///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: zipsystem.v
|
// Filename: zipsystem.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
// Purpose: This portion of the ZIP CPU implements a number of soft
|
// peripherals to the CPU nearby its CORE. The functionality
|
// peripherals to the CPU nearby its CORE. The functionality
|
// sits on the data bus, and does not include any true
|
// sits on the data bus, and does not include any true
|
// external hardware peripherals. The peripherals included here
|
// external hardware peripherals. The peripherals included here
|
// include:
|
// include:
|
//
|
//
|
//
|
//
|
// Local interrupt controller--for any/all of the interrupts generated
|
// Local interrupt controller--for any/all of the interrupts generated
|
// here. This would include a pin for interrupts generated
|
// here. This would include a pin for interrupts generated
|
// elsewhere, so this interrupt controller could be a master
|
// elsewhere, so this interrupt controller could be a master
|
// handling all interrupts. My interrupt controller would work
|
// handling all interrupts. My interrupt controller would work
|
// for this purpose.
|
// for this purpose.
|
//
|
//
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
// The ZIP-CPU supports only one interrupt because, as I understand
|
// modern systems (Linux), they tend to send all interrupts to the
|
// modern systems (Linux), they tend to send all interrupts to the
|
// same interrupt vector anyway. Hence, that's what we do here.
|
// same interrupt vector anyway. Hence, that's what we do here.
|
//
|
//
|
// Bus Error interrupts -- generates an interrupt any time the wishbone
|
// Bus Error interrupts -- generates an interrupt any time the wishbone
|
// bus produces an error on a given access, for whatever purpose
|
// bus produces an error on a given access, for whatever purpose
|
// also records the address on the bus at the time of the error.
|
// also records the address on the bus at the time of the error.
|
//
|
//
|
// Trap instructions
|
// Trap instructions
|
// Writing to this "register" will always create an interrupt.
|
// Writing to this "register" will always create an interrupt.
|
// After the interrupt, this register may be read to see what
|
// After the interrupt, this register may be read to see what
|
// value had been written to it.
|
// value had been written to it.
|
//
|
//
|
// Bit reverse register ... ?
|
// Bit reverse register ... ?
|
//
|
//
|
// (Potentially an eventual floating point co-processor ...)
|
// (Potentially an eventual floating point co-processor ...)
|
//
|
//
|
// Real-time clock
|
// Real-time clock
|
//
|
//
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
// Interval timer(s) (Count down from fixed value, and either stop on
|
// zero, or issue an interrupt and restart automatically on zero)
|
// zero, or issue an interrupt and restart automatically on zero)
|
// These can be implemented as watchdog timers if desired--the
|
// These can be implemented as watchdog timers if desired--the
|
// only difference is that a watchdog timer's interrupt feeds the
|
// only difference is that a watchdog timer's interrupt feeds the
|
// reset line instead of the processor interrupt line.
|
// reset line instead of the processor interrupt line.
|
//
|
//
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
// Watch-dog timer: this is the same as an interval timer, only it's
|
// interrupt/time-out line is wired to the reset line instead of
|
// interrupt/time-out line is wired to the reset line instead of
|
// the interrupt line of the CPU.
|
// the interrupt line of the CPU.
|
//
|
//
|
// ROM Memory map
|
// ROM Memory map
|
// Set a register to control this map, and a DMA will begin to
|
// Set a register to control this map, and a DMA will begin to
|
// fill this memory from a slower FLASH. Once filled, accesses
|
// fill this memory from a slower FLASH. Once filled, accesses
|
// will be from this memory instead of
|
// will be from this memory instead of
|
//
|
//
|
//
|
//
|
// Doing some market comparison, let's look at what peripherals a TI
|
// Doing some market comparison, let's look at what peripherals a TI
|
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
|
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
|
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
|
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
|
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
|
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
|
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
|
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
|
// watchdog-timers,
|
// watchdog-timers,
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Tecnology, LLC
|
// Gisselquist Tecnology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// While I hate adding delays to any bus access, these two are required
|
// While I hate adding delays to any bus access, this next delay is required
|
// to make timing close in my Basys-3 design.
|
// to make timing close in my Basys-3 design.
|
`define DELAY_EXT_BUS
|
|
`define DELAY_DBG_BUS
|
`define DELAY_DBG_BUS
|
//
|
// On my previous version, I needed to add a delay to access the external
|
|
// bus. Activate the define below and that delay will be put back into place.
|
|
// This particular version no longer needs the delay in order to run at
|
|
// 100 MHz. Timing indicates I may even run this at 250 MHz without the
|
|
// delay too, so we're doing better. To get rid of this, I placed the logic
|
|
// determining whether or not I was accessing the local system bus one clock
|
|
// earlier, or into the memops.v file. This also required my wishbone bus
|
|
// arbiter to maintain the bus selection as well, so that got updated ...
|
|
// you get the picture. But, the bottom line is that I no longer need this
|
|
// delay.
|
|
//
|
|
// `define DELAY_EXT_BUS // Required no longer!k
|
|
//
|
|
//
|
|
// If space is tight, you might not wish to have your performance and
|
|
// accounting counters, so let's make those optional here
|
|
// Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU)
|
|
// When including counters,
|
|
// Slice LUTs ZipSystem ZipCPU
|
|
// With Counters 3315 2432
|
|
// Without Counters 2796 2046
|
|
`define INCLUDE_ACCOUNTING_COUNTERS
|
|
|
//
|
//
|
// Now, where am I placing all of my peripherals?
|
// Now, where am I placing all of my peripherals?
