note: if you change the conditions for mem_ce, you must also change
        // alu_pc_valid.
        // alu_pc_valid.
        //
        //
`ifdef  OPT_PIPELINED
        assign  mem_ce = (master_ce)&&(op_valid_mem)&&(!mem_stalled)
        assign  mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled)
                        &&(!clear_pipeline);
                        &&(~clear_pipeline);
 
`else
 
        // If we aren't pipelined, then no one will be changing what's in the
 
        // pipeline (i.e. clear_pipeline), while our only instruction goes
 
        // through the ... pipeline.
 
        //
 
        // However, in hind sight this logic didn't work.  What happens when
 
        // something gets in the pipeline and then (due to interrupt or some
 
        // such) needs to be voided?  Thus we avoid simplification and keep
 
        // what worked here.
 
        assign  mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled)
 
                        &&(~clear_pipeline);
 
`endif
 
`ifdef  OPT_PIPELINED_BUS_ACCESS
`ifdef  OPT_PIPELINED_BUS_ACCESS
        assign  mem_stalled = (~master_ce)||(alu_busy)||((op_valid_mem)&&(
        assign  mem_stalled = (!master_ce)||(alu_busy)||((op_valid_mem)&&(
                                (mem_pipe_stalled)
                                (mem_pipe_stalled)
                                ||(prelock_stall)
                                ||(prelock_stall)
                                ||((~op_pipe)&&(mem_busy))
                                ||((!op_pipe)&&(mem_busy))
                                ||(div_busy)
                                ||(div_busy)
                                ||(fpu_busy)
                                ||(fpu_busy)
                                // Stall waiting for flags to be valid
                                // Stall waiting for flags to be valid
                                // Or waiting for a write to the PC register
                                // Or waiting for a write to the PC register
                                // Or CC register, since that can change the
                                // Or CC register, since that can change the
                                //  PC as well
                                //  PC as well
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
                                        &&((wr_write_pc)||(wr_write_cc)))));
                                        &&((wr_write_pc)||(wr_write_cc)))));
`else
`else
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        assign  mem_stalled = (mem_busy)||((op_valid_mem)&&(
        assign  mem_stalled = (mem_busy)||((op_valid_mem)&&(
                                (~master_ce)
                                (!master_ce)
                                // Stall waiting for flags to be valid
                                // Stall waiting for flags to be valid
                                // Or waiting for a write to the PC register
                                // Or waiting for a write to the PC register
                                // Or CC register, since that can change the
                                // Or CC register, since that can change the
                                //  PC as well
                                //  PC as well
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
`else
`else
        assign  mem_stalled = (op_valid_mem)&&(~master_ce);
        assign  mem_stalled = (op_valid_mem)&&(!master_ce);
`endif
`endif
`endif
`endif
 
 
        // ALU, DIV, or FPU CE ... equivalent to the OR of all three of these
        // ALU, DIV, or FPU CE ... equivalent to the OR of all three of these
        assign  adf_ce_unconditional = (master_ce)&&(~clear_pipeline)&&(op_valid)
        assign  adf_ce_unconditional = (master_ce)&&(!clear_pipeline)&&(op_valid)
                                &&(~op_valid_mem)&&(~mem_rdbusy)
                                &&(!op_valid_mem)&&(!mem_rdbusy)
                                &&((~op_valid_alu)||(~alu_stall))&&(~op_break)
                                &&((!op_valid_alu)||(!alu_stall))&&(!op_break)
                                &&(~div_busy)&&(~fpu_busy)&&(~clear_pipeline);
                                &&(!div_busy)&&(!fpu_busy)&&(!clear_pipeline);
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #1 :: Prefetch
        //      PIPELINE STAGE #1 :: Prefetch
        //
        //
        //
        //
`ifdef  OPT_SINGLE_FETCH
        wire    pf_stalled;
        wire            pf_ce;
        assign  pf_stalled = (dcd_stalled)||(dcd_phase);
 
 
 
        wire    pf_new_pc;
 
        assign  pf_new_pc = (new_pc)||((dcd_early_branch)&&(!clear_pipeline));
 
 
        assign          pf_ce = (~pf_valid)&&(~dcd_valid)&&(~op_valid)&&(~alu_busy)&&(~mem_busy)&&(~alu_pc_valid)&&(~mem_pc_valid);
        wire    [(AW-1):0]       pf_request_address;
 
        assign  pf_request_address = ((dcd_early_branch)&&(!clear_pipeline))
 
                                ? dcd_branch_pc:pf_pc[(AW+1):2];
 
        assign  pf_gie = gie;
 
`ifdef  OPT_SINGLE_FETCH
        prefetch        #(ADDRESS_WIDTH)
        prefetch        #(ADDRESS_WIDTH)
                        pf(i_clk, (i_rst), (pf_ce), (~dcd_stalled), pf_pc[(AW+1):2], gie,
                        pf(i_clk, (i_rst), pf_new_pc, w_clear_icache,
                                pf_instruction, pf_instruction_pc, pf_gie,
                                (!pf_stalled),
 
                                pf_request_address,
 
                                pf_instruction, pf_instruction_pc,
                                        pf_valid, pf_illegal,
                                        pf_valid, pf_illegal,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                pf_ack, pf_stall, pf_err, i_wb_data);
                                pf_ack, pf_stall, pf_err, i_wb_data);
 
 
        initial r_dcd_valid = 1'b0;
`else
        always @(posedge i_clk)
`ifdef  OPT_DOUBLE_FETCH
                if (clear_pipeline)
 
                        r_dcd_valid <= 1'b0;
 
                else if (dcd_ce)
 
                        r_dcd_valid <= (pf_valid)||(pf_illegal);
 
                else if (op_ce)
 
                        r_dcd_valid <= 1'b0;
 
        assign  dcd_valid = r_dcd_valid;
 
 
 
`else // Pipe fetch
        wire    [1:0]    pf_dbg;
 
        dblfetch #(ADDRESS_WIDTH)
 
                pf(i_clk, i_rst, pf_new_pc,
 
                                w_clear_icache,
 
                                (!pf_stalled),
 
                                pf_request_address,
 
                                pf_instruction, pf_instruction_pc,
 
                                        pf_valid,
 
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
 
                                        pf_ack, pf_stall, pf_err, i_wb_data,
 
                                pf_illegal);
 
 
 
`else // Not single fetch and not double fetch
 
 
        wire    pf_stalled;
 
        assign  pf_stalled = (dcd_stalled)||(dcd_phase);
 
`ifdef  OPT_TRADITIONAL_PFCACHE
`ifdef  OPT_TRADITIONAL_PFCACHE
        wire    [(AW-1):0]       pf_request_address;
 
        assign  pf_request_address = ((dcd_early_branch)&&(!clear_pipeline))
 
                                ? dcd_branch_pc:pf_pc[(AW+1):2];
 
        pfcache #(LGICACHE, ADDRESS_WIDTH)
        pfcache #(LGICACHE, ADDRESS_WIDTH)
                pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
                pf(i_clk, i_rst, pf_new_pc, w_clear_icache,
                                        w_clear_icache,
 
                                // dcd_pc,
                                // dcd_pc,
                                (!pf_stalled),
                                (!pf_stalled),
                                pf_request_address,
                                pf_request_address,
                                pf_instruction, pf_instruction_pc, pf_valid,
                                pf_instruction, pf_instruction_pc, pf_valid,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                        pf_ack, pf_stall, pf_err, i_wb_data,
                                        pf_ack, pf_stall, pf_err, i_wb_data,
                                pf_illegal);
                                pf_illegal);
`else
`else
        pipefetch       #(RESET_BUS_ADDRESS, LGICACHE, ADDRESS_WIDTH)
        pipefetch       #(RESET_BUS_ADDRESS, LGICACHE, ADDRESS_WIDTH)
                        pf(i_clk, i_rst, (new_pc)||(dcd_early_branch),
                        pf(i_clk, i_rst, pf_new_pc,
                                        w_clear_icache, (!pf_stalled),
                                        w_clear_icache, (!pf_stalled),
                                        (new_pc)?pf_pc[(AW+1):2]:dcd_branch_pc,
                                        (new_pc)?pf_pc[(AW+1):2]:dcd_branch_pc,
                                        pf_instruction, pf_instruction_pc, pf_valid,
                                        pf_instruction, pf_instruction_pc, pf_valid,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
                                        pf_ack, pf_stall, pf_err, i_wb_data,
                                        pf_ack, pf_stall, pf_err, i_wb_data,
                                (mem_cyc_lcl)||(mem_cyc_gbl),
                                (mem_cyc_lcl)||(mem_cyc_gbl),
                                pf_illegal);
                                pf_illegal);
`endif
`endif  // OPT_TRADITIONAL_CACHE
`ifdef  OPT_NO_USERMODE
`endif  // OPT_DOUBLE_FETCH
        assign  pf_gie = 1'b0;
`endif  // OPT_SINGLE_FETCH
`else
 
        assign  pf_gie = gie;
 
`endif
 
 
 
        initial r_dcd_valid = 1'b0;
        assign          dcd_ce = (!dcd_valid)||(!dcd_stalled);
        always @(posedge i_clk)
 
                if ((clear_pipeline)||(w_clear_icache))
 
                        r_dcd_valid <= 1'b0;
 
                else if (dcd_ce)
 
                        r_dcd_valid <= ((dcd_phase)||(pf_valid))
 
                                        &&(~dcd_ljmp)&&(~dcd_early_branch);
 
                else if (op_ce)
 
                        r_dcd_valid <= 1'b0;
 
        assign  dcd_valid = r_dcd_valid;
 
`endif
 
 
 
        // If not pipelined, there will be no op_valid_ anything, and the
 
        idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
        idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
                        IMPLEMENT_FPU)
                        IMPLEMENT_FPU)
                instruction_decoder(i_clk, (clear_pipeline),
                instruction_decoder(i_clk,
                        (~dcd_valid)||(~op_stall), dcd_stalled, pf_instruction, pf_gie,
                        (clear_pipeline)||(w_clear_icache),
                        pf_instruction_pc, pf_valid, pf_illegal, dcd_phase,
                        dcd_ce,
 
                        dcd_stalled, pf_instruction, pf_gie,
 
                        pf_instruction_pc, pf_valid, pf_illegal,
 
                        dcd_valid, dcd_phase,
                        dcd_illegal, dcd_pc, dcd_gie,
                        dcd_illegal, dcd_pc, dcd_gie,
                        { dcd_Rcc, dcd_Rpc, dcd_R },
                        { dcd_Rcc, dcd_Rpc, dcd_R },
                        { dcd_Acc, dcd_Apc, dcd_A },
                        { dcd_Acc, dcd_Apc, dcd_A },
                        { dcd_Bcc, dcd_Bpc, dcd_B },
                        { dcd_Bcc, dcd_Bpc, dcd_B },
                        dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn,
                        dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn,
                        dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_break, dcd_lock,
                        dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_break, dcd_lock,
                        dcd_wR,dcd_rA, dcd_rB,
                        dcd_wR,dcd_rA, dcd_rB,
                        dcd_early_branch,
                        dcd_early_branch,
                        dcd_branch_pc, dcd_ljmp,
                        dcd_branch_pc, dcd_ljmp,
                        dcd_pipe,
                        dcd_pipe,
                        dcd_sim, dcd_sim_immv);
                        dcd_sim, dcd_sim_immv);
 