|
`define PERIPHBASE 32'hc0000000
|
`define PERIPHBASE 32'hc0000000
|
`define INTCTRL 4'h0 //
|
`define INTCTRL 5'h0 //
|
`define WATCHDOG 4'h1 // Interrupt generates reset signal
|
`define WATCHDOG 5'h1 // Interrupt generates reset signal
|
`define CACHECTRL 4'h2 // Sets IVEC[0]
|
// `define CACHECTRL 5'h2 // Sets IVEC[0]
|
`define CTRINT 4'h3 // Sets IVEC[5]
|
`define CTRINT 5'h3 // Sets IVEC[5]
|
`define TIMER_A 4'h4 // Sets IVEC[4]
|
`define TIMER_A 5'h4 // Sets IVEC[4]
|
`define TIMER_B 4'h5 // Sets IVEC[3]
|
`define TIMER_B 5'h5 // Sets IVEC[3]
|
`define TIMER_C 4'h6 // Sets IVEC[2]
|
`define TIMER_C 5'h6 // Sets IVEC[2]
|
`define JIFFIES 4'h7 // Sets IVEC[1]
|
`define JIFFIES 5'h7 // Sets IVEC[1]
|
|
|
`define MSTR_TASK_CTR 4'h8
|
|
`define MSTR_MSTL_CTR 4'h9
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
`define MSTR_PSTL_CTR 4'ha
|
`define MSTR_TASK_CTR 5'h08
|
`define MSTR_INST_CTR 4'hb
|
`define MSTR_MSTL_CTR 5'h09
|
`define USER_TASK_CTR 4'hc
|
`define MSTR_PSTL_CTR 5'h0a
|
`define USER_MSTL_CTR 4'hd
|
`define MSTR_INST_CTR 5'h0b
|
`define USER_PSTL_CTR 4'he
|
`define USER_TASK_CTR 5'h0c
|
`define USER_INST_CTR 4'hf
|
`define USER_MSTL_CTR 5'h0d
|
|
`define USER_PSTL_CTR 5'h0e
|
|
`define USER_INST_CTR 5'h0f
|
|
`endif
|
|
|
|
// Although I have a hole at 5'h2, the DMA controller requires four wishbone
|
|
// addresses, therefore we place it by itself and expand our address bus
|
|
// width here by another bit.
|
|
`define DMAC 5'h10
|
|
|
`define CACHEBASE 16'hc010 //
|
|
// `define RTC_CLOCK 32'hc0000008 // A global something
|
// `define RTC_CLOCK 32'hc0000008 // A global something
|
// `define BITREV 32'hc0000003
|
// `define BITREV 32'hc0000003
|
//
|
//
|
// DBGCTRL
|
// DBGCTRL
|
// 10 HALT
|
// 10 HALT
|
// 9 HALT(ED)
|
// 9 HALT(ED)
|
// 8 STEP (W=1 steps, and returns to halted)
|
// 8 STEP (W=1 steps, and returns to halted)
|
// 7 INTERRUPT-FLAG
|
// 7 INTERRUPT-FLAG
|
// 6 RESET_FLAG
|
// 6 RESET_FLAG
|
// ADDRESS:
|
// ADDRESS:
|
// 5 PERIPHERAL-BIT
|
// 5 PERIPHERAL-BIT
|
// [4:0] REGISTER-ADDR
|
// [4:0] REGISTER-ADDR
|
// DBGDATA
|
// DBGDATA
|
// read/writes internal registers
|
// read/writes internal registers
|
module zipsystem(i_clk, i_rst,
|
module zipsystem(i_clk, i_rst,
|
// Wishbone master interface from the CPU
|
// Wishbone master interface from the CPU
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
i_wb_ack, i_wb_stall, i_wb_data,
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
|
// Incoming interrupts
|
// Incoming interrupts
|
i_ext_int,
|
i_ext_int,
|
// Our one outgoing interrupt
|
// Our one outgoing interrupt
|
o_ext_int,
|
o_ext_int,
|
// Wishbone slave interface for debugging purposes
|
// Wishbone slave interface for debugging purposes
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
o_dbg_ack, o_dbg_stall, o_dbg_data);
|
o_dbg_ack, o_dbg_stall, o_dbg_data);
|
parameter RESET_ADDRESS=32'h0100000, START_HALTED=1,
|
parameter RESET_ADDRESS=32'h0100000, START_HALTED=1,
|
EXTERNAL_INTERRUPTS=1;
|
EXTERNAL_INTERRUPTS=1;
|
input i_clk, i_rst;
|
input i_clk, i_rst;
|
// Wishbone master
|
// Wishbone master
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
output wire o_wb_cyc, o_wb_stb, o_wb_we;
|
output wire [31:0] o_wb_addr;
|
output wire [31:0] o_wb_addr;
|
output wire [31:0] o_wb_data;
|
output wire [31:0] o_wb_data;
|
input i_wb_ack, i_wb_stall;
|
input i_wb_ack, i_wb_stall;
|
input [31:0] i_wb_data;
|
input [31:0] i_wb_data;
|
|
input i_wb_err;
|
// Incoming interrupts
|
// Incoming interrupts
|
input [(EXTERNAL_INTERRUPTS-1):0] i_ext_int;
|
input [(EXTERNAL_INTERRUPTS-1):0] i_ext_int;
|
// Outgoing interrupt
|
// Outgoing interrupt
|
output wire o_ext_int;
|
output wire o_ext_int;
|
// Wishbone slave
|
// Wishbone slave
|
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
|
input [31:0] i_dbg_data;
|
input [31:0] i_dbg_data;
|
output wire o_dbg_ack;
|
output wire o_dbg_ack;
|
output wire o_dbg_stall;
|
output wire o_dbg_stall;
|
output wire [31:0] o_dbg_data;
|
output wire [31:0] o_dbg_data;
|
|
|
wire [31:0] ext_idata;
|
wire [31:0] ext_idata;
|
|
|
// Delay the debug port by one clock, to meet timing requirements
|
// Delay the debug port by one clock, to meet timing requirements
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
|
wire [31:0] dbg_idata, dbg_odata;
|
wire [31:0] dbg_idata, dbg_odata;
|
reg dbg_ack;
|
reg dbg_ack;
|
`ifdef DELAY_DBG_BUS
|
`ifdef DELAY_DBG_BUS
|
|
wire dbg_err, no_dbg_err;
|
|
assign dbg_err = 1'b0;
|
busdelay #(1,32) wbdelay(i_clk,
|
busdelay #(1,32) wbdelay(i_clk,
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
|
o_dbg_ack, o_dbg_stall, o_dbg_data,
|
o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err,
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
|
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
|
dbg_ack, dbg_stall, dbg_odata);
|
dbg_ack, dbg_stall, dbg_odata, dbg_err);
|
`else
|
`else
|
assign dbg_cyc = i_dbg_cyc;
|
assign dbg_cyc = i_dbg_cyc;
|
assign dbg_stb = i_dbg_stb;
|
assign dbg_stb = i_dbg_stb;
|
assign dbg_we = i_dbg_we;
|
assign dbg_we = i_dbg_we;
|
assign dbg_addr = i_dbg_addr;
|
assign dbg_addr = i_dbg_addr;
|
assign dbg_idata = i_dbg_data;
|
assign dbg_idata = i_dbg_data;
|
assign o_dbg_ack = dbg_ack;
|
assign o_dbg_ack = dbg_ack;
|
assign o_dbg_stall = dbg_stall;
|
assign o_dbg_stall = dbg_stall;
|
assign o_dbg_data = dbg_odata;
|
assign o_dbg_data = dbg_odata;
|
`endif
|
`endif
|
|
|
//
|
//
|
//
|
//
|
//
|
//
|
wire sys_cyc, sys_stb, sys_we;
|
wire sys_cyc, sys_stb, sys_we;
|
wire [3:0] sys_addr;
|
wire [4:0] sys_addr;
|
wire [31:0] cpu_addr;
|
wire [31:0] cpu_addr;
|
wire [31:0] sys_data;
|
wire [31:0] sys_data;
|
// wire sys_ack, sys_stall;
|
wire sys_ack, sys_stall;
|
|
|
//
|
//
|
// The external debug interface
|
// The external debug interface
|
//
|
//
|
// We offer only a limited interface here, requiring a pre-register
|
// We offer only a limited interface here, requiring a pre-register
|
// write to set the local address. This interface allows access to
|
// write to set the local address. This interface allows access to
|
// the Zip System on a debug basis only, and not to the rest of the
|
// the Zip System on a debug basis only, and not to the rest of the
|
// wishbone bus. Further, to access these registers, the control
|
// wishbone bus. Further, to access these registers, the control
|
// register must first be accessed to both stop the CPU and to
|
// register must first be accessed to both stop the CPU and to
|
// set the following address in question. Hence all accesses require
|
// set the following address in question. Hence all accesses require
|
// two accesses: write the address to the control register (and halt
|
// two accesses: write the address to the control register (and halt
|
// the CPU if not halted), then read/write the data from the data
|
// the CPU if not halted), then read/write the data from the data
|
// register.
|
// register.
|
//
|
//
|
wire cpu_break, dbg_cmd_write;
|
wire cpu_break, dbg_cmd_write;
|
reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
|
reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
|
reg [5:0] cmd_addr;
|
reg [5:0] cmd_addr;
|
wire [1:0] cpu_dbg_cc;
|
wire [1:0] cpu_dbg_cc;
|
assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
|
assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
|
//
|
//
|
initial cmd_reset = 1'b1;
|
initial cmd_reset = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
|
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
|
//
|
//
|
initial cmd_halt = 1'b1;
|
initial cmd_halt = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0;
|
cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0;
|
else if (dbg_cmd_write)
|
else if (dbg_cmd_write)
|
cmd_halt <= dbg_idata[10];
|
cmd_halt <= ((dbg_idata[10])||(dbg_idata[8]));
|
else if ((cmd_step)||(cpu_break))
|
else if ((cmd_step)||(cpu_break))
|
cmd_halt <= 1'b1;
|
cmd_halt <= 1'b1;
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
cmd_clear_pf_cache <= 1'b0;
|
cmd_clear_pf_cache <= 1'b0;
|
else if (dbg_cmd_write)
|
else if (dbg_cmd_write)
|
cmd_clear_pf_cache <= dbg_idata[11];
|
cmd_clear_pf_cache <= dbg_idata[11];
|
else
|
else
|
cmd_clear_pf_cache <= 1'b0;
|
cmd_clear_pf_cache <= 1'b0;
|
//
|
//
|
initial cmd_step = 1'b0;
|
initial cmd_step = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
|
cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
|
//
|
//
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (dbg_cmd_write)
|
if (dbg_cmd_write)
|
cmd_addr <= dbg_idata[5:0];
|
cmd_addr <= dbg_idata[5:0];
|
|
|
wire cpu_reset;
|
wire cpu_reset;
|
assign cpu_reset = (cmd_reset)||(wdt_reset);
|
assign cpu_reset = (cmd_reset)||(wdt_reset)||(i_rst);
|
|
|
wire cpu_halt, cpu_dbg_stall;
|
wire cpu_halt, cpu_dbg_stall;
|
assign cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step));
|
assign cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step));
|
wire [31:0] pic_data;
|
wire [31:0] pic_data;
|
wire [31:0] cmd_data;
|
wire [31:0] cmd_data;
|
// Values:
|
// Values:
|
// 0x0003f -> cmd_addr mask
|
// 0x0003f -> cmd_addr mask
|
// 0x00040 -> reset
|
// 0x00040 -> reset
|
// 0x00080 -> PIC interrrupts enabled
|
// 0x00080 -> PIC interrrupts enabled
|
// 0x00100 -> cmd_step
|
// 0x00100 -> cmd_step
|
// 0x00200 -> cmd_stall
|
// 0x00200 -> cmd_stall
|
// 0x00400 -> cmd_halt
|
// 0x00400 -> cmd_halt
|
// 0x00800 -> cmd_clear_pf_cache
|
// 0x00800 -> cmd_clear_pf_cache
|
// 0x01000 -> cc.sleep
|
// 0x01000 -> cc.sleep
|
// 0x02000 -> cc.gie
|
// 0x02000 -> cc.gie
|
// 0x10000 -> External interrupt line is high
|
// 0x10000 -> External interrupt line is high
|
assign cmd_data = { 7'h00, {(9-EXTERNAL_INTERRUPTS){1'b0}}, i_ext_int,
|
assign cmd_data = { 7'h00, {(9-EXTERNAL_INTERRUPTS){1'b0}}, i_ext_int,
|
2'b00, cpu_dbg_cc,
|
2'b00, cpu_dbg_cc,
|
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
|
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
|
pic_data[15], cpu_reset, cmd_addr };
|
pic_data[15], cpu_reset, cmd_addr };
|
|
|
`ifdef USE_TRAP
|
`ifdef USE_TRAP
|
//
|
//
|
// The TRAP peripheral
|
// The TRAP peripheral
|
//
|
//
|
wire trap_ack, trap_stall, trap_int;
|
wire trap_ack, trap_stall, trap_int;
|
wire [31:0] trap_data;
|
wire [31:0] trap_data;
|
ziptrap trapp(i_clk,
|
ziptrap trapp(i_clk,
|
sys_cyc, (sys_stb)&&(sys_addr == `TRAP_ADDR), sys_we,
|
sys_cyc, (sys_stb)&&(sys_addr == `TRAP_ADDR), sys_we,
|
sys_data,
|
sys_data,
|
trap_ack, trap_stall, trap_data, trap_int);
|
trap_ack, trap_stall, trap_data, trap_int);
|
`endif
|
`endif
|
|
|
//
|
//
|
// The WATCHDOG Timer
|
// The WATCHDOG Timer
|
//
|
//
|
wire wdt_ack, wdt_stall, wdt_reset;
|
wire wdt_ack, wdt_stall, wdt_reset;
|
wire [31:0] wdt_data;
|
wire [31:0] wdt_data;
|
ziptimer watchdog(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer watchdog(i_clk, cpu_reset, ~cmd_halt,
|
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
|
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
|
sys_data,
|
sys_data,
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
wdt_ack, wdt_stall, wdt_data, wdt_reset);
|
|
|
//
|
//
|
// The Flash Cache, a pre-read cache to memory that can be used to
|
// Position two ... unclaimed / unused
|
// create a fast memory access area
|
|
//
|
//
|
wire cache_int;
|
wire cache_stall;
|
wire [31:0] cache_data;
|
assign cache_stall = 1'b0;
|
wire cache_stb, cache_ack, cache_stall;
|
reg cache_ack;
|
wire fc_cyc, fc_stb, fc_we, fc_ack, fc_stall;
|
always @(posedge i_clk)
|
wire [31:0] fc_data, fc_addr;
|
cache_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == 5'h02);
|
flashcache #(10) manualcache(i_clk,
|
|
sys_cyc, cache_stb,
|
|
((sys_stb)&&(sys_addr == `CACHECTRL)),
|
|
sys_we, cpu_addr[9:0], sys_data,
|
|
cache_ack, cache_stall, cache_data,
|
|
// Need the outgoing CACHE wishbone bus
|
|
fc_cyc, fc_stb, fc_we, fc_addr, fc_data,
|
|
fc_ack, fc_stall, ext_idata,
|
|
// Cache interrupt, for upon completion
|
|
cache_int);
|
|
|
|
|
|
// Counters -- for performance measurement and accounting
|
// Counters -- for performance measurement and accounting
|
//
|
//
|
// Here's the stuff we'll be counting ....
|
// Here's the stuff we'll be counting ....
|
//
|
//
|
wire cpu_op_stall, cpu_pf_stall, cpu_i_count;
|
wire cpu_op_stall, cpu_pf_stall, cpu_i_count;
|
|
|
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
//
|
//
|
// The master counters will, in general, not be reset. They'll be used
|
// The master counters will, in general, not be reset. They'll be used
|
// for an overall counter.
|
// for an overall counter.