 
`ifdef  OPT_PIPELINED_BUS_ACCESS
`ifdef  OPT_PIPELINED_BUS_ACCESS
        reg             r_op_pipe;
        reg             r_op_pipe;
 
 
        initial r_op_pipe = 1'b0;
        initial r_op_pipe = 1'b0;
        // To be a pipeable operation, there must be
        // To be a pipeable operation, there must be
        //      two valid adjacent instructions
        //      two valid adjacent instructions
        //      Both must be memory instructions
        //      Both must be memory instructions
        //      Both must be writes, or both must be reads
        //      Both must be writes, or both must be reads
        //      Both operations must be to the same identical address,
        //      Both operations must be to the same identical address,
        //              or at least a single (one) increment above that address
        //              or at least a single (one) increment above that address
        //
        //
        // However ... we need to know this before this clock, hence this is
        // However ... we need to know this before this clock, hence this is
        // calculated in the instruction decoder.
        // calculated in the instruction decoder.
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                        r_op_pipe <= 1'b0;
                        r_op_pipe <= 1'b0;
                else if (op_ce)
                else if (op_ce)
                        r_op_pipe <= dcd_pipe;
                        r_op_pipe <= dcd_pipe;
                else if (mem_ce) // Clear us any time an op_ is clocked in
                else if (mem_ce) // Clear us any time an op_ is clocked in
                        r_op_pipe <= 1'b0;
                        r_op_pipe <= 1'b0;
        assign  op_pipe = r_op_pipe;
        assign  op_pipe = r_op_pipe;
`else
`else
        assign  op_pipe = 1'b0;
        assign  op_pipe = 1'b0;
`endif
`endif
 
 
        //
        //
        //
        //
        //      PIPELINE STAGE #3 :: Read Operands (Registers)
        //      PIPELINE STAGE #3 :: Read Operands (Registers)
        //
        //
        //
        //
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  w_op_Av = regset[dcd_A[3:0]];
        assign  w_op_Av = regset[dcd_A[3:0]];
        assign  w_op_Bv = regset[dcd_B[3:0]];
        assign  w_op_Bv = regset[dcd_B[3:0]];
`else
`else
        assign  w_op_Av = regset[dcd_A];
        assign  w_op_Av = regset[dcd_A];
        assign  w_op_Bv = regset[dcd_B];
        assign  w_op_Bv = regset[dcd_B];
`endif
`endif
 
 
        wire    [8:0]    w_cpu_info;
        wire    [8:0]    w_cpu_info;
        assign  w_cpu_info = {
        assign  w_cpu_info = {
        1'b1,
        1'b1,
        (IMPLEMENT_MPY    >0)? 1'b1:1'b0,
        (IMPLEMENT_MPY    >0)? 1'b1:1'b0,
        (IMPLEMENT_DIVIDE >0)? 1'b1:1'b0,
        (IMPLEMENT_DIVIDE >0)? 1'b1:1'b0,
        (IMPLEMENT_FPU    >0)? 1'b1:1'b0,
        (IMPLEMENT_FPU    >0)? 1'b1:1'b0,
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        1'b1,
        1'b1,
`else
`else
        1'b0,
        1'b0,
`endif
`endif
`ifdef  OPT_TRADITIONAL_CACHE
`ifdef  OPT_TRADITIONAL_CACHE
        1'b1,
        1'b1,
`else
`else
        1'b0,
        1'b0,
`endif
`endif
`ifdef  OPT_EARLY_BRANCHING
`ifdef  OPT_EARLY_BRANCHING
        1'b1,
        1'b1,
`else
`else
        1'b0,
        1'b0,
`endif
`endif
`ifdef  OPT_PIPELINED_BUS_ACCESS
`ifdef  OPT_PIPELINED_BUS_ACCESS
        1'b1,
        1'b1,
`else
`else
        1'b0,
        1'b0,
`endif
`endif
`ifdef  OPT_CIS
`ifdef  OPT_CIS
        1'b1
        1'b1
`else
`else
        1'b0
        1'b0
`endif
`endif
        };
        };
 
 
        wire    [31:0]   w_pcA_v;
        wire    [31:0]   w_pcA_v;
        assign  w_pcA_v[(AW+1):0] = { (dcd_A[4] == dcd_gie)
        assign  w_pcA_v[(AW+1):0] = { (dcd_A[4] == dcd_gie)
                                ? { dcd_pc[AW:1], 2'b00 }
                                ? { dcd_pc[AW:1], 2'b00 }
                                : { upc[(AW+1):2], uhalt_phase, 1'b0 } };
                                : { upc[(AW+1):2], uhalt_phase, 1'b0 } };
        generate
        generate
        if (AW < 30)
        if (AW < 30)
                assign  w_pcA_v[31:(AW+2)] = 0;
                assign  w_pcA_v[31:(AW+2)] = 0;
        endgenerate
        endgenerate
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        reg     [4:0]    op_Aid, op_Bid;
        reg     [4:0]    op_Aid, op_Bid;
        reg             op_rA, op_rB;
        reg             op_rA, op_rB;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (op_ce)
                if (op_ce)
                begin
                begin
                        op_Aid <= dcd_A;
                        op_Aid <= dcd_A;
                        op_Bid <= dcd_B;
                        op_Bid <= dcd_B;
                        op_rA <= dcd_rA;
                        op_rA <= dcd_rA;
                        op_rB <= dcd_rB;
                        op_rB <= dcd_rB;
                end
                end
`endif
`endif
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
`ifdef  OPT_PIPELINED
 
                if (op_ce)
                if (op_ce)
`endif
 
                begin
                begin
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
                        if ((wr_reg_ce)&&(wr_reg_id == dcd_A))
                        if ((wr_reg_ce)&&(wr_reg_id == dcd_A))
                                r_op_Av <= wr_gpreg_vl;
                                r_op_Av <= wr_gpreg_vl;
                        else
                        else
`endif
`endif
                        if (dcd_Apc)
                        if (dcd_Apc)
                                r_op_Av <= w_pcA_v;
                                r_op_Av <= w_pcA_v;
                        else if (dcd_Acc)
                        else if (dcd_Acc)
                                r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags };
                                r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags };
                        else
                        else
                                r_op_Av <= w_op_Av;
                                r_op_Av <= w_op_Av;
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
                end else
                end else
                begin // We were going to pick these up when they became valid,
                begin
                        // but for some reason we're stuck here as they became
 
                        // valid.  Pick them up now anyway
 
                        // if (((op_A_alu)&&(alu_wR))||((op_A_mem)&&(mem_valid)))
 
                                // r_op_Av <= wr_gpreg_vl;
 
                        if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA))
                        if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA))
                                r_op_Av <= wr_gpreg_vl;
                                r_op_Av <= wr_gpreg_vl;
`endif
`endif
                end
                end
 
 
        wire    [31:0]   w_op_BnI, w_pcB_v;
        wire    [31:0]   w_op_BnI, w_pcB_v;
        assign  w_pcB_v[(AW+1):0] = { (dcd_B[4] == dcd_gie)
        assign  w_pcB_v[(AW+1):0] = { (dcd_B[4] == dcd_gie)
                                        ? { dcd_pc[AW:1], 2'b00 }
                                        ? { dcd_pc[AW:1], 2'b00 }
                                        : { upc[(AW+1):2], uhalt_phase, 1'b0 } };
                                        : { upc[(AW+1):2], uhalt_phase, 1'b0 } };
        generate
        generate
        if (AW < 30)
        if (AW < 30)
                assign  w_pcB_v[31:(AW+2)] = 0;
                assign  w_pcB_v[31:(AW+2)] = 0;
        endgenerate
        endgenerate
 
 
        assign  w_op_BnI = (!dcd_rB) ? 32'h00
        assign  w_op_BnI = (!dcd_rB) ? 32'h00
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
                : ((wr_reg_ce)&&(wr_reg_id == dcd_B)) ? wr_gpreg_vl
                : ((wr_reg_ce)&&(wr_reg_id == dcd_B)) ? wr_gpreg_vl
`endif
`endif
                : ((dcd_Bcc) ? { w_cpu_info, w_op_Bv[22:16], // w_op_B[31:14],
                : ((dcd_Bcc) ? { w_cpu_info, w_op_Bv[22:16], // w_op_B[31:14],
                        1'b0, (dcd_B[4])?w_uflags:w_iflags}
                        1'b0, (dcd_B[4])?w_uflags:w_iflags}
                : w_op_Bv);
                : w_op_Bv);
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
                if ((op_ce)&&(dcd_Bpc)&&(dcd_rB))
                if ((op_ce)&&(dcd_Bpc)&&(dcd_rB))
                        r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 };
                        r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 };
                else if (op_ce)
                else if (op_ce)
                        r_op_Bv <= w_op_BnI + dcd_I;
                        r_op_Bv <= w_op_BnI + dcd_I;
                else if ((wr_reg_ce)&&(op_Bid == wr_reg_id)&&(op_rB))
                else if ((wr_reg_ce)&&(op_Bid == wr_reg_id)&&(op_rB))
                        r_op_Bv <= wr_gpreg_vl;
                        r_op_Bv <= wr_gpreg_vl;
`else
`else
                if ((dcd_Bpc)&&(dcd_rB))
                if ((dcd_Bpc)&&(dcd_rB))
                        r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 };
                        r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 };
                else
                else
                        r_op_Bv <= w_op_BnI + dcd_I;
                        r_op_Bv <= w_op_BnI + dcd_I;
`endif
`endif
 
 
        // The logic here has become more complex than it should be, no thanks
        // The logic here has become more complex than it should be, no thanks
        // to Xilinx's Vivado trying to help.  The conditions are supposed to
        // to Xilinx's Vivado trying to help.  The conditions are supposed to
        // be two sets of four bits: the top bits specify what bits matter, the
        // be two sets of four bits: the top bits specify what bits matter, the
        // bottom specify what those top bits must equal.  However, two of
        // bottom specify what those top bits must equal.  However, two of
        // conditions check whether bits are on, and those are the only two
        // conditions check whether bits are on, and those are the only two
        // conditions checking those bits.  Therefore, Vivado complains that
        // conditions checking those bits.  Therefore, Vivado complains that
        // these two bits are redundant.  Hence the convoluted expression
        // these two bits are redundant.  Hence the convoluted expression
        // below, arriving at what we finally want in the (now wire net)
        // below, arriving at what we finally want in the (now wire net)
        // op_F.
        // op_F.
        always @(posedge i_clk)
        always @(posedge i_clk)
`ifdef  OPT_PIPELINED
 
                if (op_ce) // Cannot do op_change_data_ce here since op_F depends
                if (op_ce) // Cannot do op_change_data_ce here since op_F depends
                        // upon being either correct for a valid op, or correct
                        // upon being either correct for a valid op, or correct
                        // for the last valid op
                        // for the last valid op
`endif
 
                begin // Set the flag condition codes, bit order is [3:0]=VNCZ
                begin // Set the flag condition codes, bit order is [3:0]=VNCZ
                        case(dcd_F[2:0])
                        case(dcd_F[2:0])
                        3'h0:   r_op_F <= 7'h00;        // Always
                        3'h0:   r_op_F <= 7'h00;        // Always
                        3'h1:   r_op_F <= 7'h11;        // Z
                        3'h1:   r_op_F <= 7'h11;        // Z
                        3'h2:   r_op_F <= 7'h44;        // LT
                        3'h2:   r_op_F <= 7'h44;        // LT
                        3'h3:   r_op_F <= 7'h22;        // C
                        3'h3:   r_op_F <= 7'h22;        // C
                        3'h4:   r_op_F <= 7'h08;        // V
                        3'h4:   r_op_F <= 7'h08;        // V
                        3'h5:   r_op_F <= 7'h10;        // NE
                        3'h5:   r_op_F <= 7'h10;        // NE
                        3'h6:   r_op_F <= 7'h40;        // GE (!N)
                        3'h6:   r_op_F <= 7'h40;        // GE (!N)
                        3'h7:   r_op_F <= 7'h20;        // NC
                        3'h7:   r_op_F <= 7'h20;        // NC
                        endcase
                        endcase
                end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
                end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
        assign  op_F = { r_op_F[3], r_op_F[6:0] };
        assign  op_F = { r_op_F[3], r_op_F[6:0] };
 
 
        wire    w_op_valid;
        wire    w_op_valid;
        assign  w_op_valid = (~clear_pipeline)&&(dcd_valid)&&(~dcd_ljmp)&&(!dcd_early_branch);
        assign  w_op_valid = (!clear_pipeline)&&(dcd_valid)&&(!dcd_ljmp)&&(!dcd_early_branch);
        initial op_valid     = 1'b0;
        initial op_valid     = 1'b0;
        initial op_valid_alu = 1'b0;
        initial op_valid_alu = 1'b0;
        initial op_valid_mem = 1'b0;
        initial op_valid_mem = 1'b0;
        initial op_valid_div = 1'b0;
        initial op_valid_div = 1'b0;
        initial op_valid_fpu = 1'b0;
        initial op_valid_fpu = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                begin
                begin
                        op_valid     <= 1'b0;
                        op_valid     <= 1'b0;
                        op_valid_alu <= 1'b0;
                        op_valid_alu <= 1'b0;
                        op_valid_mem <= 1'b0;
                        op_valid_mem <= 1'b0;
                        op_valid_div <= 1'b0;
                        op_valid_div <= 1'b0;
                        op_valid_fpu <= 1'b0;
                        op_valid_fpu <= 1'b0;
                end else if (op_ce)
                end else if (op_ce)
                begin
                begin
                        // Do we have a valid instruction?
                        // Do we have a valid instruction?
                        //   The decoder may vote to stall one of its
                        //   The decoder may vote to stall one of its
                        //   instructions based upon something we currently
                        //   instructions based upon something we currently
                        //   have in our queue.  This instruction must then
                        //   have in our queue.  This instruction must then
                        //   move forward, and get a stall cycle inserted.
                        //   move forward, and get a stall cycle inserted.
                        //   Hence, the test on dcd_stalled here.  If we must
                        //   Hence, the test on dcd_stalled here.  If we must
                        //   wait until our operands are valid, then we aren't
                        //   wait until our operands are valid, then we aren't
                        //   valid yet until then.
                        //   valid yet until then.
                        op_valid<= (w_op_valid)||(dcd_illegal)&&(dcd_valid)||(dcd_early_branch);
                        op_valid<= (w_op_valid)||(dcd_illegal)&&(dcd_valid)||(dcd_early_branch);
                        op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal)
                        op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal)
                                        ||(dcd_early_branch));
                                        ||(dcd_early_branch));
                        op_valid_mem <= (dcd_M)&&(~dcd_illegal)&&(w_op_valid);
                        op_valid_mem <= (dcd_M)&&(!dcd_illegal)&&(w_op_valid);
                        op_valid_div <= (dcd_DIV)&&(~dcd_illegal)&&(w_op_valid);
                        op_valid_div <= (dcd_DIV)&&(!dcd_illegal)&&(w_op_valid);
                        op_valid_fpu <= (dcd_FP)&&(~dcd_illegal)&&(w_op_valid);
                        op_valid_fpu <= (dcd_FP)&&(!dcd_illegal)&&(w_op_valid);
                end else if ((adf_ce_unconditional)||(mem_ce))
                end else if ((adf_ce_unconditional)||(mem_ce))
                begin
                begin
                        op_valid     <= 1'b0;
                        op_valid     <= 1'b0;
                        op_valid_alu <= 1'b0;
                        op_valid_alu <= 1'b0;
                        op_valid_mem <= 1'b0;
                        op_valid_mem <= 1'b0;
                        op_valid_div <= 1'b0;
                        op_valid_div <= 1'b0;
                        op_valid_fpu <= 1'b0;
                        op_valid_fpu <= 1'b0;
                end
                end
 
 
        // Here's part of our debug interface.  When we recognize a break
        // Here's part of our debug interface.  When we recognize a break
        // instruction, we set the op_break flag.  That'll prevent this
        // instruction, we set the op_break flag.  That'll prevent this
        // instruction from entering the ALU, and cause an interrupt before
        // instruction from entering the ALU, and cause an interrupt before
        // this instruction.  Thus, returning to this code will cause the
        // this instruction.  Thus, returning to this code will cause the
        // break to repeat and continue upon return.  To get out of this
        // break to repeat and continue upon return.  To get out of this
        // condition, replace the break instruction with what it is supposed
        // condition, replace the break instruction with what it is supposed
        // to be, step through it, and then replace it back.  In this fashion,
        // to be, step through it, and then replace it back.  In this fashion,
        // a debugger can step through code.
        // a debugger can step through code.
        // assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001);
        // assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001);
`ifdef  OPT_PIPELINED
 
        reg     r_op_break;
        reg     r_op_break;
 
 
        initial r_op_break = 1'b0;
        initial r_op_break = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(clear_pipeline))  r_op_break <= 1'b0;
                if ((i_rst)||(clear_pipeline))  r_op_break <= 1'b0;
                else if (op_ce)
                else if (op_ce)
                        r_op_break <= (dcd_break);
                        r_op_break <= (dcd_break);
                else if (!op_valid)
                else if (!op_valid)
                        r_op_break <= 1'b0;
                        r_op_break <= 1'b0;
        assign  op_break = r_op_break;
        assign  op_break = r_op_break;
`else
 
        assign  op_break = dcd_break;
 
`endif
 
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        generate
        generate
        if (IMPLEMENT_LOCK != 0)
        if (IMPLEMENT_LOCK != 0)
        begin
        begin
                reg     r_op_lock;
                reg     r_op_lock;
 
 
                initial r_op_lock = 1'b0;
                initial r_op_lock = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (clear_pipeline)
                        if (clear_pipeline)
                                r_op_lock <= 1'b0;
                                r_op_lock <= 1'b0;
                        else if (op_ce)
                        else if (op_ce)
                                r_op_lock <= (dcd_valid)&&(dcd_lock)&&(~clear_pipeline);
                                r_op_lock <= (dcd_valid)&&(dcd_lock)&&(!clear_pipeline);
                assign  op_lock = r_op_lock;
                assign  op_lock = r_op_lock;
 
 
        end else begin
        end else begin
                assign  op_lock = 1'b0;
                assign  op_lock = 1'b0;
        end endgenerate
        end endgenerate
 
 
`else
`else
        assign op_lock       = 1'b0;
        assign op_lock       = 1'b0;
`endif
`endif
 
 
`ifdef  OPT_ILLEGAL_INSTRUCTION
`ifdef  OPT_ILLEGAL_INSTRUCTION
        initial op_illegal = 1'b0;
        initial op_illegal = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                        op_illegal <= 1'b0;
                        op_illegal <= 1'b0;
                else if(op_ce)
                else if(op_ce)
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
                        op_illegal <= (dcd_valid)&&((dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0)));
                        op_illegal <= (dcd_valid)&&((dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0)));
`else
`else
                        op_illegal <= (dcd_valid)&&((dcd_illegal)||(dcd_lock));
                        op_illegal <= (dcd_valid)&&((dcd_illegal)||(dcd_lock));
`endif
`endif
                else if(alu_ce)
                else if(alu_ce)
                        op_illegal <= 1'b0;
                        op_illegal <= 1'b0;
`endif
`endif
 
 
        // No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not
        // No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not
        // set, dcd_early_branch will simply be a wire connected to zero and
        // set, dcd_early_branch will simply be a wire connected to zero and
        // this logic should just optimize.
        // this logic should just optimize.
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (op_ce)
                if (op_ce)
                begin
                begin
                        op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR))
                        op_wF <= (dcd_wF)&&((!dcd_Rcc)||(!dcd_wR))
                                &&(~dcd_early_branch)&&(~dcd_illegal);
                                &&(!dcd_early_branch)&&(!dcd_illegal);
                        op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal);
                        op_wR <= (dcd_wR)&&(!dcd_early_branch)&&(!dcd_illegal);
                end
                end
`else
`else
        always @(posedge i_clk)
        always @(posedge i_clk)
        begin
        begin
                op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR))
                op_wF <= (dcd_wF)&&((!dcd_Rcc)||(!dcd_wR))
                        &&(~dcd_early_branch)&&(~dcd_illegal);
                        &&(!dcd_early_branch)&&(!dcd_illegal);
                op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal);
                op_wR <= (dcd_wR)&&(!dcd_early_branch)&&(!dcd_illegal);
        end
        end
`endif
`endif
 
 
`ifdef  VERILATOR
`ifdef  VERILATOR
`ifdef  OPT_PIPELINED
`ifdef  SINGLE_FETCH
 
        always @(*)
 
        begin
 
                op_sim      = dcd_sim;
 
                op_sim_immv = dcd_sim_immv;
 
        end
 
`else
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (op_change_data_ce)
                if (op_change_data_ce)
                begin
                begin
                        op_sim      <= dcd_sim;
                        op_sim      <= dcd_sim;
                        op_sim_immv <= dcd_sim_immv;
                        op_sim_immv <= dcd_sim_immv;
                end
                end
`else
 
        always @(*)
 
        begin
 
                op_sim      = dcd_sim;
 
                op_sim_immv = dcd_sim_immv;
 
        end
 
`endif
`endif
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
 
        reg     [3:0]    r_op_opn;
        reg     [3:0]    r_op_opn;
        reg     [4:0]    r_op_R;
        reg     [4:0]    r_op_R;
        reg             r_op_Rcc;
        reg             r_op_Rcc;
        reg             r_op_gie;
        reg             r_op_gie;
 
 
 
        initial r_op_gie = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (op_change_data_ce)
                if (op_change_data_ce)
                begin
                begin
                        // Which ALU operation?  Early branches are
                        // Which ALU operation?  Early branches are
                        // unimplemented moves
                        // unimplemented moves
                        r_op_opn    <= (dcd_early_branch) ? 4'hf : dcd_opn;
                        r_op_opn    <= (dcd_early_branch) ? 4'hf : dcd_opn;
                        // opM  <= dcd_M;       // Is this a memory operation?
                        // opM  <= dcd_M;       // Is this a memory operation?
                        // What register will these results be written into?
                        // What register will these results be written into?
                        r_op_R    <= dcd_R;
                        r_op_R    <= dcd_R;
                        r_op_Rcc <= (dcd_Rcc)&&(dcd_wR)&&(dcd_R[4]==dcd_gie);
                        r_op_Rcc <= (dcd_Rcc)&&(dcd_wR)&&(dcd_R[4]==dcd_gie);
                        // User level (1), vs supervisor (0)/interrupts disabled
                        // User level (1), vs supervisor (0)/interrupts disabled
                        r_op_gie <= dcd_gie;
                        r_op_gie <= dcd_gie;
 
 
                        //
                        //
                        op_pc  <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
                        op_pc  <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
                end
                end
        assign  op_opn = r_op_opn;
        assign  op_opn = r_op_opn;
        assign  op_R = r_op_R;
        assign  op_R = r_op_R;
`ifdef  OPT_NO_USERMODE
 
        assign  op_gie = 1'b0;
 
`else
 
        assign  op_gie = r_op_gie;
        assign  op_gie = r_op_gie;
`endif
 
        assign  op_Rcc = r_op_Rcc;
        assign  op_Rcc = r_op_Rcc;
`else
 
        assign  op_opn = dcd_opn;
 
        assign  op_R = dcd_R;
 
`ifdef  OPT_NO_USERMODE
 
        assign  op_gie = 1'b0;
 
`else
 
        assign  op_gie = dcd_gie;
 
`endif
 
        // With no pipelining, there is no early branching.  We keep it
 
        always @(posedge i_clk)
 
                op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
 
`endif
 
        assign  op_Fl = (op_gie)?(w_uflags):(w_iflags);
        assign  op_Fl = (op_gie)?(w_uflags):(w_iflags);
 