|
//
|
//
|
// Master task counter
|
// Master task counter
|
wire mtc_ack, mtc_stall, mtc_int;
|
wire mtc_ack, mtc_stall, mtc_int;
|
wire [31:0] mtc_data;
|
wire [31:0] mtc_data;
|
zipcounter mtask_ctr(i_clk, (~cmd_halt), sys_cyc,
|
zipcounter mtask_ctr(i_clk, (~cpu_halt), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
|
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
mtc_ack, mtc_stall, mtc_data, mtc_int);
|
|
|
// Master Operand Stall counter
|
// Master Operand Stall counter
|
wire moc_ack, moc_stall, moc_int;
|
wire moc_ack, moc_stall, moc_int;
|
wire [31:0] moc_data;
|
wire [31:0] moc_data;
|
zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
|
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
moc_ack, moc_stall, moc_data, moc_int);
|
moc_ack, moc_stall, moc_data, moc_int);
|
|
|
// Master PreFetch-Stall counter
|
// Master PreFetch-Stall counter
|
wire mpc_ack, mpc_stall, mpc_int;
|
wire mpc_ack, mpc_stall, mpc_int;
|
wire [31:0] mpc_data;
|
wire [31:0] mpc_data;
|
zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
|
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
mpc_ack, mpc_stall, mpc_data, mpc_int);
|
|
|
// Master Instruction counter
|
// Master Instruction counter
|
wire mic_ack, mic_stall, mic_int;
|
wire mic_ack, mic_stall, mic_int;
|
wire [31:0] mic_data;
|
wire [31:0] mic_data;
|
zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
(sys_stb)&&(sys_addr == `MSTR_INST_CTR),
|
(sys_stb)&&(sys_addr == `MSTR_INST_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
mic_ack, mic_stall, mic_data, mic_int);
|
mic_ack, mic_stall, mic_data, mic_int);
|
|
|
//
|
//
|
// The user counters are different from those of the master. They will
|
// The user counters are different from those of the master. They will
|
// be reset any time a task is given control of the CPU.
|
// be reset any time a task is given control of the CPU.
|
//
|
//
|
// User task counter
|
// User task counter
|
wire utc_ack, utc_stall, utc_int;
|
wire utc_ack, utc_stall, utc_int;
|
wire [31:0] utc_data;
|
wire [31:0] utc_data;
|
zipcounter utask_ctr(i_clk,(~cmd_halt), sys_cyc,
|
zipcounter utask_ctr(i_clk,(~cpu_halt), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
|
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
utc_ack, utc_stall, utc_data, utc_int);
|
utc_ack, utc_stall, utc_data, utc_int);
|
|
|
// User Op-Stall counter
|
// User Op-Stall counter
|
wire uoc_ack, uoc_stall, uoc_int;
|
wire uoc_ack, uoc_stall, uoc_int;
|
wire [31:0] uoc_data;
|
wire [31:0] uoc_data;
|
zipcounter umstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
zipcounter umstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
|
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
uoc_ack, uoc_stall, uoc_data, uoc_int);
|
uoc_ack, uoc_stall, uoc_data, uoc_int);
|
|
|
// User PreFetch-Stall counter
|
// User PreFetch-Stall counter
|
wire upc_ack, upc_stall, upc_int;
|
wire upc_ack, upc_stall, upc_int;
|
wire [31:0] upc_data;
|
wire [31:0] upc_data;
|
zipcounter upstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
zipcounter upstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
|
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
upc_ack, upc_stall, upc_data, upc_int);
|
upc_ack, upc_stall, upc_data, upc_int);
|
|
|
// User instruction counter
|
// User instruction counter
|
wire uic_ack, uic_stall, uic_int;
|
wire uic_ack, uic_stall, uic_int;
|
wire [31:0] uic_data;
|
wire [31:0] uic_data;
|
zipcounter uins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
zipcounter uins_ctr(i_clk,(cpu_i_count), sys_cyc,
|
(sys_stb)&&(sys_addr == `USER_INST_CTR),
|
(sys_stb)&&(sys_addr == `USER_INST_CTR),
|
sys_we, sys_data,
|
sys_we, sys_data,
|
uic_ack, uic_stall, uic_data, uic_int);
|
uic_ack, uic_stall, uic_data, uic_int);
|
|
|
// A little bit of pre-cleanup (actr = accounting counters)
|
// A little bit of pre-cleanup (actr = accounting counters)
|
wire actr_ack, actr_stall;
|
wire actr_ack, actr_stall;
|
wire [31:0] actr_data;
|
wire [31:0] actr_data;
|
assign actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack)
|
assign actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack)
|