 
`ifdef  OPT_CIS
`ifdef  OPT_CIS
        reg     r_op_phase;
        reg     r_op_phase;
        initial r_op_phase = 1'b0;
        initial r_op_phase = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                        r_op_phase <= 1'b0;
                        r_op_phase <= 1'b0;
                else if (op_change_data_ce)
                else if (op_change_data_ce)
                        r_op_phase <= (dcd_phase)&&((!dcd_wR)||(!dcd_Rpc));
                        r_op_phase <= (dcd_phase)&&((!dcd_wR)||(!dcd_Rpc));
        assign  op_phase = r_op_phase;
        assign  op_phase = r_op_phase;
`else
`else
        assign  op_phase = 1'b0;
        assign  op_phase = 1'b0;
`endif
`endif
 
 
        // This is tricky.  First, the PC and Flags registers aren't kept in
        // This is tricky.  First, the PC and Flags registers aren't kept in
        // register set but in special registers of their own.  So step one
        // register set but in special registers of their own.  So step one
        // is to select the right register.  Step to is to replace that
        // is to select the right register.  Step to is to replace that
        // register with the results of an ALU or memory operation, if such
        // register with the results of an ALU or memory operation, if such
        // results are now available.  Otherwise, we'd need to insert a wait
        // results are now available.  Otherwise, we'd need to insert a wait
        // state of some type.
        // state of some type.
        //
        //
        // The alternative approach would be to define some sort of
        // The alternative approach would be to define some sort of
        // op_stall wire, which would stall any upstream stage.
        // op_stall wire, which would stall any upstream stage.
        // We'll create a flag here to start our coordination.  Once we
        // We'll create a flag here to start our coordination.  Once we
        // define this flag to something other than just plain zero, then
        // define this flag to something other than just plain zero, then
        // the stalls will already be in place.
        // the stalls will already be in place.
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        assign  op_Av = ((wr_reg_ce)&&(wr_reg_id == op_Aid)) // &&(op_rA))
        assign  op_Av = ((wr_reg_ce)&&(wr_reg_id == op_Aid)) // &&(op_rA))
                        ?  wr_gpreg_vl : r_op_Av;
                        ?  wr_gpreg_vl : r_op_Av;
`else
`else
        assign  op_Av = r_op_Av;
        assign  op_Av = r_op_Av;
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        // Stall if we have decoded an instruction that will read register A
        // Stall if we have decoded an instruction that will read register A
        //      AND ... something that may write a register is running
        //      AND ... something that may write a register is running
        //      AND (series of conditions here ...)
        //      AND (series of conditions here ...)
        //              The operation might set flags, and we wish to read the
        //              The operation might set flags, and we wish to read the
        //                      CC register
        //                      CC register
        //              OR ... (No other conditions)
        //              OR ... (No other conditions)
        assign  dcd_A_stall = (dcd_rA) // &&(dcd_valid) is checked for elsewhere
        assign  dcd_A_stall = (dcd_rA) // &&(dcd_valid) is checked for elsewhere
                                &&((op_valid)||(mem_rdbusy)
                                &&((op_valid)||(mem_rdbusy)
                                        ||(div_busy)||(fpu_busy))
                                        ||(div_busy)||(fpu_busy))
                                &&(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Acc))
                                &&(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Acc))
                        ||((dcd_rA)&&(dcd_Acc)&&(cc_invalid_for_dcd));
                        ||((dcd_rA)&&(dcd_Acc)&&(cc_invalid_for_dcd));
`else
`else
        // There are no pipeline hazards, if we aren't pipelined
        // There are no pipeline hazards, if we aren't pipelined
        assign  dcd_A_stall = 1'b0;
        assign  dcd_A_stall = 1'b0;
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        assign  op_Bv = ((wr_reg_ce)&&(wr_reg_id == op_Bid)&&(op_rB))
        assign  op_Bv = ((wr_reg_ce)&&(wr_reg_id == op_Bid)&&(op_rB))
                        ? wr_gpreg_vl: r_op_Bv;
                        ? wr_gpreg_vl: r_op_Bv;
`else
`else
        assign  op_Bv = r_op_Bv;
        assign  op_Bv = r_op_Bv;
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        // Stall if we have decoded an instruction that will read register B
        // Stall if we have decoded an instruction that will read register B
        //      AND ... something that may write a (unknown) register is running
        //      AND ... something that may write a (unknown) register is running
        //      AND (series of conditions here ...)
        //      AND (series of conditions here ...)
        //              The operation might set flags, and we wish to read the
        //              The operation might set flags, and we wish to read the
        //                      CC register
        //                      CC register
        //              OR the operation might set register B, and we still need
        //              OR the operation might set register B, and we still need
        //                      a clock to add the offset to it
        //                      a clock to add the offset to it
        assign  dcd_B_stall = (dcd_rB) // &&(dcd_valid) is checked for elsewhere
        assign  dcd_B_stall = (dcd_rB) // &&(dcd_valid) is checked for elsewhere
                                // If the op stage isn't valid, yet something
                                // If the op stage isn't valid, yet something
                                // is running, then it must have been valid.
                                // is running, then it must have been valid.
                                // We'll use the last values from that stage
                                // We'll use the last values from that stage
                                // (op_wR, op_wF, op_R) in our logic below.
                                // (op_wR, op_wF, op_R) in our logic below.
                                &&((op_valid)||(mem_rdbusy)
                                &&((op_valid)||(mem_rdbusy)
                                        ||(div_busy)||(fpu_busy)||(alu_busy))
                                        ||(div_busy)||(fpu_busy)||(alu_busy))
                                &&(
                                &&(
                                // Okay, what happens if the result register
                                // Okay, what happens if the result register
                                // from instruction 1 becomes the input for
                                // from instruction 1 becomes the input for
                                // instruction two, *and* there's an immediate
                                // instruction two, *and* there's an immediate
                                // offset in instruction two?  In that case, we
                                // offset in instruction two?  In that case, we
                                // need an extra clock between the two
                                // need an extra clock between the two
                                // instructions to calculate the base plus
                                // instructions to calculate the base plus
                                // offset.
                                // offset.
                                //
                                //
                                // What if instruction 1 (or before) is in a
                                // What if instruction 1 (or before) is in a
                                // memory pipeline?  We may no longer know what
                                // memory pipeline?  We may no longer know what
                                // the register was!  We will then need  to
                                // the register was!  We will then need  to
                                // blindly wait.  We'll temper this only waiting
                                // blindly wait.  We'll temper this only waiting
                                // if we're not piping this new instruction.
                                // if we're not piping this new instruction.
                                // If we were piping, the pipe logic in the
                                // If we were piping, the pipe logic in the
                                // decode circuit has told us that the hazard
                                // decode circuit has told us that the hazard
                                // is clear, so we're okay then.
                                // is clear, so we're okay then.
                                //
                                //
                                ((~dcd_zI)&&(
                                ((!dcd_zI)&&(
                                        ((op_R == dcd_B)&&(op_wR))
                                        ((op_R == dcd_B)&&(op_wR))
                                        ||((mem_rdbusy)&&(~dcd_pipe))
                                        ||((mem_rdbusy)&&(!dcd_pipe))
                                        ))
                                        ))
                                // Stall following any instruction that will
                                // Stall following any instruction that will
                                // set the flags, if we're going to need the
                                // set the flags, if we're going to need the
                                // flags (CC) register for op_B.
                                // flags (CC) register for op_B.
                                ||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc))
                                ||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc))
                                // Stall on any ongoing memory operation that
                                // Stall on any ongoing memory operation that
                                // will write to op_B -- captured above
                                // will write to op_B -- captured above
                                // ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcd_B)&&(~dcd_zI))
                                // ||((mem_busy)&&(!mem_we)&&(mem_last_reg==dcd_B)&&(!dcd_zI))
                                )
                                )
                        ||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd));
                        ||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd));
        assign  dcd_F_stall = ((~dcd_F[3])
        assign  dcd_F_stall = ((!dcd_F[3])
                                        ||((dcd_rA)&&(dcd_Acc))
                                        ||((dcd_rA)&&(dcd_Acc))
                                        ||((dcd_rB)&&(dcd_Bcc)))
                                        ||((dcd_rB)&&(dcd_Bcc)))
                                        &&(op_valid)&&(op_Rcc);
                                        &&(op_valid)&&(op_Rcc);
                                // &&(dcd_valid) is checked for elsewhere
                                // &&(dcd_valid) is checked for elsewhere
`else
`else
        // No stalls without pipelining, 'cause how can you have a pipeline
        // No stalls without pipelining, 'cause how can you have a pipeline
        // hazard without the pipeline?
        // hazard without the pipeline?
        assign  dcd_B_stall = 1'b0;
        assign  dcd_B_stall = 1'b0;
        assign  dcd_F_stall = 1'b0;
        assign  dcd_F_stall = 1'b0;
`endif
`endif
        //
        //
        //
        //
        //      PIPELINE STAGE #4 :: Apply Instruction
        //      PIPELINE STAGE #4 :: Apply Instruction
        //
        //
        //
        //
        cpuops  #(IMPLEMENT_MPY) doalu(i_clk, (clear_pipeline),
        cpuops  #(IMPLEMENT_MPY) doalu(i_clk, (clear_pipeline),
                        alu_ce, op_opn, op_Av, op_Bv,
                        alu_ce, op_opn, op_Av, op_Bv,
                        alu_result, alu_flags, alu_valid, alu_busy);
                        alu_result, alu_flags, alu_valid, alu_busy);
 
 
        generate
        generate
        if (IMPLEMENT_DIVIDE != 0)
        if (IMPLEMENT_DIVIDE != 0)
        begin
        begin
                div thedivide(i_clk, (clear_pipeline), div_ce, op_opn[0],
                div thedivide(i_clk, (clear_pipeline), div_ce, op_opn[0],
                        op_Av, op_Bv, div_busy, div_valid, div_error, div_result,
                        op_Av, op_Bv, div_busy, div_valid, div_error, div_result,
                        div_flags);
                        div_flags);
        end else begin
        end else begin
                assign  div_error = 1'b0; // Can't be high unless div_valid
                assign  div_error = 1'b0; // Can't be high unless div_valid
                assign  div_busy  = 1'b0;
                assign  div_busy  = 1'b0;
                assign  div_valid = 1'b0;
                assign  div_valid = 1'b0;
                assign  div_result= 32'h00;
                assign  div_result= 32'h00;
                assign  div_flags = 4'h0;
                assign  div_flags = 4'h0;
        end endgenerate
        end endgenerate
 
 
        generate
        generate
        if (IMPLEMENT_FPU != 0)
        if (IMPLEMENT_FPU != 0)
        begin
        begin
                //
                //
                // sfpu thefpu(i_clk, i_rst, fpu_ce,
                // sfpu thefpu(i_clk, i_rst, fpu_ce,
                //      op_Av, op_Bv, fpu_busy, fpu_valid, fpu_err, fpu_result,
                //      op_Av, op_Bv, fpu_busy, fpu_valid, fpu_err, fpu_result,
                //      fpu_flags);
                //      fpu_flags);
                //
                //
                assign  fpu_error = 1'b0; // Must only be true if fpu_valid
                assign  fpu_error = 1'b0; // Must only be true if fpu_valid
                assign  fpu_busy  = 1'b0;
                assign  fpu_busy  = 1'b0;
                assign  fpu_valid = 1'b0;
                assign  fpu_valid = 1'b0;
                assign  fpu_result= 32'h00;
                assign  fpu_result= 32'h00;
                assign  fpu_flags = 4'h0;
                assign  fpu_flags = 4'h0;
        end else begin
        end else begin
                assign  fpu_error = 1'b0;
                assign  fpu_error = 1'b0;
                assign  fpu_busy  = 1'b0;
                assign  fpu_busy  = 1'b0;
                assign  fpu_valid = 1'b0;
                assign  fpu_valid = 1'b0;
                assign  fpu_result= 32'h00;
                assign  fpu_result= 32'h00;
                assign  fpu_flags = 4'h0;
                assign  fpu_flags = 4'h0;
        end endgenerate
        end endgenerate
 