|(utc_ack | uoc_ack | upc_ack | uic_ack));
|
|(utc_ack | uoc_ack | upc_ack | uic_ack));
|
assign actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall)
|
assign actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall)
|
|(utc_stall | uoc_stall | upc_stall|uic_stall));
|
|(utc_stall | uoc_stall | upc_stall|uic_stall));
|
assign actr_data = ((mtc_ack) ? mtc_data
|
assign actr_data = ((mtc_ack) ? mtc_data
|
: ((moc_ack) ? moc_data
|
: ((moc_ack) ? moc_data
|
: ((mpc_ack) ? mpc_data
|
: ((mpc_ack) ? mpc_data
|
: ((mic_ack) ? mic_data
|
: ((mic_ack) ? mic_data
|
: ((utc_ack) ? utc_data
|
: ((utc_ack) ? utc_data
|
: ((uoc_ack) ? uoc_data
|
: ((uoc_ack) ? uoc_data
|
: ((upc_ack) ? upc_data
|
: ((upc_ack) ? upc_data
|
: uic_data)))))));
|
: uic_data)))))));
|
|
`else // INCLUDE_ACCOUNTING_COUNTERS
|
|
reg actr_ack;
|
|
wire actr_stall;
|
|
wire [31:0] actr_data;
|
|
assign actr_stall = 1'b0;
|
|
assign actr_data = 32'h0000;
|
|
|
|
wire utc_int, uoc_int, upc_int, uic_int;
|
|
wire mtc_int, moc_int, mpc_int, mic_int;
|
|
assign mtc_int = 1'b0;
|
|
assign moc_int = 1'b0;
|
|
assign mpc_int = 1'b0;
|
|
assign mic_int = 1'b0;
|
|
assign utc_int = 1'b0;
|
|
assign uoc_int = 1'b0;
|
|
assign upc_int = 1'b0;
|
|
assign uic_int = 1'b0;
|
|
|
|
always @(posedge i_clk)
|
|
actr_ack <= (sys_stb)&&(sys_addr[4:3] == 2'b01);
|
|
`endif // INCLUDE_ACCOUNTING_COUNTERS
|
|
|
|
//
|
|
// The DMA Controller
|
|
//
|
|
wire dmac_int, dmac_stb, dc_err;
|
|
wire [31:0] dmac_data;
|
|
wire dmac_ack, dmac_stall;
|
|
wire dc_cyc, dc_stb, dc_we, dc_ack, dc_stall;
|
|
wire [31:0] dc_data, dc_addr;
|
|
wire cpu_gbl_cyc;
|
|
assign dmac_stb = (sys_stb)&&(sys_addr[4]);
|
|
wbdmac dma_controller(i_clk,
|
|
sys_cyc, dmac_stb, sys_we,
|
|
sys_addr[1:0], sys_data,
|
|
dmac_ack, dmac_stall, dmac_data,
|
|
// Need the outgoing DMAC wishbone bus
|
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
|
|
dc_ack, dc_stall, ext_idata, dc_err,
|
|
// External device interrupts
|
|
{ {(32-EXTERNAL_INTERRUPTS){1'b0}}, i_ext_int },
|
|
// DMAC interrupt, for upon completion
|
|
dmac_int,
|
|
// Whether or not the CPU wants the bus
|
|
cpu_gbl_cyc);
|
|
|
|
|
|
`ifdef INCLUDE_ACCOUNTING_COUNTERS
|
//
|
//
|
// Counter Interrupt controller
|
// Counter Interrupt controller
|
//
|
//
|
reg ctri_ack;
|
reg ctri_ack;
|
wire ctri_stall, ctri_int, ctri_sel;
|
wire ctri_stall, ctri_int, ctri_sel;
|
wire [7:0] ctri_vector;
|
wire [7:0] ctri_vector;
|
wire [31:0] ctri_data;
|
wire [31:0] ctri_data;
|
assign ctri_sel = (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
|
assign ctri_sel = (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
|
assign ctri_vector = { mtc_int, moc_int, mpc_int, mic_int,
|
assign ctri_vector = { mtc_int, moc_int, mpc_int, mic_int,
|
utc_int, uoc_int, upc_int, uic_int };
|
utc_int, uoc_int, upc_int, uic_int };
|
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel)&&(sys_addr==`CTRINT),
|
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel)&&(sys_addr==`CTRINT),
|
sys_data, ctri_data, ctri_vector, ctri_int);
|
sys_data, ctri_data, ctri_vector, ctri_int);
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
ctri_ack <= ctri_sel;
|
ctri_ack <= ctri_sel;
|
|
assign ctri_stall = 1'b0;
|
|
`else // INCLUDE_ACCOUNTING_COUNTERS
|
|
reg ctri_ack;
|
|
wire ctri_stall, ctri_int;
|
|
wire [31:0] ctri_data;
|
|
assign ctri_stall = 1'b0;
|
|
assign ctri_data = 32'h0000;
|
|
assign ctri_int = 1'b0;
|
|
|
|
always @(posedge i_clk)
|
|
ctri_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
|
|
`endif // INCLUDE_ACCOUNTING_COUNTERS
|
|
|
|
|
//
|
//
|
// Timer A
|
// Timer A
|
//
|
//
|
wire tma_ack, tma_stall, tma_int;
|
wire tma_ack, tma_stall, tma_int;
|
wire [31:0] tma_data;
|
wire [31:0] tma_data;
|
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
|
sys_data,
|
sys_data,
|
tma_ack, tma_stall, tma_data, tma_int);
|
tma_ack, tma_stall, tma_data, tma_int);
|
|
|
//
|
//
|
// Timer B
|
// Timer B
|
//
|
//
|
wire tmb_ack, tmb_stall, tmb_int;
|
wire tmb_ack, tmb_stall, tmb_int;
|
wire [31:0] tmb_data;
|
wire [31:0] tmb_data;
|
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
|
sys_data,
|
sys_data,