 
 
 
        assign  set_cond = ((op_F[7:4]&op_Fl[3:0])==op_F[3:0]);
        assign  set_cond = ((op_F[7:4]&op_Fl[3:0])==op_F[3:0]);
        initial alu_wF   = 1'b0;
        initial alu_wF   = 1'b0;
        initial alu_wR   = 1'b0;
        initial alu_wR   = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                begin
                begin
                        alu_wR   <= 1'b0;
                        alu_wR   <= 1'b0;
                        alu_wF   <= 1'b0;
                        alu_wF   <= 1'b0;
                end else if (alu_ce)
                end else if (alu_ce)
                begin
                begin
                        // alu_reg <= op_R;
                        // alu_reg <= op_R;
                        alu_wR  <= (op_wR)&&(set_cond);
                        alu_wR  <= (op_wR)&&(set_cond);
                        alu_wF  <= (op_wF)&&(set_cond);
                        alu_wF  <= (op_wF)&&(set_cond);
                end else if (~alu_busy) begin
                end else if (!alu_busy) begin
                        // These are strobe signals, so clear them if not
                        // These are strobe signals, so clear them if not
                        // set for any particular clock
                        // set for any particular clock
                        alu_wR <= (i_halt)&&(i_dbg_we);
                        alu_wR <= (i_halt)&&(i_dbg_we);
                        alu_wF <= 1'b0;
                        alu_wF <= 1'b0;
                end
                end
 
 
`ifdef  OPT_CIS
`ifdef  OPT_CIS
        reg     r_alu_phase;
        reg     r_alu_phase;
        initial r_alu_phase = 1'b0;
        initial r_alu_phase = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        r_alu_phase <= 1'b0;
                        r_alu_phase <= 1'b0;
                else if ((adf_ce_unconditional)||(mem_ce))
                else if ((adf_ce_unconditional)||(mem_ce))
                        r_alu_phase <= op_phase;
                        r_alu_phase <= op_phase;
        assign  alu_phase = r_alu_phase;
        assign  alu_phase = r_alu_phase;
`else
`else
        assign  alu_phase = 1'b0;
        assign  alu_phase = 1'b0;
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (adf_ce_unconditional)
                if (adf_ce_unconditional)
                        alu_reg <= op_R;
                        alu_reg <= op_R;
                else if ((i_halt)&&(i_dbg_we))
                else if ((i_halt)&&(i_dbg_we))
                        alu_reg <= i_dbg_reg;
                        alu_reg <= i_dbg_reg;
`else
`else
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_halt)&&(i_dbg_we))
                if ((i_halt)&&(i_dbg_we))
                        alu_reg <= i_dbg_reg;
                        alu_reg <= i_dbg_reg;
                else
                else
                        alu_reg <= op_R;
                        alu_reg <= op_R;
`endif
`endif
 
 
        //
        //
        // DEBUG Register write access starts here
        // DEBUG Register write access starts here
        //
        //
        reg             dbgv;
        reg             dbgv;
        initial dbgv = 1'b0;
        initial dbgv = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                dbgv <= (~i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted);
                dbgv <= (!i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted);
        reg     [31:0]   dbg_val;
        reg     [31:0]   dbg_val;
        always @(posedge i_clk)
        always @(posedge i_clk)
                dbg_val <= i_dbg_data;
                dbg_val <= i_dbg_data;
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  alu_gie = 1'b0;
        assign  alu_gie = 1'b0;
`else
`else
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        reg     r_alu_gie;
        reg     r_alu_gie;
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((adf_ce_unconditional)||(mem_ce))
                if ((adf_ce_unconditional)||(mem_ce))
                        r_alu_gie  <= op_gie;
                        r_alu_gie  <= op_gie;
        assign  alu_gie = r_alu_gie;
        assign  alu_gie = r_alu_gie;
`else
`else
        assign  alu_gie = op_gie;
        assign  alu_gie = op_gie;
`endif
`endif
`endif
`endif
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        reg     [(AW-1):0]       r_alu_pc;
        reg     [(AW-1):0]       r_alu_pc;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((adf_ce_unconditional)
                if ((adf_ce_unconditional)
                        ||((master_ce)&&(op_valid_mem)&&(~clear_pipeline)
                        ||((master_ce)&&(op_valid_mem)&&(!clear_pipeline)
                                &&(~mem_stalled)))
                                &&(!mem_stalled)))
                        r_alu_pc  <= op_pc;
                        r_alu_pc  <= op_pc;
        assign  alu_pc = r_alu_pc;
        assign  alu_pc = r_alu_pc;
`else
`else
        assign  alu_pc = op_pc;
        assign  alu_pc = op_pc;
`endif
`endif
 
 
        reg     r_alu_illegal;
        reg     r_alu_illegal;
        initial r_alu_illegal = 0;
        initial r_alu_illegal = 0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                        r_alu_illegal <= 1'b0;
                        r_alu_illegal <= 1'b0;
                else if (alu_ce)
                else if (alu_ce)
                        r_alu_illegal <= op_illegal;
                        r_alu_illegal <= op_illegal;
                else
                else
                        r_alu_illegal <= 1'b0;
                        r_alu_illegal <= 1'b0;
        assign  alu_illegal = (r_alu_illegal);
        assign  alu_illegal = (r_alu_illegal);
 
 
        initial r_alu_pc_valid = 1'b0;
        initial r_alu_pc_valid = 1'b0;
        initial mem_pc_valid = 1'b0;
        initial mem_pc_valid = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (clear_pipeline)
                if (clear_pipeline)
                        r_alu_pc_valid <= 1'b0;
                        r_alu_pc_valid <= 1'b0;
                else if ((adf_ce_unconditional)&&(!op_phase)) //Includes&&(~alu_clear_pipeline)
                else if ((adf_ce_unconditional)&&(!op_phase))
                        r_alu_pc_valid <= 1'b1;
                        r_alu_pc_valid <= 1'b1;
                else if (((~alu_busy)&&(~div_busy)&&(~fpu_busy))||(clear_pipeline))
                else if (((!alu_busy)&&(!div_busy)&&(!fpu_busy))||(clear_pipeline))
                        r_alu_pc_valid <= 1'b0;
                        r_alu_pc_valid <= 1'b0;
        assign  alu_pc_valid = (r_alu_pc_valid)&&((~alu_busy)&&(~div_busy)&&(~fpu_busy));
        assign  alu_pc_valid = (r_alu_pc_valid)&&((!alu_busy)&&(!div_busy)&&(!fpu_busy));
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        mem_pc_valid <= 1'b0;
                        mem_pc_valid <= 1'b0;
                else
                else
                        mem_pc_valid <= (mem_ce);
                        mem_pc_valid <= (mem_ce);
 
 
        wire    bus_lock;
        wire    bus_lock;
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        generate
        generate
        if (IMPLEMENT_LOCK != 0)
        if (IMPLEMENT_LOCK != 0)
        begin
        begin
                reg     r_prelock_stall;
                reg     r_prelock_stall;
 
 
                initial r_prelock_stall = 1'b0;
                initial r_prelock_stall = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (clear_pipeline)
                        if (clear_pipeline)
                                r_prelock_stall <= 1'b0;
                                r_prelock_stall <= 1'b0;
                        else if ((op_valid)&&(op_lock)&&(op_ce))
                        else if ((op_valid)&&(op_lock)&&(op_ce))
                                r_prelock_stall <= 1'b1;
                                r_prelock_stall <= 1'b1;
                        else if ((op_valid)&&(dcd_valid)&&(pf_valid))
                        else if ((op_valid)&&(dcd_valid)&&(pf_valid))
                                r_prelock_stall <= 1'b0;
                                r_prelock_stall <= 1'b0;
 
 
                assign  prelock_stall = r_prelock_stall;
                assign  prelock_stall = r_prelock_stall;
 
 
                reg     r_prelock_primed;
                reg     r_prelock_primed;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (clear_pipeline)
                        if (clear_pipeline)
                                r_prelock_primed <= 1'b0;
                                r_prelock_primed <= 1'b0;
                        else if (r_prelock_stall)
                        else if (r_prelock_stall)
                                r_prelock_primed <= 1'b1;
                                r_prelock_primed <= 1'b1;
                        else if ((adf_ce_unconditional)||(mem_ce))
                        else if ((adf_ce_unconditional)||(mem_ce))
                                r_prelock_primed <= 1'b0;
                                r_prelock_primed <= 1'b0;
 
 
                reg     [1:0]    r_bus_lock;
                reg     [1:0]    r_bus_lock;
                initial r_bus_lock = 2'b00;
                initial r_bus_lock = 2'b00;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (clear_pipeline)
                        if (clear_pipeline)
                                r_bus_lock <= 2'b00;
                                r_bus_lock <= 2'b00;
                        else if ((op_valid)&&((adf_ce_unconditional)||(mem_ce)))
                        else if ((op_valid)&&((adf_ce_unconditional)||(mem_ce)))
                        begin
                        begin
                                if (r_prelock_primed)
                                if (r_prelock_primed)
                                        r_bus_lock <= 2'b10;
                                        r_bus_lock <= 2'b10;
                                else if (r_bus_lock != 2'h0)
                                else if (r_bus_lock != 2'h0)
                                        r_bus_lock <= r_bus_lock + 2'b11;
                                        r_bus_lock <= r_bus_lock + 2'b11;
                        end
                        end
                assign  bus_lock = |r_bus_lock;
                assign  bus_lock = |r_bus_lock;
        end else begin
        end else begin
                assign  prelock_stall = 1'b0;
                assign  prelock_stall = 1'b0;
                assign  bus_lock = 1'b0;
                assign  bus_lock = 1'b0;
        end endgenerate
        end endgenerate
`else
`else
        assign  bus_lock = 1'b0;
        assign  bus_lock = 1'b0;
`endif
`endif
 
 
`ifdef  OPT_PIPELINED_BUS_ACCESS
`ifdef  OPT_PIPELINED_BUS_ACCESS
        pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
        pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
                                (op_opn[2:0]), op_Bv, op_Av, op_R,
                                (op_opn[2:0]), op_Bv, op_Av, op_R,
                                mem_busy, mem_pipe_stalled,
                                mem_busy, mem_pipe_stalled,
                                mem_valid, bus_err, mem_wreg, mem_result,
                                mem_valid, bus_err, mem_wreg, mem_result,
                        mem_cyc_gbl, mem_cyc_lcl,
                        mem_cyc_gbl, mem_cyc_lcl,
                                mem_stb_gbl, mem_stb_lcl,
                                mem_stb_gbl, mem_stb_lcl,
                                mem_we, mem_addr, mem_data, mem_sel,
                                mem_we, mem_addr, mem_data, mem_sel,
                                mem_ack, mem_stall, mem_err, i_wb_data);
                                mem_ack, mem_stall, mem_err, i_wb_data);
 
 
`else // PIPELINED_BUS_ACCESS
`else // PIPELINED_BUS_ACCESS
        memops  #(AW,IMPLEMENT_LOCK,WITH_LOCAL_BUS) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
        memops  #(AW,IMPLEMENT_LOCK,WITH_LOCAL_BUS) domem(i_clk, i_rst,
 
                        (mem_ce)&&(set_cond), bus_lock,
                                (op_opn[2:0]), op_Bv, op_Av, op_R,
                                (op_opn[2:0]), op_Bv, op_Av, op_R,
                                mem_busy,
                                mem_busy,
                                mem_valid, bus_err, mem_wreg, mem_result,
                                mem_valid, bus_err, mem_wreg, mem_result,
                        mem_cyc_gbl, mem_cyc_lcl,
                        mem_cyc_gbl, mem_cyc_lcl,
                                mem_stb_gbl, mem_stb_lcl,
                                mem_stb_gbl, mem_stb_lcl,
                                mem_we, mem_addr, mem_data, mem_sel,
                                mem_we, mem_addr, mem_data, mem_sel,
                                mem_ack, mem_stall, mem_err, i_wb_data);
                                mem_ack, mem_stall, mem_err, i_wb_data);
        assign  mem_pipe_stalled = 1'b0;
        assign  mem_pipe_stalled = 1'b0;
`endif // PIPELINED_BUS_ACCESS
`endif // PIPELINED_BUS_ACCESS
        assign  mem_rdbusy = ((mem_busy)&&(~mem_we));
        assign  mem_rdbusy = ((mem_busy)&&(!mem_we));
 
 
        // Either the prefetch or the instruction gets the memory bus, but
        // Either the prefetch or the instruction gets the memory bus, but
        // never both.
        // never both.
        wbdblpriarb     #(32,AW) pformem(i_clk, i_rst,
        wbdblpriarb     #(32,AW) pformem(i_clk, i_rst,
                // Memory access to the arbiter, priority position
                // Memory access to the arbiter, priority position
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
                        mem_we, mem_addr, mem_data, mem_sel,
                        mem_we, mem_addr, mem_data, mem_sel,
                        mem_ack, mem_stall, mem_err,
                        mem_ack, mem_stall, mem_err,
                // Prefetch access to the arbiter
                // Prefetch access to the arbiter
                //
                //
                // At a first glance, we might want something like:
                // At a first glance, we might want something like:
                //
                //
                // pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, 4'hf,
                // pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, 4'hf,
                //
                //
                // However, we know that the prefetch will not generate any
                // However, we know that the prefetch will not generate any
                // writes.  Therefore, the write specific lines (mem_data and
                // writes.  Therefore, the write specific lines (mem_data and
                // mem_sel) can be shared with the memory in order to ease
                // mem_sel) can be shared with the memory in order to ease
                // timing and LUT usage.
                // timing and LUT usage.
                pf_cyc,1'b0,pf_stb, 1'b0, pf_we, pf_addr, mem_data, mem_sel,
                pf_cyc,1'b0,pf_stb, 1'b0, pf_we, pf_addr, mem_data, mem_sel,
                        pf_ack, pf_stall, pf_err,
                        pf_ack, pf_stall, pf_err,
                // Common wires, in and out, of the arbiter
                // Common wires, in and out, of the arbiter
                o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
                o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
                        o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
                        o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
                        i_wb_ack, i_wb_stall, i_wb_err);
                        i_wb_ack, i_wb_stall, i_wb_err);
 
 
 
 
 
 
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //
        //      PIPELINE STAGE #5 :: Write-back results
        //      PIPELINE STAGE #5 :: Write-back results
        //
        //
        //
        //
        // This stage is not allowed to stall.  If results are ready to be
        // This stage is not allowed to stall.  If results are ready to be
        // written back, they are written back at all cost.  Sleepy CPU's
        // written back, they are written back at all cost.  Sleepy CPU's
        // won't prevent write back, nor debug modes, halting the CPU, nor
        // won't prevent write back, nor debug modes, halting the CPU, nor
        // anything else.  Indeed, the (master_ce) bit is only as relevant
        // anything else.  Indeed, the (master_ce) bit is only as relevant
        // as knowinig something is available for writeback.
        // as knowinig something is available for writeback.
 
 
        //
        //
        // Write back to our generic register set ...
        // Write back to our generic register set ...
        // When shall we write back?  On one of two conditions
        // When shall we write back?  On one of two conditions
        //      Note that the flags needed to be checked before issuing the
        //      Note that the flags needed to be checked before issuing the
        //      bus instruction, so they don't need to be checked here.
        //      bus instruction, so they don't need to be checked here.
        //      Further, alu_wR includes (set_cond), so we don't need to
        //      Further, alu_wR includes (set_cond), so we don't need to
        //      check for that here either.
        //      check for that here either.
        assign  wr_reg_ce = (dbgv)||(mem_valid)
        assign  wr_reg_ce = (dbgv)||(mem_valid)
                                ||((~clear_pipeline)&&(~alu_illegal)
                                ||((!clear_pipeline)&&(!alu_illegal)
                                        &&(((alu_wR)&&(alu_valid))
                                        &&(((alu_wR)&&(alu_valid))
                                                ||(div_valid)||(fpu_valid)));
                                                ||(div_valid)||(fpu_valid)));
        // Which register shall be written?
        // Which register shall be written?
        //      COULD SIMPLIFY THIS: by adding three bits to these registers,
        //      COULD SIMPLIFY THIS: by adding three bits to these registers,
        //              One or PC, one for CC, and one for GIE match
        //              One or PC, one for CC, and one for GIE match
        //      Note that the alu_reg is the register to write on a divide or
        //      Note that the alu_reg is the register to write on a divide or
        //      FPU operation.
        //      FPU operation.
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  wr_reg_id[3:0] = (alu_wR|div_valid|fpu_valid)
        assign  wr_reg_id[3:0] = (alu_wR|div_valid|fpu_valid)
                                ? alu_reg[3:0]:mem_wreg[3:0];
                                ? alu_reg[3:0]:mem_wreg[3:0];
        assign  wr_reg_id[4] = 1'b0;
        assign  wr_reg_id[4] = 1'b0;
`else
`else
        assign  wr_reg_id = (alu_wR|div_valid|fpu_valid)?alu_reg:mem_wreg;
        assign  wr_reg_id = (alu_wR|div_valid|fpu_valid)?alu_reg:mem_wreg;
`endif
`endif
 
 
        // Are we writing to the CC register?
        // Are we writing to the CC register?
        assign  wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
        assign  wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
        assign  wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG});
        assign  wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG});
        assign  wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG});
        assign  wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG});
        // Are we writing to the PC?
        // Are we writing to the PC?
        assign  wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
        assign  wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
 
 
        // What value to write?
        // What value to write?
        assign  wr_gpreg_vl = ((mem_valid) ? mem_result
        assign  wr_gpreg_vl = ((mem_valid) ? mem_result
                                :((div_valid|fpu_valid))
                                :((div_valid|fpu_valid))
                                        ? ((div_valid) ? div_result:fpu_result)
                                        ? ((div_valid) ? div_result:fpu_result)
                                :((dbgv) ? dbg_val : alu_result));
                                :((dbgv) ? dbg_val : alu_result));
        assign  wr_spreg_vl = ((mem_valid) ? mem_result
        assign  wr_spreg_vl = ((mem_valid) ? mem_result
                                :((dbgv) ? dbg_val : alu_result));
                                :((dbgv) ? dbg_val : alu_result));
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (wr_reg_ce)
                if (wr_reg_ce)
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
                        regset[wr_reg_id[3:0]] <= wr_gpreg_vl;
                        regset[wr_reg_id[3:0]] <= wr_gpreg_vl;
`else
`else
                        regset[wr_reg_id] <= wr_gpreg_vl;
                        regset[wr_reg_id] <= wr_gpreg_vl;
`endif
`endif
 
 
        //
        //
        // Write back to the condition codes/flags register ...
        // Write back to the condition codes/flags register ...
        // When shall we write to our flags register?  alu_wF already
        // When shall we write to our flags register?  alu_wF already
        // includes the set condition ...
        // includes the set condition ...
        assign  wr_flags_ce = ((alu_wF)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal);
        assign  wr_flags_ce = ((alu_wF)||(div_valid)||(fpu_valid))&&(!clear_pipeline)&&(!alu_illegal);
        assign  w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag,
        assign  w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag,
                        udiv_err_flag, ubus_err_flag, trap, ill_err_u,
                        udiv_err_flag, ubus_err_flag, trap, ill_err_u,
                        ubreak, step, 1'b1, sleep,
                        ubreak, step, 1'b1, sleep,
                        ((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
                        ((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
        assign  w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag,
        assign  w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag,
                        idiv_err_flag, ibus_err_flag, trap, ill_err_i,
                        idiv_err_flag, ibus_err_flag, trap, ill_err_i,
                        break_en, 1'b0, 1'b0, sleep,
                        break_en, 1'b0, 1'b0, sleep,
                        ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
                        ((wr_flags_ce)&&(!alu_gie))?alu_flags:iflags };
 
 
 
 
        // What value to write?
        // What value to write?
        always @(posedge i_clk)
        always @(posedge i_clk)
                // If explicitly writing the register itself
                // If explicitly writing the register itself
                if ((wr_reg_ce)&&(wr_write_ucc))
                if ((wr_reg_ce)&&(wr_write_ucc))
                        flags <= wr_gpreg_vl[3:0];
                        flags <= wr_gpreg_vl[3:0];
                // Otherwise if we're setting the flags from an ALU operation
                // Otherwise if we're setting the flags from an ALU operation
                else if ((wr_flags_ce)&&(alu_gie))
                else if ((wr_flags_ce)&&(alu_gie))
                        flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
                        flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
                                : alu_flags);
                                : alu_flags);
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((wr_reg_ce)&&(wr_write_scc))
                if ((wr_reg_ce)&&(wr_write_scc))
                        iflags <= wr_gpreg_vl[3:0];
                        iflags <= wr_gpreg_vl[3:0];
                else if ((wr_flags_ce)&&(~alu_gie))
                else if ((wr_flags_ce)&&(!alu_gie))
                        iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
                        iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
                                : alu_flags);
                                : alu_flags);
 
 
        // The 'break' enable  bit.  This bit can only be set from supervisor
        // The 'break' enable  bit.  This bit can only be set from supervisor
        // mode.  It control what the CPU does upon encountering a break
        // mode.  It control what the CPU does upon encountering a break
        // instruction.
        // instruction.
        //
        //
        // The goal, upon encountering a break is that the CPU should stop and
        // The goal, upon encountering a break is that the CPU should stop and
        // not execute the break instruction, choosing instead to enter into
        // not execute the break instruction, choosing instead to enter into
        // either interrupt mode or halt first.
        // either interrupt mode or halt first.
        //      if ((break_en) AND (break_instruction)) // user mode or not
        //      if ((break_en) AND (break_instruction)) // user mode or not
        //              HALT CPU
        //              HALT CPU
        //      else if (break_instruction) // only in user mode
        //      else if (break_instruction) // only in user mode
        //              set an interrupt flag, set the user break bit,
        //              set an interrupt flag, set the user break bit,
        //              go to supervisor mode, allow supervisor to step the CPU.
        //              go to supervisor mode, allow supervisor to step the CPU.
        //      Upon a CPU halt, any break condition will be reset.  The
        //      Upon a CPU halt, any break condition will be reset.  The
        //      external debugger will then need to deal with whatever
        //      external debugger will then need to deal with whatever
        //      condition has taken place.
        //      condition has taken place.
        initial break_en = 1'b0;
        initial break_en = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(i_halt))
                if ((i_rst)||(i_halt))
                        break_en <= 1'b0;
                        break_en <= 1'b0;
                else if ((wr_reg_ce)&&(wr_write_scc))
                else if ((wr_reg_ce)&&(wr_write_scc))
                        break_en <= wr_spreg_vl[`CPU_BREAK_BIT];
                        break_en <= wr_spreg_vl[`CPU_BREAK_BIT];
 