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
tmb_ack, tmb_stall, tmb_data, tmb_int);
|
|
|
//
|
//
|
// Timer C
|
// Timer C
|
//
|
//
|
wire tmc_ack, tmc_stall, tmc_int;
|
wire tmc_ack, tmc_stall, tmc_int;
|
wire [31:0] tmc_data;
|
wire [31:0] tmc_data;
|
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
|
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
|
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
|
sys_data,
|
sys_data,
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
tmc_ack, tmc_stall, tmc_data, tmc_int);
|
|
|
//
|
//
|
// JIFFIES
|
// JIFFIES
|
//
|
//
|
wire jif_ack, jif_stall, jif_int;
|
wire jif_ack, jif_stall, jif_int;
|
wire [31:0] jif_data;
|
wire [31:0] jif_data;
|
zipjiffies jiffies(i_clk, ~cmd_halt,
|
zipjiffies jiffies(i_clk, ~cmd_halt,
|
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
|
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
|
sys_data,
|
sys_data,
|
jif_ack, jif_stall, jif_data, jif_int);
|
jif_ack, jif_stall, jif_data, jif_int);
|
|
|
//
|
//
|
// The programmable interrupt controller peripheral
|
// The programmable interrupt controller peripheral
|
//
|
//
|
wire pic_interrupt;
|
wire pic_interrupt;
|
wire [(5+EXTERNAL_INTERRUPTS):0] int_vector;
|
wire [(5+EXTERNAL_INTERRUPTS):0] int_vector;
|
assign int_vector = { i_ext_int, ctri_int, tma_int, tmb_int, tmc_int,
|
assign int_vector = { i_ext_int, ctri_int, tma_int, tmb_int, tmc_int,
|
jif_int, cache_int };
|
jif_int, dmac_int };
|
icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset,
|
icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset,
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
(sys_cyc)&&(sys_stb)&&(sys_we)
|
&&(sys_addr==`INTCTRL),
|
&&(sys_addr==`INTCTRL),
|
sys_data, pic_data,
|
sys_data, pic_data,
|
int_vector, pic_interrupt);
|
int_vector, pic_interrupt);
|
|
wire pic_stall;
|
|
assign pic_stall = 1'b0;
|
reg pic_ack;
|
reg pic_ack;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
pic_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `INTCTRL);
|
pic_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `INTCTRL);
|
|
|
//
|
//
|
// The CPU itself
|
// The CPU itself
|
//
|
//
|
wire cpu_cyc, cpu_stb, cpu_we, cpu_dbg_we;
|
wire cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb,
|
|
cpu_we, cpu_dbg_we;
|
wire [31:0] cpu_data, wb_data;
|
wire [31:0] cpu_data, wb_data;
|
wire cpu_ack, cpu_stall;
|
wire cpu_ack, cpu_stall, cpu_err;
|
wire [31:0] cpu_dbg_data;
|
wire [31:0] cpu_dbg_data;
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
|
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
|
&&(dbg_we)&&(dbg_addr));
|
&&(dbg_we)&&(dbg_addr));
|
zipcpu #(RESET_ADDRESS) thecpu(i_clk, cpu_reset, pic_interrupt,
|
zipcpu #(RESET_ADDRESS) thecpu(i_clk, cpu_reset, pic_interrupt,
|
cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
|
cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
|
cpu_dbg_cc, cpu_break,
|
cpu_dbg_cc, cpu_break,
|
cpu_cyc, cpu_stb, cpu_we, cpu_addr, cpu_data,
|
cpu_gbl_cyc, cpu_gbl_stb,
|
|
cpu_lcl_cyc, cpu_lcl_stb,
|
|
cpu_we, cpu_addr, cpu_data,
|
cpu_ack, cpu_stall, wb_data,
|
cpu_ack, cpu_stall, wb_data,
|
|
cpu_err,
|
cpu_op_stall, cpu_pf_stall, cpu_i_count);
|
cpu_op_stall, cpu_pf_stall, cpu_i_count);
|
|
|
// Now, arbitrate the bus ... first for the local peripherals
|
// Now, arbitrate the bus ... first for the local peripherals
|
assign sys_cyc = (cpu_cyc)||((cpu_halt)&&(~cpu_dbg_stall)&&(dbg_cyc));
|
// For the debugger to have access to the local system bus, the
|
assign sys_stb = (cpu_cyc)
|
// following must be true:
|
? ((cpu_stb)&&(cpu_addr[31:4] == 28'hc000000))
|
// (dbg_cyc) The debugger must request the bus
|
|
// (~cpu_lcl_cyc) The CPU cannot be using it (CPU gets priority)
|
|
// (dbg_addr) The debugger must be requesting its data
|
|
// register, not just the control register
|
|
// and one of two other things. Either
|
|
// ((cpu_halt)&&(~cpu_dbg_stall)) the CPU is completely halted,
|
|
// or
|
|
// (~cmd_addr[5]) we are trying to read a CPU register
|
|
// while in motion. Let the user beware that,
|
|
// by not waiting for the CPU to fully halt,
|
|
// his results may not be what he expects.
|
|
//
|
|
wire sys_dbg_cyc = ((dbg_cyc)&&(~cpu_lcl_cyc)&&(dbg_addr))
|
|
&&(((cpu_halt)&&(~cpu_dbg_stall))
|
|
||(~cmd_addr[5]));
|
|
assign sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc);
|
|
assign sys_stb = (cpu_lcl_cyc)
|
|
? (cpu_lcl_stb)
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
|
|
|
assign sys_we = (cpu_cyc) ? cpu_we : dbg_we;
|
assign sys_we = (cpu_lcl_cyc) ? cpu_we : dbg_we;
|
assign sys_addr= (cpu_cyc) ? cpu_addr[3:0] : cmd_addr[3:0];
|
assign sys_addr= (cpu_lcl_cyc) ? cpu_addr[4:0] : cmd_addr[4:0];
|
assign sys_data= (cpu_cyc) ? cpu_data : dbg_idata;
|
assign sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata;
|
assign cache_stb=((cpu_cyc)&&(cpu_stb)&&(cpu_addr[31:16]==`CACHEBASE));
|
|
|
|
// Return debug response values
|
// Return debug response values
|
assign dbg_odata = (~dbg_addr)?cmd_data
|
assign dbg_odata = (~dbg_addr)?cmd_data
|
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
|
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
|
initial dbg_ack = 1'b0;
|
initial dbg_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
dbg_ack <= (dbg_cyc)&&(dbg_stb)&&
|
dbg_ack <= (dbg_cyc)&&(~dbg_stall);
|
((~dbg_addr)||((cpu_halt)&&(~cpu_dbg_stall)));
|
assign dbg_stall=(dbg_cyc)&&((~sys_dbg_cyc)||(sys_stall))&&(dbg_addr);
|
assign dbg_stall=(dbg_addr)&&(dbg_cyc)
|
|
&&((cpu_cyc)||((cmd_halt)&&(~cpu_halt))
|
|
||(cpu_dbg_stall));
|
|
|
|
// Now for the external wishbone bus
|
// Now for the external wishbone bus
|
// Need to arbitrate between the flash cache and the CPU
|
// Need to arbitrate between the flash cache and the CPU
|
// The way this works, though, the CPU will stall once the flash
|
// The way this works, though, the CPU will stall once the flash
|
// cache gets access to the bus--the CPU will be stuck until the
|
// cache gets access to the bus--the CPU will be stuck until the
|
// flash cache is finished with the bus.
|
// flash cache is finished with the bus.
|
wire ext_cyc, ext_stb, ext_we;
|
wire ext_cyc, ext_stb, ext_we, ext_err;
|
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall;
|
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall,
|
|
cpu_ext_err;
|
wire [31:0] ext_addr, ext_odata;
|
wire [31:0] ext_addr, ext_odata;
|
wbarbiter #(32,32) flashvcpu(i_clk, i_rst,
|
wbpriarbiter #(32,32) dmacvcpu(i_clk, i_rst,
|
fc_addr, fc_data, fc_we, fc_stb, fc_cyc,
|
cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr, cpu_data,
|
fc_ack, fc_stall,
|
cpu_ext_ack, cpu_ext_stall, cpu_ext_err,
|
cpu_addr, cpu_data, cpu_we,
|
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
|
((cpu_stb)&&(~sys_stb)&&(~cache_stb)),
|
dc_ack, dc_stall, dc_err,
|
cpu_cyc, cpu_ext_ack, cpu_ext_stall,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
ext_addr, ext_odata, ext_we, ext_stb,
|
ext_ack, ext_stall, ext_err);
|
ext_cyc, ext_ack, ext_stall);
|
|
|
|
`ifdef DELAY_EXT_BUS
|
`ifdef DELAY_EXT_BUS
|
busdelay #(32,32) extbus(i_clk,
|
busdelay #(32,32) extbus(i_clk,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
|
ext_ack, ext_stall, ext_idata,
|
ext_ack, ext_stall, ext_idata, ext_err,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
i_wb_ack, i_wb_stall, i_wb_data);
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err);
|
`else
|
`else
|
assign o_wb_cyc = ext_cyc;
|
assign o_wb_cyc = ext_cyc;
|
assign o_wb_stb = ext_stb;
|
assign o_wb_stb = ext_stb;
|
assign o_wb_we = ext_we;
|
assign o_wb_we = ext_we;
|
assign o_wb_addr = ext_addr;
|
assign o_wb_addr = ext_addr;
|
assign o_wb_data = ext_odata;
|
assign o_wb_data = ext_odata;
|
assign ext_ack = i_wb_ack;
|
assign ext_ack = i_wb_ack;
|
assign ext_stall = i_wb_stall;
|
assign ext_stall = i_wb_stall;
|
assign ext_idata = i_wb_data;
|
assign ext_idata = i_wb_data;
|
|
assign ext_err = i_wb_err;
|
`endif
|
`endif
|
|
|
wire tmr_ack;
|
wire tmr_ack;
|
assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
|
assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
|
wire [31:0] tmr_data;
|
wire [31:0] tmr_data;
|
assign tmr_data = (tma_ack)?tma_data
|
assign tmr_data = (tma_ack)?tma_data
|
:(tmb_ack ? tmb_data
|
:(tmb_ack ? tmb_data
|
:(tmc_ack ? tmc_data
|
:(tmc_ack ? tmc_data
|
:jif_data));
|
:jif_data));
|
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
|
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
|
:((actr_ack|cache_ack)?((actr_ack)?actr_data:cache_data)
|
:((actr_ack|dmac_ack)?((actr_ack)?actr_data:dmac_data)
|
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
|
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
|
:(ext_idata)));
|
:(ext_idata)));
|
|
|
assign cpu_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
assign sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
|
| wdt_stall | cache_stall
|
| wdt_stall | ctri_stall | actr_stall
|
| cpu_ext_stall);
|
| pic_stall | dmac_stall | cache_stall);
|
assign cpu_ack = (tmr_ack|wdt_ack|cache_ack|cpu_ext_ack|ctri_ack|actr_ack|pic_ack);
|
assign cpu_stall = (sys_stall)|(cpu_ext_stall);
|
|
assign sys_ack = (tmr_ack|wdt_ack|ctri_ack|actr_ack|pic_ack|dmac_ack|cache_ack);
|
|
assign cpu_ack = (sys_ack)||(cpu_ext_ack);
|
|
assign cpu_err = (cpu_ext_err)&&(cpu_gbl_cyc);
|
|
|
assign o_ext_int = (cmd_halt) && (~cpu_stall);
|
assign o_ext_int = (cmd_halt) && (~cpu_stall);
|
|
|
endmodule
|
endmodule
|
|
|