 
`ifdef  OPT_PIPELINED
`ifdef  OPT_PIPELINED
        reg     r_break_pending;
        reg     r_break_pending;
 
 
        initial r_break_pending = 1'b0;
        initial r_break_pending = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((clear_pipeline)||(~op_valid))
                if ((clear_pipeline)||(!op_valid))
                        r_break_pending <= 1'b0;
                        r_break_pending <= 1'b0;
                else if (op_break)
                else if (op_break)
                        r_break_pending <= (~alu_busy)&&(~div_busy)&&(~fpu_busy)&&(~mem_busy)&&(!wr_reg_ce);
                        r_break_pending <= (!alu_busy)&&(!div_busy)&&(!fpu_busy)&&(!mem_busy)&&(!wr_reg_ce);
                else
                else
                        r_break_pending <= 1'b0;
                        r_break_pending <= 1'b0;
        assign  break_pending = r_break_pending;
        assign  break_pending = r_break_pending;
`else
`else
        assign  break_pending = op_break;
        assign  break_pending = op_break;
`endif
`endif
 
 
 
 
        assign  o_break = ((break_en)||(~op_gie))&&(break_pending)
        assign  o_break = ((break_en)||(!op_gie))&&(break_pending)
                                &&(~clear_pipeline)
                                &&(!clear_pipeline)
                        ||((~alu_gie)&&(bus_err))
                        ||((!alu_gie)&&(bus_err))
                        ||((~alu_gie)&&(div_error))
                        ||((!alu_gie)&&(div_error))
                        ||((~alu_gie)&&(fpu_error))
                        ||((!alu_gie)&&(fpu_error))
                        ||((~alu_gie)&&(alu_illegal)&&(!clear_pipeline));
                        ||((!alu_gie)&&(alu_illegal)&&(!clear_pipeline));
 
 
        // The sleep register.  Setting the sleep register causes the CPU to
        // The sleep register.  Setting the sleep register causes the CPU to
        // sleep until the next interrupt.  Setting the sleep register within
        // sleep until the next interrupt.  Setting the sleep register within
        // interrupt mode causes the processor to halt until a reset.  This is
        // interrupt mode causes the processor to halt until a reset.  This is
        // a panic/fault halt.  The trick is that you cannot be allowed to
        // a panic/fault halt.  The trick is that you cannot be allowed to
        // set the sleep bit and switch to supervisor mode in the same
        // set the sleep bit and switch to supervisor mode in the same
        // instruction: users are not allowed to halt the CPU.
        // instruction: users are not allowed to halt the CPU.
        initial sleep = 1'b0;
        initial sleep = 1'b0;
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        reg     r_sleep_is_halt;
        reg     r_sleep_is_halt;
        initial r_sleep_is_halt = 1'b0;
        initial r_sleep_is_halt = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        r_sleep_is_halt <= 1'b0;
                        r_sleep_is_halt <= 1'b0;
                else if ((wr_reg_ce)&&(wr_write_cc)
                else if ((wr_reg_ce)&&(wr_write_cc)
                                &&(wr_spreg_vl[`CPU_SLEEP_BIT])
                                &&(wr_spreg_vl[`CPU_SLEEP_BIT])
                                &&(~wr_spreg_vl[`CPU_GIE_BIT]))
                                &&(!wr_spreg_vl[`CPU_GIE_BIT]))
                        r_sleep_is_halt <= 1'b1;
                        r_sleep_is_halt <= 1'b1;
 
 
        // Trying to switch to user mode, either via a WAIT or an RTU
        // Trying to switch to user mode, either via a WAIT or an RTU
        // instruction will cause the CPU to sleep until an interrupt, in
        // instruction will cause the CPU to sleep until an interrupt, in
        // the NO-USERMODE build.
        // the NO-USERMODE build.
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||((i_interrupt)&&(!r_sleep_is_halt)))
                if ((i_rst)||((i_interrupt)&&(!r_sleep_is_halt)))
                        sleep <= 1'b0;
                        sleep <= 1'b0;
                else if ((wr_reg_ce)&&(wr_write_cc)
                else if ((wr_reg_ce)&&(wr_write_cc)
                                &&(wr_spreg_vl[`CPU_GIE_BIT]))
                                &&(wr_spreg_vl[`CPU_GIE_BIT]))
                        sleep <= 1'b1;
                        sleep <= 1'b1;
`else
`else
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(w_switch_to_interrupt))
                if ((i_rst)||(w_switch_to_interrupt))
                        sleep <= 1'b0;
                        sleep <= 1'b0;
                else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie))
                else if ((wr_reg_ce)&&(wr_write_cc)&&(!alu_gie))
                        // In supervisor mode, we have no protections.  The
                        // In supervisor mode, we have no protections.  The
                        // supervisor can set the sleep bit however he wants.
                        // supervisor can set the sleep bit however he wants.
                        // Well ... not quite.  Switching to user mode and
                        // Well ... not quite.  Switching to user mode and
                        // sleep mode shouold only be possible if the interrupt
                        // sleep mode shouold only be possible if the interrupt
                        // flag isn't set.
                        // flag isn't set.
                        //      Thus: if (i_interrupt)&&(wr_spreg_vl[GIE])
                        //      Thus: if (i_interrupt)&&(wr_spreg_vl[GIE])
                        //              don't set the sleep bit
                        //              don't set the sleep bit
                        //      otherwise however it would o.w. be set
                        //      otherwise however it would o.w. be set
                        sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT])
                        sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT])
                                &&((~i_interrupt)||(~wr_spreg_vl[`CPU_GIE_BIT]));
                                &&((!i_interrupt)||(!wr_spreg_vl[`CPU_GIE_BIT]));
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT]))
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT]))
                        // In user mode, however, you can only set the sleep
                        // In user mode, however, you can only set the sleep
                        // mode while remaining in user mode.  You can't switch
                        // mode while remaining in user mode.  You can't switch
                        // to sleep mode *and* supervisor mode at the same
                        // to sleep mode *and* supervisor mode at the same
                        // time, lest you halt the CPU.
                        // time, lest you halt the CPU.
                        sleep <= wr_spreg_vl[`CPU_SLEEP_BIT];
                        sleep <= wr_spreg_vl[`CPU_SLEEP_BIT];
`endif
`endif
 
 
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        step <= 1'b0;
                        step <= 1'b0;
                else if ((wr_reg_ce)&&(~alu_gie)&&(wr_write_ucc))
                else if ((wr_reg_ce)&&(!alu_gie)&&(wr_write_ucc))
                        step <= wr_spreg_vl[`CPU_STEP_BIT];
                        step <= wr_spreg_vl[`CPU_STEP_BIT];
 
 
        // The GIE register.  Only interrupts can disable the interrupt register
        // The GIE register.  Only interrupts can disable the interrupt register
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  w_switch_to_interrupt    = 1'b0;
        assign  w_switch_to_interrupt    = 1'b0;
        assign  w_release_from_interrupt = 1'b0;
        assign  w_release_from_interrupt = 1'b0;
`else
`else
        assign  w_switch_to_interrupt = (gie)&&(
        assign  w_switch_to_interrupt = (gie)&&(
                        // On interrupt (obviously)
                        // On interrupt (obviously)
                        ((i_interrupt)&&(~alu_phase)&&(~bus_lock))
                        ((i_interrupt)&&(!alu_phase)&&(!bus_lock))
                        // If we are stepping the CPU
                        // If we are stepping the CPU
                        ||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(~alu_phase)&&(~bus_lock))
                        ||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(!alu_phase)&&(!bus_lock))
                        // If we encounter a break instruction, if the break
                        // If we encounter a break instruction, if the break
                        //      enable isn't set.
                        //      enable isn't set.
                        ||((master_ce)&&(break_pending)&&(~break_en))
                        ||((master_ce)&&(break_pending)&&(!break_en))
                        // On an illegal instruction
                        // On an illegal instruction
                        ||((alu_illegal)&&(!clear_pipeline))
                        ||((alu_illegal)&&(!clear_pipeline))
                        // On division by zero.  If the divide isn't
                        // On division by zero.  If the divide isn't
                        // implemented, div_valid and div_error will be short
                        // implemented, div_valid and div_error will be short
                        // circuited and that logic will be bypassed
                        // circuited and that logic will be bypassed
                        ||(div_error)
                        ||(div_error)
                        // Same thing on a floating point error.  Note that
                        // Same thing on a floating point error.  Note that
                        // fpu_error must *never* be set unless fpu_valid is
                        // fpu_error must *never* be set unless fpu_valid is
                        // also set as well, else this will fail.
                        // also set as well, else this will fail.
                        ||(fpu_error)
                        ||(fpu_error)
                        //
                        //
                        ||(bus_err)
                        ||(bus_err)
                        // If we write to the CC register
                        // If we write to the CC register
                        ||((wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT])
                        ||((wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT])
                                &&(wr_reg_id[4])&&(wr_write_cc))
                                &&(wr_reg_id[4])&&(wr_write_cc))
                        );
                        );
        assign  w_release_from_interrupt = (~gie)&&(~i_interrupt)
        assign  w_release_from_interrupt = (!gie)&&(!i_interrupt)
                        // Then if we write the sCC register
                        // Then if we write the sCC register
                        &&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT])
                        &&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT])
                                &&(wr_write_scc))
                                &&(wr_write_scc))
                        );
                        );
`endif
`endif
 
 
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  gie = 1'b0;
        assign  gie = 1'b0;
`else
`else
        reg     r_gie;
        reg     r_gie;
 
 
        initial r_gie = 1'b0;
        initial r_gie = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        r_gie <= 1'b0;
                        r_gie <= 1'b0;
                else if (w_switch_to_interrupt)
                else if (w_switch_to_interrupt)
                        r_gie <= 1'b0;
                        r_gie <= 1'b0;
                else if (w_release_from_interrupt)
                else if (w_release_from_interrupt)
                        r_gie <= 1'b1;
                        r_gie <= 1'b1;
        assign  gie = r_gie;
        assign  gie = r_gie;
`endif
`endif
 
 
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  trap   = 1'b0;
        assign  trap   = 1'b0;
        assign  ubreak = 1'b0;
        assign  ubreak = 1'b0;
`else
`else
        reg     r_trap;
        reg     r_trap;
 
 
        initial r_trap = 1'b0;
        initial r_trap = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(w_release_from_interrupt))
                if ((i_rst)||(w_release_from_interrupt))
                        r_trap <= 1'b0;
                        r_trap <= 1'b0;
                else if ((alu_gie)&&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT])
                else if ((alu_gie)&&(wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT])
                                &&(wr_write_ucc)) // &&(wr_reg_id[4]) implied
                                &&(wr_write_ucc)) // &&(wr_reg_id[4]) implied
                        r_trap <= 1'b1;
                        r_trap <= 1'b1;
                else if ((wr_reg_ce)&&(wr_write_ucc)&&(~alu_gie))
                else if ((wr_reg_ce)&&(wr_write_ucc)&&(!alu_gie))
                        r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]);
                        r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]);
 
 
        reg     r_ubreak;
        reg     r_ubreak;
 
 
        initial r_ubreak = 1'b0;
        initial r_ubreak = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(w_release_from_interrupt))
                if ((i_rst)||(w_release_from_interrupt))
                        r_ubreak <= 1'b0;
                        r_ubreak <= 1'b0;
                else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt))
                else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt))
                        r_ubreak <= 1'b1;
                        r_ubreak <= 1'b1;
                else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                        r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]);
                        r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]);
 
 
        assign  trap = r_trap;
        assign  trap = r_trap;
        assign  ubreak = r_ubreak;
        assign  ubreak = r_ubreak;
`endif
`endif
 
 
 
 
`ifdef  OPT_ILLEGAL_INSTRUCTION
`ifdef  OPT_ILLEGAL_INSTRUCTION
        initial ill_err_i = 1'b0;
        initial ill_err_i = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        ill_err_i <= 1'b0;
                        ill_err_i <= 1'b0;
                // Only the debug interface can clear this bit
                // Only the debug interface can clear this bit
                else if ((dbgv)&&(wr_write_scc))
                else if ((dbgv)&&(wr_write_scc))
                        ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]);
                        ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]);
                else if ((alu_illegal)&&(~alu_gie)&&(!clear_pipeline))
                else if ((alu_illegal)&&(!alu_gie)&&(!clear_pipeline))
                        ill_err_i <= 1'b1;
                        ill_err_i <= 1'b1;
 
 
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  ill_err_u = 1'b0;
        assign  ill_err_u = 1'b0;
`else
`else
        reg     r_ill_err_u;
        reg     r_ill_err_u;
 
 
        initial r_ill_err_u = 1'b0;
        initial r_ill_err_u = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                // The bit is automatically cleared on release from interrupt
                // The bit is automatically cleared on release from interrupt
                // or reset
                // or reset
                if ((i_rst)||(w_release_from_interrupt))
                if ((i_rst)||(w_release_from_interrupt))
                        r_ill_err_u <= 1'b0;
                        r_ill_err_u <= 1'b0;
                // If the supervisor (or debugger) writes to this register,
                // If the supervisor (or debugger) writes to this register,
                // clearing the bit, then clear it
                // clearing the bit, then clear it
                else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                        r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT]));
                        r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT]));
                else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline))
                else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline))
                        r_ill_err_u <= 1'b1;
                        r_ill_err_u <= 1'b1;
 
 
        assign  ill_err_u = r_ill_err_u;
        assign  ill_err_u = r_ill_err_u;
`endif
`endif
`else
`else
        assign ill_err_u = 1'b0;
        assign ill_err_u = 1'b0;
        assign ill_err_i = 1'b0;
        assign ill_err_i = 1'b0;
`endif
`endif
        // Supervisor/interrupt bus error flag -- this will crash the CPU if
        // Supervisor/interrupt bus error flag -- this will crash the CPU if
        // ever set.
        // ever set.
        initial ibus_err_flag = 1'b0;
        initial ibus_err_flag = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        ibus_err_flag <= 1'b0;
                        ibus_err_flag <= 1'b0;
                else if ((dbgv)&&(wr_write_scc))
                else if ((dbgv)&&(wr_write_scc))
                        ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
                        ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
                else if ((bus_err)&&(~alu_gie))
                else if ((bus_err)&&(!alu_gie))
                        ibus_err_flag <= 1'b1;
                        ibus_err_flag <= 1'b1;
        // User bus error flag -- if ever set, it will cause an interrupt to
        // User bus error flag -- if ever set, it will cause an interrupt to
        // supervisor mode.
        // supervisor mode.
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  ubus_err_flag = 1'b0;
        assign  ubus_err_flag = 1'b0;
`else
`else
        reg     r_ubus_err_flag;
        reg     r_ubus_err_flag;
 
 
        initial r_ubus_err_flag = 1'b0;
        initial r_ubus_err_flag = 1'b0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(w_release_from_interrupt))
                if ((i_rst)||(w_release_from_interrupt))
                        r_ubus_err_flag <= 1'b0;
                        r_ubus_err_flag <= 1'b0;
                else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
                        r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
                        r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
                else if ((bus_err)&&(alu_gie))
                else if ((bus_err)&&(alu_gie))
                        r_ubus_err_flag <= 1'b1;
                        r_ubus_err_flag <= 1'b1;
 
 
        assign  ubus_err_flag = r_ubus_err_flag;
        assign  ubus_err_flag = r_ubus_err_flag;
`endif
`endif
 
 
        generate
        generate
        if (IMPLEMENT_DIVIDE != 0)
        if (IMPLEMENT_DIVIDE != 0)
        begin
        begin
                reg     r_idiv_err_flag, r_udiv_err_flag;
                reg     r_idiv_err_flag, r_udiv_err_flag;
 
 
                // Supervisor/interrupt divide (by zero) error flag -- this will
                // Supervisor/interrupt divide (by zero) error flag -- this will
                // crash the CPU if ever set.  This bit is thus available for us
                // crash the CPU if ever set.  This bit is thus available for us
                // to be able to tell if/why the CPU crashed.
                // to be able to tell if/why the CPU crashed.
                initial r_idiv_err_flag = 1'b0;
                initial r_idiv_err_flag = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (i_rst)
                        if (i_rst)
                                r_idiv_err_flag <= 1'b0;
                                r_idiv_err_flag <= 1'b0;
                        else if ((dbgv)&&(wr_write_scc))
                        else if ((dbgv)&&(wr_write_scc))
                                r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
                                r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
                        else if ((div_error)&&(~alu_gie))
                        else if ((div_error)&&(!alu_gie))
                                r_idiv_err_flag <= 1'b1;
                                r_idiv_err_flag <= 1'b1;
 
 
                assign  idiv_err_flag = r_idiv_err_flag;
                assign  idiv_err_flag = r_idiv_err_flag;
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
                assign  udiv_err_flag = 1'b0;
                assign  udiv_err_flag = 1'b0;
`else
`else
                // User divide (by zero) error flag -- if ever set, it will
                // User divide (by zero) error flag -- if ever set, it will
                // cause a sudden switch interrupt to supervisor mode.
                // cause a sudden switch interrupt to supervisor mode.
                initial r_udiv_err_flag = 1'b0;
                initial r_udiv_err_flag = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if ((i_rst)||(w_release_from_interrupt))
                        if ((i_rst)||(w_release_from_interrupt))
                                r_udiv_err_flag <= 1'b0;
                                r_udiv_err_flag <= 1'b0;
                        else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
                        else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)
                                        &&(wr_write_ucc))
                                        &&(wr_write_ucc))
                                r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
                                r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
                        else if ((div_error)&&(alu_gie))
                        else if ((div_error)&&(alu_gie))
                                r_udiv_err_flag <= 1'b1;
                                r_udiv_err_flag <= 1'b1;
 
 
                assign  udiv_err_flag = r_udiv_err_flag;
                assign  udiv_err_flag = r_udiv_err_flag;
`endif
`endif
        end else begin
        end else begin
                assign  idiv_err_flag = 1'b0;
                assign  idiv_err_flag = 1'b0;
                assign  udiv_err_flag = 1'b0;
                assign  udiv_err_flag = 1'b0;
        end endgenerate
        end endgenerate
 
 
        generate
        generate
        if (IMPLEMENT_FPU !=0)
        if (IMPLEMENT_FPU !=0)
        begin
        begin
                // Supervisor/interrupt floating point error flag -- this will
                // Supervisor/interrupt floating point error flag -- this will
                // crash the CPU if ever set.
                // crash the CPU if ever set.
                reg             r_ifpu_err_flag, r_ufpu_err_flag;
                reg             r_ifpu_err_flag, r_ufpu_err_flag;
                initial r_ifpu_err_flag = 1'b0;
                initial r_ifpu_err_flag = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if (i_rst)
                        if (i_rst)
                                r_ifpu_err_flag <= 1'b0;
                                r_ifpu_err_flag <= 1'b0;
                        else if ((dbgv)&&(wr_write_scc))
                        else if ((dbgv)&&(wr_write_scc))
                                r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
                                r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
                        else if ((fpu_error)&&(fpu_valid)&&(~alu_gie))
                        else if ((fpu_error)&&(fpu_valid)&&(!alu_gie))
                                r_ifpu_err_flag <= 1'b1;
                                r_ifpu_err_flag <= 1'b1;
                // User floating point error flag -- if ever set, it will cause
                // User floating point error flag -- if ever set, it will cause
                // a sudden switch interrupt to supervisor mode.
                // a sudden switch interrupt to supervisor mode.
                initial r_ufpu_err_flag = 1'b0;
                initial r_ufpu_err_flag = 1'b0;
                always @(posedge i_clk)
                always @(posedge i_clk)
                        if ((i_rst)&&(w_release_from_interrupt))
                        if ((i_rst)&&(w_release_from_interrupt))
                                r_ufpu_err_flag <= 1'b0;
                                r_ufpu_err_flag <= 1'b0;
                        else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
                        else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)
                                        &&(wr_write_ucc))
                                        &&(wr_write_ucc))
                                r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
                                r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
                        else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
                        else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
                                r_ufpu_err_flag <= 1'b1;
                                r_ufpu_err_flag <= 1'b1;
 
 
                assign  ifpu_err_flag = r_ifpu_err_flag;
                assign  ifpu_err_flag = r_ifpu_err_flag;
                assign  ufpu_err_flag = r_ufpu_err_flag;
                assign  ufpu_err_flag = r_ufpu_err_flag;
        end else begin
        end else begin
                assign  ifpu_err_flag = 1'b0;
                assign  ifpu_err_flag = 1'b0;
                assign  ufpu_err_flag = 1'b0;
                assign  ufpu_err_flag = 1'b0;
        end endgenerate
        end endgenerate
 
 
`ifdef  OPT_CIS
`ifdef  OPT_CIS
        reg             r_ihalt_phase;
        reg             r_ihalt_phase;
 
 
        initial r_ihalt_phase = 0;
        initial r_ihalt_phase = 0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if (i_rst)
                if (i_rst)
                        r_ihalt_phase <= 1'b0;
                        r_ihalt_phase <= 1'b0;
                else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
                else if ((!alu_gie)&&(alu_pc_valid)&&(!clear_pipeline))
                        r_ihalt_phase <= alu_phase;
                        r_ihalt_phase <= alu_phase;
 
 
        assign  ihalt_phase = r_ihalt_phase;
        assign  ihalt_phase = r_ihalt_phase;
 
 
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  uhalt_phase = 1'b0;
        assign  uhalt_phase = 1'b0;
`else
`else
        reg             r_uhalt_phase;
        reg             r_uhalt_phase;
 
 
        initial r_uhalt_phase = 0;
        initial r_uhalt_phase = 0;
        always @(posedge i_clk)
        always @(posedge i_clk)
                if ((i_rst)||(w_release_from_interrupt))
                if ((i_rst)||(w_release_from_interrupt))
                        r_uhalt_phase <= 1'b0;
                        r_uhalt_phase <= 1'b0;
                else if ((alu_gie)&&(alu_pc_valid))
                else if ((alu_gie)&&(alu_pc_valid))
                        r_uhalt_phase <= alu_phase;
                        r_uhalt_phase <= alu_phase;
                else if ((~alu_gie)&&(wr_reg_ce)&&(wr_write_ucc))
                else if ((!alu_gie)&&(wr_reg_ce)&&(wr_write_ucc))
                        r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT];
                        r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT];
 
 
        assign  uhalt_phase = r_uhalt_phase;
        assign  uhalt_phase = r_uhalt_phase;
`endif
`endif
`else
`else
        assign  ihalt_phase = 1'b0;
        assign  ihalt_phase = 1'b0;
        assign  uhalt_phase = 1'b0;
        assign  uhalt_phase = 1'b0;
`endif
`endif
 
 
        //
        //
        // Write backs to the PC register, and general increments of it
        // Write backs to the PC register, and general increments of it
        //      We support two: upc and ipc.  If the instruction is normal,
        //      We support two: upc and ipc.  If the instruction is normal,
        // we increment upc, if interrupt level we increment ipc.  If
        // we increment upc, if interrupt level we increment ipc.  If
        // the instruction writes the PC, we write whichever PC is appropriate.
        // the instruction writes the PC, we write whichever PC is appropriate.
        //
        //
        // Do we need to all our partial results from the pipeline?
        // Do we need to all our partial results from the pipeline?
        // What happens when the pipeline has gie and ~gie instructions within
        // What happens when the pipeline has gie and !gie instructions within
        // it?  Do we clear both?  What if a gie instruction tries to clear
        // it?  Do we clear both?  What if a gie instruction tries to clear
        // a non-gie instruction?
        // a non-gie instruction?
`ifdef  OPT_NO_USERMODE
`ifdef  OPT_NO_USERMODE
        assign  upc = {(AW+2){1'b0}};
        assign  upc = {(AW+2){1'b0}